

Article

Synthesis of Unusual N-Acylated Aminosugar Fragments of Mycobacterium Marinum Lipooligosaccharide IV

Lei Wang, Mengyao Dong, and Todd L. Lowary

J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 02 Feb 2015

Downloaded from http://pubs.acs.org on February 3, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Synthesis of Unusual N-Acylated Aminosugar

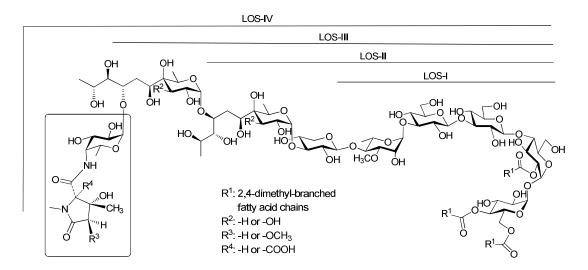
Fragments of Mycobacterium Marinum Lipooligosaccharide IV

Lei Wang, Mengyao Dong, and Todd L. Lowary*

Alberta Glycomics Centre and Department of Chemistry, University of Alberta Gunning–Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada

Email: tlowary@ualberta.ca

Graphical Abstract


Abstract

A convergent strategy was developed for the stereoselective synthesis of four unusual *N*-acylated monosaccharides (5–8), which are fragments of lipooligosaccharide IV (LOS-IV) from *Mycobacterium marinum*. A critical substrate-controlled asymmetric cyclization of an aminoacid derived oxazolidine provided a key lactam intermediate 11, which was successfully converted to targets 5–7. The key step in the synthesis of 8 was a one-pot cascade oxidation–cyclization–oxidation reaction of a Boc-protected amino alcohol, prepared from 3-butynol, which led to the formation of lactam 15. The five member ring lactam intermediates in these synthetic routes were sensitive to elimination side reactions, but careful manipulation of the reaction sequence allowed for the stereoselective synthesis of the targets. This work represents the first synthesis of these unusual motifs, which have been shown to be essential to the bioactivity of LOS-IV.

Introduction

Lipooligosaccharides (LOSs) are antigenic cell surface glycolipids found in the cell wall complex of mycobacteria. They are produced by a range of mycobacteria, including *Mycobacterium kansasii*, *M. smegmatis*, *M. gastri*, 4-6 *M. malmoense*, *M. marinum*, 8-10 and the Canetti strain of *M. tuberculosis*. Recent investigations support a role for LOSs in important biological events including sliding motility, biofilm formation, and infection of host macrophages; however, their precise role in mycobacterial virulence remains unclear. 13

M. marinum produces four LOSs (LOS-I–IV, Figure 1). Similar to all LOSs reported to date, these molecules contain an acylated trehalose core, which is functionalized with a species-specific glycan. The glycan in *M. marinum* LOS-IV is terminated with a family of *N*-acylated 4-amino-4,6-dideoxy-galactopyranose residues. These unusual *N*-acylated monosaccharides share a common lactam core, differentiated by substitutions at C-2 (CO₂H or H) or C-4 (MeO or H). This heterogeneity generates two acidic (1 and 2, Figure 2) and two neutral (3 and 4) compounds. Compound 1 and 2, substituted by both carboxy (C-2) and methoxy (C-4) groups, account for 95% of the total LOS-IV derivatives. The absolute stereochemistry of the substituents in the lactam ring of 1–3 have been determined using ¹H NMR spectroscopy, in particular through NOE experiments. However, this was not possible for 4 and it was proposed that its lactam structure was either that shown in Figure 2, or its enantiomer.

Figure 1. Structures of *M. marinum* LOSs.

Figure 2. Structures of unusual *N*-acylated monosaccharides present in *M. marinum* LOS-IV (1–4) and synthetic targets (5–8).

Recent studies by Guérardel and co-workers showed that LOS-IV induces the expression of both Intercellular Adhesion Molecule 1(ICAM-1) and CD40 on macrophages. In addition, LOS-IV stimulates Interleukin-8 (IL-8) secretion from THP-1 cells. However, LOS-III did not show these activities, ¹⁰ thus indicating that these terminal *N*-acylated monosaccharides confer important biological functions to LOS-IV. The biological activity of these motifs, in conjunction with their intriguing structure, motivated us to develop a synthetic route that would provide these compounds in a form that could be used for future investigations of their function. In this paper,

we describe the first stereoselective synthesis of these unusual *N*-acylated monosaccharides (5–**8**). These molecules were synthesized bearing an aminooctyl aglycone, a group that provides a convenient handle for conjugation, for example, to proteins for the generation of monoclonal antibodies.

Results and discussion

The targets feature a structure consisting of a highly substituted γ -lactam connected through an amide bond to a 4-amino-4,6-dideoxy- α -D-galactopyranoside moiety. Retrosynthetic analysis of 5–8 is outlined in Scheme 1. The disconnection of the amide bond in 5–7 affords protected 4-amino-4,6-dideoxy-galactose derivative 9 and three γ -lactams, which could be accessed from the same key intermediate 10. Compound 10 could be produced from the fused bicyclic oxazolidine–pyrrolinone 11 through a series of functional group transformations. In turn, 11 could be accessed by stereoselective cyclization of 12, which is accessible from D-serine (13). With regard to the synthesis of 8, disconnection of the amide bond leads to amine 9 and *N*-methyl lactam 14. Following a series of functional group manipulations, Boc protected lactam 15 could be converted to *N*-methyl lactam 14. The key step is the conversion of the highly functionalized α -amino acid ester 16^{14} to lactam 15.

5, 6 and 7
$$\Longrightarrow$$
 $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_3}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_3}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_3}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$ $\stackrel{\text{NH}_2}{\Longrightarrow}$

Scheme 1. Retrosynthetic analysis of 5–8.

Synthesis of Monosaccharide 9. With a plan in place, the synthesis began with the preparation of galactopyranoside derivative 9 (Scheme 2). Glucopyranoside 18¹⁵ was treated with tosyl chloride, leading to regioselective tosylation of the C-6 hydroxyl group to form 19 in 95% yield. Subsequent reduction of 19 by LiAlH₄ provided 6-deoxysugar 20 in 85% yield. Triflation of 20 followed by azide substitution at room temperature provided, in 85% overall yield, azide 21. Azide reduction by the Staudinger reaction and trifluoroacetylation of the resulting amine gave the corresponding trifluoroacetamide derivative 23 in 79% yield over the two steps. The anomeric allyl group in 23 was then removed by treatment with a catalytic amount of PdCl₂ in a solution of methanol and CH₂Cl₂ to afford the hemiacetal, which upon exposure to trichloroacetonitrile, Cs₂CO₃ and 4 Å molecular sieves in anhydrous CH₂Cl₂ gave the desired trichloroacetimidate donor. Glycosylation of the trichloroacetimidate donor with 8-azido-octanol in the presence of TMSOTf was α-selective affording 24 in 68% overall yield from 23. Finally, the trifluroacetyl protecting group was removed under basic conditions to afford 8-azidooctyl 4-amino-4,6-dideoxy-galactopyranoside (9) in 96% yield.

Scheme 2. Synthesis of 8-azidooctyl 4-amino-4,6-dideoxy- α -D-galactopyranoside (9).

Synthesis of key lactam precursor 11. After the successful synthesis of 9, we turned our attention to the preparation of the protected lactam derivative 11. The key issue was to introduce stereocenters at α and β positions of the lactam. In previous work, Ling and co-workers (Scheme

3)¹⁶ treated α -alkyl- β -keto amide **25** with DBU at 110 °C, which led to a cyclization–dehydration sequence forming α , β -unsaturated lactam **27**.

Scheme 3. Reference method for synthesis of α , β -unsaturated lactam 27.

Inspired by this reaction, we hypothesized that if α -methoxy- β -keto amide 12 (Scheme 4) was reacted with DBU, a product with the hydroxyl group cis to ester would be formed because of H-bonding with the carbonyl group. In addition, we anticipated that the methoxy group would be trans to the hydroxy group due to a dipole effect. With this plan in mind, we started our synthetic work from D-serine methylester hydrochloride (13). This α -amino ester was condensed with pivaldehyde to afford an oxazolidine intermediate that was directly coupled with acetoacetic acid in the presence of EDC and DMAP giving β-keto amide 28 in 77% overall yield. Iodosobenzenediacetate-mediated oxidation of 28 in methanol provided the α-methoxy-β-keto amide 12 in 90% yield. DBU-promoted cyclization of 12 was carried out as reported by Ling and coworkers; however, in our hands, it was necessary to use a lower temperature (60 °C) to avoid the dehydration following cyclization. After 12 hours, two diastereomeric cyclized products were formed (ratio 9:1 from the ¹H NMR spectrum of the crude product), which could be separated by chromatography. Pleasingly, NOESY experiments (see Supporting Information) showed that the major product (70% isolated yield) was the desired intermediate 11 and the minor product (8% isolated yield) was the undesired stereoisomer (29) where the hydroxyl and methoxy groups are cis. X-ray crystallographic analysis of 11 further confirmed the structure of major product (see Figure S1 and Tables S1 and S2 in the Supporting Information).

Scheme 4. Synthesis of oxazolidine 11.

The next step was to protect the tertiary alcohol in 11 as a benzyl ether. Mindful of the anticipated base-sensitivity of 11, initial attempts to benzylate this tertiary alcohol were carried out under acidic conditions (TMSOTf and benzyl trichloroacetimidate). However, these attempts were unsuccessful and so we turned out attention to base-promoted alkylation. Treatment of alcohol 11 with NaH and benzyl bromide (2 equiv) led to the formation of two benzylated compounds (ratio 24:71) and a trace amount of elimination by-product 35 (Table 1). Disappointingly, NOESY experiments (see Supporting Information) confirmed that the major product was 34, in which the substituents α and β to carbonyl group were *cis*. Presumably, upon deprotonation of alcohol with base, the resulting anion undergoes a reversible retro-aldol reaction (Scheme 5).¹⁷ Although, upon recyclization both stereoisomers can be formed in this process, the cis intermediate 32 would be expected to react faster with benzyl bromide given dipolar effects, leading to a majority of 34. We imagined that using a higher concentration of benzyl bromide would allow the trapping of alkoxide 30 before ring opening. Gratifyingly, as outlined in Table 1, increasing the ratio of BnBr to DMF to 1:2, led to a 3:2 ratio of the desired (33) to undesired (34) stereoisomers. Further increasing the ratio of BnBr to DMF to 3:1 and decreasing the temperature to -15 °C gave a 9:1 mixture of 33 and 34.

Table 1.Protection of tertiary alcohol in bicyclic intermediate 11^a

Entry	T (°C)	BnBr:DMF —	Products distribution (NMR yield ^b)			
			33	34	35	_
1	0	2 equiv of BnBr	24%	71%	5%	
2	0	1:2	60%	40%	_	
3	0	3:1	80%	20%	_	
4	-15	3:1	90%	10%	_	

^aReaction conditions: **11** (1 equiv), NaH (1.5equiv), n-Bu₄NI (1.2 equiv)

Scheme 5. Proposed mechanism for the formation of by-product **34**.

Synthesis of target 5. After the successful alkylation of the tertiary alcohol, a series of functional group manipulations converted 33 into the key intermediate 10 (Scheme 6). Acidic conditions were used to cleave the oxazolidine ring in 81% yield. The primary alcohol product of this reaction, 36, was then converted to TBS ether 37 and then N-methyl amide 38 in 83% yield over the two steps. Finally, n-Bu₄NF deprotection of the TBS ether provided 10 in 89% yield. With 10 in hand, we examined a number of different oxidation conditions (Jones, PDC in wet DMF, RuCl₃ and NaIO₄, TEMPO and NaClO/NaClO₂) in an attempt to oxidize the primary

^bYields were obtained by integration of CO₂CH₃ protons of the products observed in the crude ¹H NMR spectrum.

alcohol to the corresponding carboxylic acid. Unfortunately, none of these methods afforded the desired product and therefore a two-step approach was explored. Ley oxidation (TPAP/NMO) afforded aldehyde **39** in 84% yield; subsequent Pinnick oxidation easily oxidized **39** to carboxylic acid **40** in 92% yield. With the acid **40** in hand, amidation with the amine **9** led to **41** in 76% yield. The methyl ester was then hydrolyzed by treatment with LiOH in THF and water to furnish **42** (96% yield). Global debenzylation and reduction of **42** was achieved in a mixture of methanol, water and acetic acid (10:1:0.1) under a H₂ atmosphere with 10% Pd/C as the catalyst to give an 89% yield of **5**.

Scheme 6. Synthesis of target 5.

When 5, which was homogenous based on HRMS analysis, was dissolved in CD₃OD, the 1 H NMR spectrum showed a mixture of two species in a 4:3 ratio. When the solvent was changed to DMSO- d_6 , the ratio for these two isomers was still 4:3; however, it changed to 10:1 after two days. Finally, when AcOH- d_4 was used as solvent, the ratio changed to 2:3 after one day and did not change further (see Supporting Information). Recovery of the samples dissolved in DMSO- d_6 and AcOH- d_4 and redissolution in CD₃OD, resulted in a 4:3 mixture of isomers. These experiments suggest that following deprotection, N-acylated monosaccharide 5 exists as a

mixture of two atropisomers about the C-4 amide bond, with solvent-dependent populations. Attempts to resolve the atropisomers into a single species using elevated temperature (60 °C) NMR experiments in CD₃OD did not result in significant changes in the distributions of the two species. Interestingly, in the report¹⁰ detailing the structure of these LOSs from *M. marinum*, atropoisomerism was not reported. In these synthetic compounds, restricted rotation about this bond may arise from the presence of the aminooctyl aglyone, which would lead to these compounds existing at zwitterions at neutral pH. We note, however, that the use of AcOH-*d*₄, which would be expected to protonate the molecule, did not lead to a single species in the ¹H NMR spectrum. Unfortunately, direct comparison of the NMR data from 5 with those reported for the natural product was not possible. The NMR spectra of the natural glycolipids were measured in D₂O, a solvent in which 5 (as well as 6–8) is insoluble.

Synthesis of target 6. To synthesize 6, an inverted order for the oxidation and amidation sequence was used. The initial plan was to hydrolyze the ester in 38 to afford an acid 43 that could be coupled to amine 9 (Scheme 7). Unfortunately, presumably due to steric effects arising from the TBS protecting group, a number of different conditions (e.g., LiOH in THF/H₂O, LiOH in CH₃OH/H₂O (r.t. to 50 °C), NaOH in CH₃OH/H₂O) only afforded trace amounts of desired product. Thus, we decided to hydrolyze the key intermediate 10, which possesses a free hydroxyl group (Scheme 8). Compound 10 was easily hydrolyzed by treatment with LiOH in THF and water at room temperature to afford acid 44 in 92% yield. TBTU-promoted amidation of 44 with amine 9 led to a 67% yield of 45. Late-stage Ley oxidation (TPAP/NMO) and then Pinnick oxidation straightforwardly afforded acid precursor 47 in 80% yield over two steps. Finally, global debenzylation and azide reduction provided 6 in 88% yield. Like 5, compound 6 demonstrated atropisomerism in CD₃OD with a ratio about 5:1 (see Supporting Information).

Scheme 7. Attempts to hydrolyze the ester in **38**.

Scheme 8. Synthesis of target **6**.

Synthesis of target 7. To synthesize 7, dicarboxylic acid monoester 40 (Scheme 9) was used as the starting material. Decarboxylation of 40 in toluene at reflux afforded ester 48 as a 1:1 mixture of diasteroisomers in 78% yield. These compounds were inseparable using silica gel column chromatography and were therefore carried forward as a mixture. Hydroylsis of 48 by treatment with LiOH in THF and water afforded the corresponding carboxylic acids 49 (also as an inseparable mixture of diastereomers), which were coupled with amine 9. The resulting two amidation products, 50 and 51, were separated by column chromatography to give major and minor products in a 4:1 ratio. NOESY experiments (see Supporting Information) showed that the interaction between the CH₃ (δ 1.52 ppm) and H-2'(δ 3.90 ppm) in the major product was stronger than the interaction between the CH₃ (δ 1.38 ppm) and H-2' (δ 4.03 ppm) in the minor product. These results suggest that 50, with a *cis* relationship between the benzyl ether and amide groups was formed as the major product (δ 4% yield calculated based on amine 9). Compound 51 was

formed as minor product in 16% yield. Unreacted **49** was also isolated at the end of the reaction. These yields presumably arise from differences in reactivities between the two stereoisomeric acids in the amidation reaction. After deprotection in a mixture of methanol, water and acetic acid (10:1:0.1) under a H₂ atmosphere with 10% Pd/C as the catalyst, **7** was obtained in 87% yield. Unlike the **5** and **6**, *N*-acylated monosaccharide **7** did not show any atropisomeric effects in CD₃OD, which we attribute to more efficient amide bond rotation due to the lack of an adjacent carboxylic acid group.

Scheme 9. Synthesis of target 7.

Synthesis of target 8. The synthesis of 8 (Scheme 10) began with 3-butynol (17), which was converted to α-amino acid ester 16 following the route reported by Qin and co-workers. ¹⁴ Treatment of 16 with NaIO₄ and RuCl₃ led to a cascade oxidation–cyclization–oxidation sequence, which produced N-Boc protected lactam 15 in 69% yield. Protecting the tertiary alcohol of 15 with an acetyl group and removing the Boc group afforded lactam 55 in 82% yield over two steps. Because lactam 55 was anticipated to be unstable in basic solution, milder conditions were chosen for the N-methylation step. Thus, N-hydroxymethylation of lactam 55 was achieved using paraformaldehyde in acetone in the presence of K₂CO₃ and water with sonication. To reduce the hemiaminal 56 to an N-methyl group (i.e., compound 57), we initially

explored the use of Pd/C catalyzed hydrogenation at atmospheric pressure in the presence of trifluoroacetic acid. However, this reaction was very slow and only a trace amount of product was formed. We found, however, that the hemiaminal 56 could be converted to 57 by treatment with triethylsilane and trifluoroacetic acid at room temperature. N-Methylamide 57 was obtained in 81% yield over two steps from 55. Hydrolysis of methyl and acetate esters in 57 failed when LiOH was used in THF and water; the major product formed was elimination of the acetate to give the α,β unsaturated carboxylic acid. Fortunately, the use of milder conditions (1:2:2 TEA– H₂O-CH₃OH), led to the desired compound 14 in 82% yield. Amidation of the carboxylic acid 14 with the amine 9 was sluggish and led to 58 in modest 52% yield. Given the ease with which the amidations leading to 5–7 were carried out, the relatively low yield and sluggishness of the reaction were surprising. However, attempts to improve the yield of the product by changing the reaction conditions (e.g., use of EDC and DIEA) were unsuccessful. Debenzylation and reduction of 58 was achieved in a mixture of methanol, water and acetic acid (10:1:0.1) under a H₂ atmosphere with 10% Pd/C as the catalyst to afford **8**. The ¹H NMR spectrum of **8**, similar to that obtained for 7, did not show evidence of atropisomerism.

As was the case for **5**, comparison of the NMR data for **8** with that reported for the polysaccharide was prohibited by the insolubility of **8** in D₂O, the solvent used for NMR studies of the naturally-occurring glycan. In this context it should be noted that the synthesis of the enantiomer of **16**, which could also be prepared from 3-butynol using the route described previously, would enable the production of a lactam that could be used to prepare a derivative **8** with the opposable stereochemistry in this side-chain appendage.

Scheme 10. Synthesis of target 8.

Conclusion

In summary, an efficient convergent strategy was developed for the synthesis of four unusual N-acylated monosaccharides (5–8) fragments present in LOS-IV from M. marinum. The general approach to the targets involved the formation of a lactam intermediates (40, 44, 49 and 14), which were coupled to aminosugar 9 and then deprotection of the resulting product. Monosaccharide 9 was prepared via a conventional route. The lactam moieties required for the targets were assembled via two approaches. A key feature of the sequence leading to the lactam precursors needed for the synthesis of 5–7 was the construction of highly substituted oxazolidine–pyrrolinone bicyclic ring system 11 through a substrate controlled stereoselective cyclization of α -methoxy- β -keto amide 12. This reaction installed the two key stereocenters of the lactam moiety in a single step. A different approach was developed to synthesize the lactam needed for the preparation of target 8. A cascade oxidation–cyclization–oxidation sequence of amino acid 16 was used to construct the core lactam 15. Due to the decomposition under strongly basic conditions, a milder approach (hemiaminal formation with paraformaldehyde and K_2CO_3

followed by reaction with triethylsilane and trifluoroacetic acid) was used to furnish the *N*-methyl lactam **14**. The routes developed here will be useful in preparation of building blocks needed for the synthesis of the complete LOS-IV molecule. In addition, **5–8** have been synthesized in a form for conjugation to appropriate proteins and/or probes and hence represent useful biochemical tools.

Experimental section

General experimental methods: All reagents were purchased from commercial sources and were used without further purification unless noted. All reactions were monitored by TLC on silica gel 60-F₂₅₄ (0.25 mm). Visualization of the reaction components was achieved using UV fluorescence (254 nm) and/or by charring with acidified anisaldehyde solution in ethanol or KMnO₄ in water or cerium ammonium molybdate stain. Organic solvents were evaporated under reduced pressure and the products were purified by column chromatography on silica gel (230– 400 mesh). Optical rotations were measured in a microcell (1 cm, 1 mL) at ambient temperature and are in units of degree·mL/(g·dm). ¹H NMR spectra were recorded at 400 MHz, 500 MHz, 600 MHz or 700 Mz and chemical shifts are referenced to residual CHCl₃ (7.26 ppm, CDCl₃), CHD₂OD (3.30 ppm, CD₃OD) or DMSO-d₅ (2.50 ppm, DMSO-d₆). ¹³C NMR spectra were recorded at 125 MHz and chemical shifts are referenced to CDCl₃ (77.0 ppm) or CD₃OD (49.3 ppm). Reported splitting patterns are abbreviated as s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, app = apparent. Assignments of NMR spectra were based on twodimensional experiments (¹H–¹H COSY, HSQC and HMBC) and stereochemistry of the anomeric centers of the pyranose rings were confirmed by measuring ${}^{1}J_{C-1}$ via coupled HSQC

experiments. ESI/TOF-HRMS spectra were recorded on samples suspended in THF or CH₃OH and added NaCl.

8-Azidooctvl 4-[(2'R,3'S,4'R)-3'-(hydroxy)-4'-methoxy-2'-carboxyl-1',3'-dimethyl-5'oxopyrrolidine-2'-carboxamidol-4,6-dideoxy-α-D-galactopyranoside (5) To a solution of 42 (30 mg, 0.037 mmol) in CH₃OH (5 mL), water (0.5 mL) and acetic acid (0.1 mL) was treated with palladium on charcoal (10%, 10 mg) and subjected to hydrogen atmosphere for 20 h. The mixture was filtered through Celite and the filtrate was concentrated. The residue was subjected to flash chromatography (C18 column, gradient 0 \rightarrow 50% CH₃OH–H₂O) to yield 5 (17 mg, 89%) yield) as a white amorphous solid. $[\alpha]_D = +28.6$ (c 0.3, CH₃OH); The NMR data showed that there were two atropisomers in CD₃OD in a 4:3 ratio. ¹H NMR (500 MHz, CD₃OD, δ_H) 4.80 (d, 1 H, J = 3.5 Hz, H-1 (major)), 4.78 (d, 1 H, J = 3.5 Hz, H-1 (minor)), 4.22–4.13 (m, 2H, H-4 and H-5), 3.95 (s, 1 H, CH₃OCH (major)), 3.96–3.90 (m, 1 H, H-3), 3.85 (s, 1 H, CH₃OCH (minor)), 3.69–3.66 (m, 2 H, octyl OCH₂ and H-2), 3.66 (s, 3 H, OCH₃ (minor)), 3.55–3.59 (m, 1 H, H-2), 3.49-3.44 (m, 1 H, octyl OC H_2), 2.91-2.88 (m, 2 H, C H_2 NH₂), 2.90 (s, 3 H, NCH₃ (major)), 2.80 (s, 3 H, NCH₃ (minor)), 1.68–1.60 (m, 4 H, CH₂ x 2), 1.55 (s, 3 H, CCH₃ (minor)), 1.44-1.32 (m, 8 H, CH₂ x 4), 1.21 (d, 3 H, J = 6.5 Hz, H-6 (major)), 1.18 (d, 3 H, J = 6.5 Hz, H-6 (minor)), 1.17 (s, 3 H, CCH₃ (major)); 13 C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) for major atropisomer 173.3 (CH₃NC=O), 167.9 (HNC=O), 99.0 (C-1), 85.2 (CH₃OCH), 78.9 (CH₃COH), 72.5 (CCO₂H), 70.1 (C-3), 69.1 (C-2), 68.0 (OCH₂CH₂), 64.5 (C-5), 58.8 (OCH₃), 54.8 (C-4), 39.3 (CH₂NH₂), 29.2 to 28.5 (NCH₃ and CH₂ x 6), 17.7 (CCH₃), 16.3 (C-6); ¹³C NMR (125 MHz, CD₃OD, δ_C) for minor atropisomer 174.2 (CH₃NC=O), 168.6 (HNC=O), 99.0 (C-1), 83.2 (CH₃OCH), 75.7 (CH₃COH), 69.9 (C-3), 69.2 (C-2), 68.1 (CCO₂H), 67.9 (OCH₂CH₂), 64.9 (C-

5), 59.6 (OCH₃), 54.7 (C-4), 39.3 (*C*H₂NH₂), 29.2 to 28.5 (NCH₃ and *C*H₂ x 6), 22.0 (C*C*H₃), 16.1 (C-6); HRMS (ESI) calcd for (M+Na) C₂₃H₄₁N₃NaO₁₀: 542.2684. Found: 542.2678.

8-Azidooctvl 4-[(2'S,3'S,4'R)-3'-(hydroxy)-4'-methoxy-2'-carboxyl-1',3'-dimethyl-5'oxopyrrolidine-2'-carboxamidol-4,6-dideoxy-α-D-galactopyranoside (6) To a solution of 47 (15 mg, 0.018 mmol) in CH₃OH (5 mL), water (0.5 mL) and acetic acid (0.1 mL) was added palladium on charcoal (10%, 7 mg) and subjected to hydrogen atmosphere for 20 h. The mixture was filtered through Celite and the filtrate was concentrated. The residue was subjected to flash chromatography (C18 column, 0→50% CH₃OH–H₂O) to yield 6 (8 mg, 88% yield) as a white soild. $[\alpha]_D = +117.8$ (c 0.3, CH₃OH); The NMR data showed that there were two atropisomers in CD₃OD in a 5:1 ratio. ¹H NMR for major atropisomer: ¹H NMR (500 MHz, CD₃OD, δ_H) 4.77 (d, 1 H, $J_{1,2}$ = 4.0 Hz, H-1), 4.26 (dd, 1 H, $J_{3,4}$ = 4.5 Hz, $J_{4,5}$ = 1.5 Hz, H-4), 4.15 (qd, 1 H, $J_{5,6}$ = 6.5 Hz, $J_{4,5} = 1.5$ Hz, H-5), 3.96 (s, 1 H, CH₃OCH), 3.84 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 4.5$ Hz, H-3), 3.67-3.62 (m, 2 H, octyl OC H_2 and H-2), 3.56 (s, 3 H, OC H_3), 3.46 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OC H_2), 2.91 (t, J = 8.0 Hz, 2 H, C H_2 NH₂), 2.85 (s, 3 H, NCH₃), 1.67–1.60 (m, 4 H, CH₂x 2), 1.42–1.36 (m, 8 H, CH₂ x 4), 1.31 (s, 3 H, CCH₃), 1.07 (d, 3 H, $J_{5.6}$ = 6.5 Hz, H-6); ¹³C NMR for major atropisomer: 13 C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 173.7 (CH₃NC=O), 169.1 (HNC=O), 99.0 (C-1), 84.3 (CH₃OCH), 79.1 (CH₃COH), 70.3 (C-2), 69.8 (C-3), 67.9 (octyl OCH₂), 64.3 (C-5), 58.9 (OCH₃), 55.0 (C-4), 39.3 (CH₂NH₂), 29.0 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 28.6 (NCH₃), 27.2 (CH₂), 25.9 (CH₂), 25.7 (CH₂), 17.8 (CCH₃), 15.7 (C-6); HRMS (ESI) calcd for (M+Na) C₂₃H₄₁N₃NaO₁₀: 542.2684. Found: 542.2677.

8-Azidooctyl 4-[(2'S,3'S,4'R)-3'-(hydroxy)-4'-methoxy-1',3'-dimethyl-5'-oxopyrrolidine-2'carboxamido]-4,6-dideoxy-α-D-galactopyranoside (7) A solution of 50 (15.0 mg, 0.019 mmol) in CH₃OH (5 mL), water (0.5 mL) and acetic acid (0.1 mL) was treated with palladium on charcoal (10%, 8 mg) and subjected to hydrogen atmosphere for 20 h. The mixture was filtered through Celite and the filtrate was concentrated. The residue was triturated with CH₂Cl₂ to yield 7 (8.1 mg, 0.016 mmol, 87% yield) as a white amorphous solid. $[\alpha]_D = +118.3$ (c 0.3, CH₃OH); ¹H NMR (600 MHz, CD₃OD, , $\delta_{\rm H}$) 4.78 (d, 1 H, $J_{1,2}$ = 4.0 Hz, H-1), 4.34 (dd, 1 H, $J_{3,4}$ = 4.5 Hz, $J_{4.5} = 1.5 \text{ Hz}$, H-4), 4.15 (qd, 1 H, $J_{5.6} = 6.5 \text{ Hz}$, $J_{4.5} = 1.5 \text{ Hz}$, H-5), 4.06 (s, 1 H, CH₃OC*H*), 4.01 (s, 1 H, CHC=ONH), 3.87 (dd, 1 H, $J_{2,3} = 10.5$ Hz, $J_{3,4} = 4.5$ Hz, H-3), 3.67 (dt, 1 H, J = 9.5, 7.0 Hz, octyl OC H_2), 3.62 (dd, 1 H, $J_{2,3} = 10.5$ Hz, $J_{1,2} = 4.0$ Hz, H-2), 3.59 (s, 3 H, OC H_3), 3.45 (dt, 1 H, J = 9.5, 6.5 Hz, octyl OC H_2), 2.90 (t, 2 H, J = 7.5 Hz, CH_2NH_2), 2.75 (s, 3 H, NC H_3), 1.68–1.62 (m, 4 H, CH₂ x 2), 1.43–1.38 (m, 8 H, CH₂ x 4), 1.37 (s, 3 H, CCH₃), 1.11 (d, 3 H, J_{5.6} = 6.5 Hz, H-6); 13 C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 172.8 (CH₃NC=O), 170.0 (HNC=O), 98.9 (C-1), 84.1 (CH₃OCH), 76.1 (CH₃COH), 70.1 (CHC=ONH), 69.4 (C-3), 69.2 (C-2), 67.9 (octyl OCH₂), 64.1 (C-5), 58.9 (OCH₃), 54.7 (C-4), 39.2 (CH₂NH₂), 29.0 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 27.8 (NCH₃), 27.2 (CH₂), 25.9 (CH₂), 25.7 (CH₂), 20.5 (CCH₃), 15.6 (C-6); HRMS (ESI) calcd for (M+H) C₂₂H₄₂N₃O₈: 476.2966. Found: 476.2961.

8-Azidooctyl 4-[(2'S,3'R)-3'-(hydroxy)-1',3'-dimethyl-5'-oxopyrrolidine-2'- carboxamido]- 4,6-dideoxy-α-D-galactopyranoside (**8**) A solution of **58** (5.1 mg , 0.0077 mmol) in CH₃OH (5 mL), water (0.5 mL) and acetic acid (0.1 mL) was treated with palladium on charcoal (10%, 5 mg) and subjected to a hydrogen atmosphere for 8 h. The mixture was filtered through Celite and the filtrate was concentrated. The residue was triturated with CH₂Cl₂ to afford **8** (2.8 mg, 81%)

yield) as a white amorphous solid. [α]_D = +89.0 (c 0.1, CH₃OH); ¹H NMR (700 MHz, CD₃OD, $\delta_{\rm H}$) 8.02 (d, 1 H, J = 10.5 Hz, NH), 4.77 (d, 1 H, $J_{1,2}$ = 4.0 Hz, H-1), 4.33–4.35 (m, 1 H, H-4), 4.14 (q, 1 H, $J_{5,6}$ = 6.5 Hz, H-5), 4.09 (s, 1 H, CHC=ONH), 3.85 (dd, 1 H, $J_{2,3}$ = 10.5 Hz, $J_{3,4}$ = 4.5 Hz, H-3), 3.66 (dt, 1 H, J = 10.0, 7.0 Hz, octyl OC H_2), 3.59 (dd, 1 H, $J_{2,3}$ = 10.5 Hz, $J_{1,2}$ = 4.0 Hz, H-2), 3.44 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OC H_2), 2.90 (t, 2 H, J = 7.5 Hz, C H_2 NH₂), 2.76 (s, 3 H, NCH₃), 2.61 (d, 1 H, J = 16.5 Hz, C H_2 C=O), 1.31 (d, 1 H, J = 16.5 Hz, C H_2 C=O), 1.68–1.60 (m, 4 H, CH₂ x 2), 1.49 (s, 3 H, CCH₃), 1.44–1.36 (m, 8 H, CH₂ x 4), 1.12 (d, 3 H, $J_{5,6}$ = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 176.4 (CH₃NC=O), 171.5 (HNC=O), 100.5 (C-1), 74.3 (CHC=ONH), 73.2 (CH₃COH), 70.9 (C-3 or C-2), 70.8 (C-3 or C-2), 69.4 (octyl OCH₂), 65.2 (C-5), 56.0 (C-4), 46.2 (CH₂C=O), 40.8 (CH₂NH₂), 30.5 (CH₂), 30.3 (CH₂), 30.2 (CH₂), 29.1 (NCH₃), 28.9 (CCH₃), 28.6 (CH₂), 27.4 (CH₂), 27.2 (CH₂), 17.1 (C-6); HRMS (ESI) calcd for (M+H) C₂₁H₄₀N₃O₇: 446.2861. Found: 446.2860.

8-Azidooctyl 4-amino-2,3-di-*O*-benzyl-4,6-dideoxy-α-D-galacatopyranoside (9) To a solution of **24** (350 mg, 0.59 mmol) in CH₃OH (16 mL) at room temperature was added NaOH (aq.) (4 mL, 1 N, 4 mmol). The mixture was heated at reflux for 4 days, before being cooled, diluted with water and extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated to afford **9** (281 mg, 96% yield) as a colorless oil. R_f 0.17 (2:3 hexane–EtOAc); [α]_D = +42.3 (c 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) δ 7.42–7.30 (m, 10 H, ArH), 4.83 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.79 (d, 1 H, J = 11.5 Hz, PhCH₂, C-3), 4.77 (d, 1 H, J_{1,2} = 4.0 Hz, H-1), 4.72 (d, 1 H, J = 11.5 Hz, PhCH₂, C-3), 4.69 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.05 (qd, 1 H, J_{5,6} = 6.5 Hz, J_{4,5} = 1.5 Hz, H-5), 3.89 (dd, 1 H, J_{2,3} = 10.0 Hz, J_{3,4} = 4.0 Hz, H-3), 3.78 (dd, 1 H, J_{2,3} = 10.0 Hz, J_{1,2} = 4.0 Hz, H-2), 3.65 (dt, 1 H, J = 10.0, 7.0

Hz, octyl OC H_2), 3.47 (dt, 1 H, J = 10.0, 7.0 Hz, octyl OC H_2), 3.29 (t, 2 H, J = 7.0 Hz, CH₂N₃), 3.20 (dd, 1 H, $J_{3,4} = 4.0$ Hz, $J_{4,5} = 1.5$ Hz, H-4), 1.68–1.60 (m, 4H, CH₂ x 2), 1.48 (br, 2H, NH₂), 1.42–1.37 (m, 8H, CH₂ x 4), 1.26 (d, 3 H, $J_{5,6} = 6.5$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) δ_C 138.8 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 127.6 (Ar), 127.63 (Ar), 127.61 (Ar), 97.4 (C-1), 78.6 (C-3), 75.5 (C-2), 73.1 (PhCH₂, C-2), 72.3 (PhCH₂, C-3), 68.1 (OCH₂CH₂), 65.1 (C-5), 53.4 (C-4), 51.5 (CH₂N₃), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 16.8 (C-6); HRMS (ESI) calcd for (M+H) C₂₈H₄₁N₄O₄: 497.3122. Found: 497.3113.

3-(benzyloxy)-2-(hydroxymethyl)-4-methoxy-1,3-dimethyl-5-(2S,3S,4R)-methyl oxopyrrolidine-2-carboxylate (10) To a solution of 38 (46 mg, 0.10 mmol) in THF (5 mL) was added n-Bu₄NF solution (0.5 mL, 1.0 M, 0.50 mmol) dropwise at room temperature. The mixture was stirred for 3 h. Then water was added and the mixture was extracted with EtOAc. The organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 30→50% EtOAc−hexane) to afford 10 (30 mg, 89% yield) as a white amorphous solid. $R_f 0.32$ (2:3 hexane–EtOAc); $[\alpha]_D =$ +82.1 (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.36–7.26 (m, 5 H, ArH), 4.67 (d, 1 H, J = 11.5 Hz, PhC H_2), 4.53 (d, 1 H, J = 11.5 Hz, PhC H_2), 4.13 (d, 1 H, J = 12.5 Hz, C H_2 OH), 4.10 (s, 1 H, CH₃OCH), 4.02 (d, 1 H, J = 12.5 Hz, CH₂OH), 3.75 (s, 3 H, CO₂CH₃), 3.73 (s, 3 H, OCH₃), 2.92 (s, 3 H, NCH₃), 1.48 (s, 3 H, CCH₃); 13 C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.3 (NC=O), 170.9 (CO₂CH₃), 138.1 (Ar), 128.3 (Ar), 127.5 (Ar), 126.8 (Ar), 83.4 (PhCH₂OC), 82.2 (CH₃OCH), 74.5 (CCO₂CH₃), 66.0 (PhCH₂), 62.5 (CH₂OH), 59.3 (OCH₃), 52.7 (CO₂CH₃), 27.7 (NCH_3) , 12.8 (CCH_3) ; HRMS (ESI) calcd for (M+Na) $C_{17}H_{23}NNaO_6$; 360.1418. Found: 360.1420.

(3S, 6R, 7S, 7aS)-methyl

3-(tert-butyl)-7-hydroxy-6-methoxy-7-methyl-5-

oxohexahydropyrrolo[1,2-c]oxazole-7a-carboxylate (11) To a solution of 12 (1.50 g, 5.0 mmol) in dry toluene (100 mL) was added 1,8 diazabicyclo[5.4.0]undec-7-ene (DBU, 0.38 g, 2.5 mmol) and the mixture was heated at 60 °C for 12 h and then cooled to room temperature. The mixture was concentrated and the crude product was purified by flash column chromatography (silica gel, gradient 9 \rightarrow 13% EtOAc–hexane) to afford 11 (1.12 g, 70% yield) as a white amorphous solid. R_f 0.52 (2:3 hexane–EtOAc); [α]_D = +35.8 (c 0.2, CH₂Cl₂); a sample was recrystallized from hexane and EtOAc, m.p. 136–137 °C; ¹H NMR (500 MHz, CDCl₃, δ _H) 4.95 (s, 1 H, CH(CH₃)₃), 4.69 (d, 1 H, J = 9.5 Hz, OCH_RH_SC), 4.61 (s, 1 H, CH₃OCH), 3.95 (d, 1 H, J = 9.5 Hz, OCH_RH_SC), 3.85 (s, 3 H, CO₂CH₃), 3.70 (s, 3 H, OCH₃), 2.12 (s, 1 H, OH), 1.33 (s, 3 H, CCH₃), 0.91 (s, 9 H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃, δ _C) 173.0 (NC=O), 171.2 (CO_2 CH₃), 96.1 ($CH(CH_3)_3$), 85.6 (CH_3 OCH), 81.2 ($HOCCH_3$), 75.8 (CCO_2 CH₃), 69.0 (OCH_R H_SC), 59.8 (OCH_3), 52.8 (CO_2 CH₃), 36.4 ($C(CH_3)_3$), 24.9 ($C(CH_3)_3$), 18.6 (CCH_3); HRMS (ESI) calcd for (M+Na) C_1 4H₂₃NNaO₆: 324.1418. Found: 324.1419.

(2S,4R)-methyl 2-(tert-butyl)-3-(2-methoxy-3-oxobutanoyl)oxazolidine-4-carboxylate (12) To a stirred suspension of PhI(OAc)₂ (1.3 g, 7.2 mmol) in anhydrous CH₃OH (25 mL) at room temperature was added BF₃•OEt₂ (0.9 mL, 7.2 mmol). After the solution became clear, compound 28 (1.5 g, 5.5 mmol) in CH₃OH (3 mL) was added dropwise and the mixture was stirred at room temperature for 16 h. At that point, half of the solvent was removed and the BF₃•OEt₂ was quenched by the addition of a satd aq solution of NaHCO₃. The mixture was then extracted with EtOAc. The organic phases were washed with brine, dried over Na₂SO₄, concentrated, and the residue was purified by flash column chromatography (silica gel, gradient

 $0\rightarrow25\%$ EtOAc-hexane) to yield 12 (1.5 g, 90% yield, 96:4 = keto-enol tautomers, 3:1 for two inseparable diastereoisomeric α -methoxy- β -keto amides) as a colorless oil; $R_{\rm f}$ 0.20 (3:1 hexane–EtOAc); NMR data for major isomer: ¹H NMR (500 MHz, CDCl₃, δ_H) 5.31 (s, 1 H, $CH(CH_3)_3$, 5.30 (dd, 1 H, J = 7.0, 1.5 Hz, $CHCO_2CH_3$), 4.73 (s, 1 H, $CHOCH_3$), 4.60 (dd, 1 H, $J = 8.5, 1.5 \text{ Hz}, OCH_2$), 3.98 (dd, 1 H, $J = 8.5, 7.0 \text{ Hz}, OCH_2$), 3.82 (s, 3 H, CO₂CH₃), 3.51 (s, 3 H, CHOCH₃), 2.34 (s, 3 H, CH₃C=O), 0.94 (s, 9 H, C(CH₃)₃); 13 C NMR (125 MHz, CDCl₃, δ _C) 207.0 (CH₃C=O), 170.1 (CO₂CH₃), 167.9 (NC=O), 97.1 (CH(CH₃)₃), 86.8 (CHOCH₃), 67.7 (OCH₂), 58.2 (CHCO₂CH₃), 57.5 (OCH₃), 52.7 (CO₂CH₃), 37.2 (C(CH₃)₃), 26.8 (CH₃C=O), 25.7 $(C(CH_3)_3)$; NMR data for minor isomer: ¹H NMR (500 MHz, CDCl₃, δ_H) 5.34 (s, 1 H, $CH(CH_3)_3$, 4.79 (dd, 1 H, J = 7.0, 2.0 Hz, $CHCO_2CH_3$), 4.63 (s, 1 H, $CHOCH_3$), 4.46 (dd, 1 H, J $= 8.5, 2.0 \text{ Hz}, OCH_2$, 3.94 (dd, 1 H, $J = 8.5, 7.0 \text{ Hz}, OCH_2$), 3.81 (s, 3 H, CO₂CH₃), 3.49 (s, 3 H, CHOCH₃), 2.31 (s. 3 H, CH₃C=O), 0.99 (s. 9 H, C(CH₃)₃); 13 C NMR (125 MHz, CDCl₃, δ_C) 202.5.0 (CH₃C=O), 170.0 (CO₂CH₃), 168.6 (NC=O), 97.6 (CH(CH₃)₃), 88.8 (CHOCH₃), 68.8 (OCH_2) , 59.3 $(CHCO_2CH_3)$, 58.6 (OCH_3) , 52.5 (CO_2CH_3) , 37.1 $(C(CH_3)_3)$, 27.0 $(CH_3C=O)$, 26.0 $(C(CH_3)_3)$; HRMS (ESI) calcd for (M+H) $C_{14}H_{24}NO_6$; 302.1598. Found: 302.1597.

(2*S*,3*R*)-3-hydroxy-1,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid (14) Compound 57 (80 mg, 0.35 mmol) was dissolved in TEA (5 mL), CH₃OH (10 mL) and water (10 mL) and the mixture was stirred at room temperature over night. Then the solution was concentrated, and the resulting residue was subjected to flash column chromatography (latrobeads 6RS-8060, gradient $10\% \rightarrow 50\%$ CH₃OH–CH₂Cl₂) to yield 14 (49 mg, 82% yield) as a white amorphous solid; R_f 0.2 (2:1 CH₂Cl₂–CH₃OH); $[\alpha]_D = +11.6$ (c 0.3, CH₂Cl₂); ¹H NMR (500 MHz, CD₃OD, δ_H) 3.98 (s, 1 H, NCH), 2.83 (s, 3 H, NCH₃), 2.56 (d, 1 H, J = 17.0 Hz, CH₂C=O), 2.41 (d, 1 H, J = 17.0 Hz,

 $CH_2C=O$), 1.50 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 176.1 (NC=O), 170.0 (CO_2H), 75.0 (NCH), 73.0 (CH₃COH), 46.6 ($CH_2C=O$), 29.4 (NCH₃), 28.1 (C CH_3); HRMS (ESI) (M-H) calcd for $C_7H_{10}NO_4$: 172.0615. Found: 172.0618.

(2S,3R)-1-tert-butyl 2-methyl 3-hydroxy-3-methyl-5-oxopyrrolidine-1,2-dicarboxylate (15) Compound 16¹⁴ (0.91g, 3.31 mmol) was dissolved in CCl₄ (15 mL), CH₃CN (15 mL), and water (18 mL). With vigorous stirring, NaIO₄ (2.12 g, 9.9 mmol) and RuCl₃·H₂O (30 mg) were added at 0 °C. The mixture was stirred at room temperature for 1 h, and then EtOAc (30 mL) was added. The mixture was washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (silica gel, gradient $50\rightarrow150\%$ EtOAc-hexane) to give 15 as a colorless liquid (0.61 g, 69% yield). R_f 0.3 (4:3 EtOAc-Hexane); [α]_D = +0.19 (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ _H) 4.34 (s, 1 H, NCH), 3.84 (s, 3 H, OCH₃), 2.90 (d, 1 H, J = 17.0 Hz, COCH₂), 2.60 (d, 1 H, J = 17.0 Hz, COCH₂), 2.26 (br, 1 H, OH), 1.52 (s, 9 H, C(CH₃)₃), 1.45 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ _C) 170.6 (NC=O), 169.1 (CO₂CH₃), 149.0 (CO₂C(CH₃)₃), 84.1 (OC(CH₃)₃), 70.8 (CH₃COH), 69.6 (NCH), 52.5 (OCH₃), 46.4 (CH₂), 28.2 (CCH₃), 27.9 (C(CH₃)₃); HRMS (ESI) calcd for (M+Na) C₁₂H₁₉NNaO₆: 296.1105. Found: 296.1105.

Allyl 2,3-di-*O*-benzyl-6-*O*-tosyl-α-D-glucopyranoside (19) To a solution of allyl 2,3-di-*O*-benzyl-α-D-glucopyranoside (18,¹⁵ 1.60 g, 4.07 mmol) in anhydrous pyridine (10 mL) was added TsCl (1.16 g, 6.10 mmol) at 0 °C. After being stirred for 12 h at room temperature, the mixture was diluted with EtOAc (30 mL), washed with 1 N HCl, a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column

chromatography (silica gel, gradient 20 \rightarrow 25\% EtOAc-hexane) to afford 19 (2.14 g, 95\% yield) as a colorless oil. $R_f 0.45$ (2:1 hexane–EtOAc); $[\alpha]_D = +38.1$ (c 0.7, CH_2Cl_2); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.80 (d, 2 H, J = 8.5 Hz, ArH), 7.39–7.22 (m, 12 H, ArH), 5.92 (dddd, 1 H, J = 17.0, 10.0, 6.5, 5.0 Hz, CH₂=CH), 5.32 (app dg, 1 H, J = 17.0, 1.5 Hz, CH₂=CH), 5.24 (app dg, 1 = 10.0, 1.0 Hz, CH_2 =CH), 5.02 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-3), 4.79 (d, 1 H, $J_{1,2}$ = 3.5 Hz, H_2 1), 4.74 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.71 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-3), 4.65 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.28–4.22 (m, 2 H, H-4 and H-5), 4.13 (app ddt, 1 H, J = 13.0, 5.0, 1.5 Hz, $CH_2 = CHCH_2$), 3.97 (app ddt, 1 H, J = 13.0, 6.5, 1.0 Hz, $CH_2 = CHCH_2$), 3.79 (app t, 1 H, $J_{2,3} = J_{3,4} = 9.5 \text{ Hz}$, H-3), 3.79 (dd, 1 H, $J_{6R,6S} = 10.0 \text{ Hz}$, $J_{5,6} = 2.5 \text{ Hz}$, H-6), 3.49 (dd, 1 H, $J_{2,3} = 3.4 \text{ Hz}$ 9.5 Hz, $J_{1,2} = 3.5$ Hz, H-2), 3.45 (dd, 1 H, $J_{6R,6S} = 10.0$ Hz, $J_{5,6} = 3.0$ Hz, H-6), 2.45 (s, 3 H, PhCH₃), 2.23 (d, 1 H, J = 3.0 Hz, OH); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 144.8 (Ar), 138.7 (Ar), 137.9 (Ar), 133.5 (CH=CH₂), 133.0 (Ar), 129.8 (Ar), 128.6 (Ar), 128.5 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 118.5 (CH=CH₂), 95.6 (C-1), 81.1 (C-3), 79.5 (C-2), 75.4 (PhCH₂, C-3), 73.0 (PhCH₂, C-2), 69.5 (C-6), 69.2 and 68.9 (C-4 and C-5), 68.4 (CH₂CH=CH₂), 21.7 (CH₃PhSO₂); HRMS (ESI) calcd for (M+Na) C₃₀H₃₄NaO₈S: 577.1867. Found: 577.1864.

Allyl 2,3-di-*O*-benzyl-6-deoxy-α-D-glucopyranoside (20) Tosylate 19 (2.10 g, 3.79 mmol) was dissolved in THF (30 mL) and LiAlH₄ (288 mg, 7.58 mmol) was added. The reaction mixture was heated at reflux for 3 h. After completion of the reaction, the LiAlH₄ was quenched by slowly adding the mixture to ice, then the mixture was filtered through Celite. The filter cake was washed with EtOAc, and the resulting cloudy solution was filtered again through Celite. The combined organic layers were washed with 1 N HCl, a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography

(silica gel, gradient $10\rightarrow15\%$ EtOAc-hexane) to afford **20** (1.25 g, 85% yield) as a colorless oil. R_f 0.39 (4:1 hexane–EtOAc); $[\alpha]_D = +70.4$ (c 0.2, CH_2Cl_2); 1H NMR (500 MHz, $CDCl_3$, δ_H) 7.41–7.29 (m, 10 H, ArH), 5.98 (dddd, 1 H, J = 17.0, 10.0, 6.5, 5.0 Hz, CH_2 =CH), 5.37 (app dq, 1 H, J = 17.0, 1.0 Hz, CH_2 =CH), 5.27 (app dq, 1 H, J = 10.0, 1.0 Hz, CH_2 =CH), 5.08 (d, 1 H, J = 11.5 Hz, $PhCH_2$, C-3), 4.81 (d, 1 H, $J_{1,2}$ = 3.5 Hz, H-1), 4.76 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-2), 4.73 (d, 1 H, J = 11.5 Hz, $PhCH_2$, C-3), 4.70 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-2), 4.20 (app ddt, 1 H, J = 13.0, 5.0, 1.0 Hz, CH_2 = $CHCH_2$), 4.05 (app ddt, 1 H, J = 13.0, 6.5, 1.0 Hz, CH_2 = $CHCH_2$), 3.81 (app t, 1 H, $J_{2,3}$ = $J_{3,4}$ = 9.5 Hz, $J_{3,5}$ = 3.5 Hz, $J_{4,0H}$ = 2.0 Hz,

Allyl 4-azido-2,3-di-*O*-benzyl-4,6-dideoxy-α-D-galactopyranoside (21) To a solution of 20 (1.25 g, 3.25 mmol) and pyridine (3 mL) in anhydrous CH₂Cl₂ at 0 °C was added Tf₂O (1.37 g, 4.88 mmol) slowly. After being stirred for 1 h, the mixture was diluted with CH₂Cl₂, washed with water, a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄ and concentrated to obtain the crude triflate, which was dissolved into DMF (15 mL). Excess NaN₃ (845 mg, 13 mmol) was added and the mixture was stirred overnight at room temperature. After completion of the reaction, the mixture was filtered through Celite and the residue was washed with EtOAc. The combined solutions were concentrated and the resulting residue was purified by flash column

chromatography (silica gel, gradient $4\rightarrow 6\%$ EtOAc-hexane) to afford **21** (1.13 g, 85% yield) as a colorless oil. R_f 0.61 (4:1 hexane–EtOAc); $[\alpha]_D = +85.1$ (c 0.4, CH_2Cl_2); 1H NMR (500 MHz, CDCl₃, δ_H) 7.44–7.29 (m, 10 H, ArH), 5.95 (dddd, 1 H, J = 17.0, 10.0, 6.0, 5.0 Hz, $CH_2=CH$), 5.34 (d, 1 H, J = 17.0 Hz, $CH_2=CH$), 5.25 (d, 1 H, J = 10.0 Hz, $CH_2=CH$), 4.89 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-3), 4.84 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-2), 4.80 (d, 1 H, $J_{1,2}$ = 3.5 Hz, H-1), 4.79 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-3), 4.68 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-2), 4.12 (dd, 1 H, J = 12.5, 5.0 Hz, $CH_2=CHCH_2$), 4.10 (dd, 1 H, $J_{2,3}$ = 9.5 Hz, $J_{3,4}$ = 3.5 Hz, H-3), 4.03 (dd, 1 H, J = 12.5, 6.0 Hz, $CH_2=CHCH_2$), 4.01 (q, 1 H, $J_{5,6}$ = 6.5 Hz, H-5), 3.89 (dd, 1 H, $J_{2,3}$ = 9.5 Hz, $J_{1,2}$ = 3.5 Hz, H-2), 3.75 (d, 1 H, $J_{3,4}$ = 3.5 Hz, H-4), 1.26 (d, 3 H, $J_{5,6}$ = 6.5 Hz, H-6); ^{13}C NMR (125 MHz, $CDCl_3$, δ_C) 138.4 (Ar), 138.3 (Ar), 133.9 ($CH=CH_2$), 128.5 (Ar), 128.4 (Ar), 128.0 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 118.1 ($CH=CH_2$), 96.3 (C-1), 78.1 (C-3), 76.0 (C-2), 73.6 (C-2), 73.2 (C-2), 73.2 (C-3), 68.5 (C-4), 65.2 (C-4), 64.5 (C-5), 17.3 (C-6); HRMS (C-8) calcd for (C-1), C-3, 68.5 (C-1), C-10, 65.2 (C-4), 64.5 (C-5), 17.3 (C-6);

Allyl 4-amino-2,3-di-*O*-benzyl-4,6-dideoxy-α-D-galactopyranoside (22) To a solution of 21 (1.05 g, 2.56 mmol) in THF (40 mL) at room temperature was added NaOH (1 M, 10 mL). Then a solution of PMe₃ (10.0 mL, 1M in THF, 10.0 mmol) was added dropwise. The mixture was stirred at room temperature for 10 h. After completion of the reaction, the mixture was diluted with water, extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 0 \rightarrow 2% CH₃OH–EtOAc) to afford 22 (0.91 g, 92% yield) as a colorless oil. $R_{\rm f}$ 0.17 (2:3 hexane–EtOAc); [α]_D = +98.3 (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.42–7.29 (m, 10 H, ArH), 5.97 (dddd, 1 H, J = 17.0, 10.0, 6.5, 5.0 Hz, CH₂=CH), 5.36 (apt dg,

1 H, J = 17.0, 1.5 Hz, $CH_2 = CH$), 5.25 (apt dq, 1 H, J = 10.0, 1.0 Hz, $CH_2 = CH$), 4.83 (d, 1 H, $J_{1,2} = 4.0$ Hz, H-1), 4.81 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.79 (d, 1 H, J = 11.5 Hz, PhC H_2 , C-3), 4.72 (d, 1 H, J = 11.5 Hz, PhC H_2 , C-2), 4.68 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-3), 4.17 (apt ddt, 1 H, J = 13.0, 5.0, 1.0 Hz, $CH_2 = CHCH_2$), 4.06 (q, 1 H, $J_{5,6} = 6.5$ Hz, H-5), 4.05 (apt ddt, J = 13.0, 6.5, 1.5 Hz, 1H, $CH_2 = CHCH_2$), 3.92 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 4.0$ Hz, H-3), 3.78 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{1,2} = 4.0$ Hz, H-2), 3.22 (d, 1 H, $J_{3,4} = 4.0$ Hz, H-4), 2.06 (br, 2 H, NH₂), 1.26 (d, 3 H, $J_{5,6} = 6.5$ Hz, H-6); ¹³C NMR (125 MHz, $CDCl_3$, δ_C) 138.7 (Ar), 138.6 (Ar), 134.1 ($CH = CH_2$), 128.4 (Ar), 128.3 (Ar), 127.9 (Ar), 127.7 (Ar), 127.6 (Ar), 117.9 ($CH = CH_2$), 96.2 (C-1), 78.3 (C-3), 75.3 (C-2), 73.2 ($CH_2 = CH_2 = C$

Allyl 4-trifluoroacetamido-2,3-di-*O*-benzyl-4,6-dideoxy-α-D-galactopyranoside (23) To a solution of 22 (590 mg, 1.5 mmol) in anhydrous pyridine (15 mL) at 0 °C was added trifluoroacetic anhydride (594 mg, 3.0 mol) dropwise. The mixture was slowly warmed to room temperature and stirred for 6 h. After completion of the reaction, the mixture was concentrated under vacuum and diluted with CH₂Cl₂. The organic solution was washed with 1 N HCl, brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 10→15% EtOAc–hexane) to afford 23 (634 mg, 86% yield) as a colorless oil. R_f 0.48 (4:1 hexane–EtOAc); [α]_D = +71.1 (c 0.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40–7.30 (m, 10 H, ArH), 6.32 (d, 1 H, J = 10.0 Hz, NH), 5.96 (dddd, 1 H, J = 17.0, 10.0, 6.5, 5.0 Hz, CH₂=CH), 5.37 (apt dq, 1 H, J = 17.0, 1.5 Hz, CH₂=CH), 5.28 (apt dq, 1 H, J = 10.0, 1.0 Hz, CH₂=CH), 4.84 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.83 (d, 1 H, J_{1,2} = 4.0 Hz, H-1),

4.83 (d, 1 H, J = 11.0 Hz, PhC H_2 , C-3), 4.68 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.60 (d, 1 H, J = 11.0 Hz, PhC H_2 , C-3), 4.57 (dd, 1 H, $J_{4,NH}$ = 10.0 Hz, $J_{3,4}$ = 4.0 Hz, H-4), 4.23 (qd, 1 H, $J_{5,6}$ = 6.5 Hz, $J_{4,5}$ = 1.5 Hz, H-5), 4.19 (apt ddt, 1 H, J = 13.0, 5.0, 1.5 Hz, CH₂=CHC H_2), 4.07 (dd, 1 H, $J_{2,3}$ = 10.0 Hz, $J_{3,4}$ = 4.0 Hz, H-3), 4.06 (apt ddt, 1 H, J = 13.0, 6.5, 1.0 Hz, CH₂=CHC H_2), 3.47 (dd, 1 H, $J_{2,3}$ = 10.0 Hz, $J_{1,2}$ = 4.0 Hz, H-2), 1.18 (d, 3 H, $J_{5,6}$ = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ _C) 158.0 (q, ${}^2J_{C,F}$ = 37.5 Hz, C=O), 138.1 (Ar), 137.9 (Ar), 133.5 (CH=CH₂), 128.4 (Ar), 128.3 (Ar), 128.0 (Ar), 127.9 (Ar), 127.7 (Ar), 118.4 (CH=CH₂), 115.9 (q, ${}^1J_{C,F}$ = 287.5 Hz, CF₃), 96.3 (C-1), 76.2 (C-3), 75.1 (C-2), 73.4 (PhCH₂, C-2), 72.1 (PhCH₂, C-3), 68.8 (CH₂CH=CH₂), 63.8 (C-5), 52.1 (C-4), 16.4 (C-6); HRMS (ESI) calcd for (M+Na) C₂₅H₂₈F₃NNaO₅: 502.1812. Found: 502.1808.

8-Azidooctyl 4-trifluoroacetamido-2,3-di-*O*-benzyl-4,6-dideoxy-α-D-galactopyranoside (24) To a solution of 23 (500 mg, 1.04 mmol) in CH₃OH (10 mL) and CH₂Cl₂ (10 mL) at room temperature was added PdCl₂ (18 mg, 0.10 mol, 0.1 equiv). The mixture was stirred at room temperature for 16 h. After completion of the reaction, the mixture was filtered through a plug of Celite and the filtrate was concentrated to obtain crude 4-trifluoroacetamido-2,3-di-*O*-benzyl-4,6-dideoxy-D-galactopyranoside, which was carried forward without further purification. This crude product was dissolved in anhydrous CH₂Cl₂ (20 mL) with 4 Å molecular sieves and this mixture was treated with trichloroacetonitrile (1.5 g, 10.4 mmol) and Cs₂CO₃ (676 mg, 2.08 mmol). The mixture was stirred at room temperature for 6 h and then filtered through Celite. The filtrate was concentrated to obtain the corresponding glycosyl trichloroacetimidate, which was dissolved in Et₂O (5 mL) and added to a mixture of 8-azidooctanol (355 mg, 2.08 mmol) and 4 Å molecular sieves in Et₂O (5 mL). The mixture was cooled to 0 °C and TMSOTf (15 μL) was

added and the solution was stirred at 0 °C for 1 h. The TMSOTf was guenched by the addition of Et₃N (1 mL) and the solution was concentrated. The residue was purified by flash column chromatography (silica gel, gradient 10→15% EtOAc–hexane) to afford 24 (415 mg, 68% yield) as a colorless oil. $R_f 0.58$ (4:1 hexane–EtOAc); $[\alpha]_D = +66.3$ (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.39–7.30 (m, 10 H, ArH), 6.33 (d, 1 H, J = 10.0 Hz, NH), 4.84 (d, 1 H, J = 12.0 Hz, $PhCH_2$, C-2), 4.83 (d, 1 H, J = 11.0 Hz, $PhCH_2$, C-3), 4.76 (d, 1 H, $J_{1,2} = 4.0$ Hz, H-1), 4.67 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.60 (d, 1 H, J = 11.0 Hz, PhC H_2 , C-3), 4.57 (ddd, 1 H, $J_{4NH} =$ 10.0 Hz, $J_{3,4}$ = 4.5 Hz, $J_{4,5}$ = 1.5 Hz, H-4), 4.21 (qd, 1 H, $J_{5,6}$ = 6.5 Hz, $J_{4,5}$ = 1.5 Hz, H-5), 4.05 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 4.5$ Hz, H-3), 3.65 (dt, 1 H, J = 10.0, 7.0 Hz, octyl OC H_2), 3.47 (dt, 1 H, J = 10.0, 7.0 Hz, octyl OC H_2), 3.46 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{1,2} = 4.0$ Hz, H-2), 3.29 (t, 2 H, J = 7.0 Hz, CH_2N_3), 1.70–1.60 (m, 4H, $CH_2 \times 2$), 1.43–1.34 (m, 8H, $CH_2 \times 4$), 1.18 (d, 3 H, $J_{5.6} =$ 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 158.0 (q, $^2J_{CF}$ = 37.5 Hz, C=O), 138.3 (Ar), 137.9 (Ar), 128.4 (Ar), 128.3 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 115.9 (q, ${}^{I}J_{C.F.}$ $= 287.5 \text{ Hz}, \text{ CF}_3$, 97.5 (C-1), 76.2 (C-3), 75.3 (C-2), 73.3 (PhCH₂, C-2), 72.1 (PhCH₂, C-3), 68.7 (OCH₂CH₂), 63.6 (C-5), 52.1 (C-4), 51.5 (CH₂N₃), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 16.5 (C-6); HRMS (ESI) calcd for (M+Na) C₃₀H₃₉F₃N₄NaO₅: 615.2765. Found: 615.2754.

(2S,4R)-methyl 2-(*tert*-butyl)-3-(3-oxobutanoyl)oxazolidine-4-carboxylate (28) To a stirred suspension of D-serine methyl ester hydrochloride (3.23 g, 20.8 mmol) in pentane (100 mL) were added *t*-butyl aldehyde (2.32 g, 27.0 mmol) and Et₃N (2.73 g, 27.0 mmol) at room temperature. The mixture was heated at reflux for 15 h using a Dean-Stark apparatus. The resulting mixture was cooled to room temperature, filtered, and the cake was washed with pentane (2 x 50 mL).

The combined filtrate was concentrated to afford crude product as clear oil, which was used in the next step without further purification. To a solution of the crude product in dry CH₂Cl₂ (100 mL) at 0 °C were added acetoacetic acid (2.55 g, 25.0 mmol), EDC hydrochloride (4.8 g, 25.0 mmol) and DMAP (0.25 g, 2.1 mmol). The mixture was warmed to room temperature and stirred for 16 h, before being diluted with water and extracted with CH₂Cl₂. The organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 20 \rightarrow 50\% EtOAc-hexane) to afford 25 (4.3 g, 77\%) yield) as a mixture of keto-enol tautomers (1.7: 1 ratio). R_f 0.16 (3:1 hexane-EtOAc); $[\alpha]_D$ = +46.3 (c 0.4, CH₂Cl₂); NMR data for keto form: ¹H NMR (500 MHz, CDCl₃, δ_H) 5.35 (s, 1 H, $CH(CH_3)_3$, 4.66 (d, 1 H, J = 6.0 Hz, $CHCO_2CH_3$), 4.56 (d, 1 H, J = 8.0 Hz, OCH_2), 4.08–4.03 (m, 1H, OCH₂), 3.82 (s, 3 H, CO₂CH₃), 3.73 (s, 2 H, CH₂C=ON), 2.34 (s, 3 H, CH₃C=O), 0.93 (s, 9 H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 202.6 (CH₃C=O), 170.0 (CO₂CH₃), 168.0 (NC=O), 96.7 (CH(CH₃)₃), 67.8 (OCH₂), 59.4 (CHCO₂CH₃), 52.7 (CO₂CH₃), 51.9 (CH₂C=ON), $37.4 (C(CH_3)_3), 30.7 (CH_3C=O), 25.8 (C(CH_3)_3);$ NMR data for enol form: ¹H NMR (500 MHz, $CDCl_3$, δ_H) 5.13 (s, 1 H, $CH(CH_3)_3$), 4.50 (d, 1 H, J = 8.5 Hz, OCH_2), 4.08–4.03 (m, 1 H, OCH_2), 3.83 (s, 3 H, CO₂CH₃), 2.01 (s, 3 H, CH₃C=O), 0.97 (s, 9 H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 176.5 (NC=O), 170.4 (CO₂CH₃), 89.6 (CH(CH₃)₃), 67.9 (OCH₂), 52.8 (CO₂CH₃), 37.7 ($C(CH_3)_3$), 25.9 ($C(CH_3)_3$), 22.0 ($CH_3C=O$); HRMS (ESI) calcd for (M+H) $C_{13}H_{22}NO_5$: 272.1492. Found: 272.1487.

7-(benzyloxy)-3-(*tert*-butyl)-6-methoxy-7-methyl-5-oxohexahydropyrrolo[1,2-c]oxazole-7a-carboxylate (33) To a solution of 11 (222 mg, 0.73 mmol) in DMF (1 mL) and benzyl bromide (3 mL) was added *n*-Bu₄NI (323 mg, 0.87 mmol).

The mixture was cooled to -15 °C and NaH (44 mg, 60% in mineral oil, 1.09 mmol) was added in two portions. After 1 h, the mixture was slowly warmed to 0 °C and a satd ag solution of NH₄Cl (5 mL) was added dropwise. Thereafter, the mixture was extracted with EtOAc. The organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 9→14% EtOAc–hexane) to afford 33 (245 mg, 85% yield) as a white amorphous solid and the by-product 34 (25 mg, 9% yield) as a white amorphous solid. Data for 33: $R_f 0.50$ (3:1 hexane–EtOAc); $[\alpha]_D = +36.6$ (c 0.3. CH_2Cl_2); ¹H NMR (500 MHz, CDCl₃, δ_H) δ 7.37–7.29 (m, 5 H, ArH), 4.96 (s, 1 H, CH(CH₃)₃), 4.78 (d, 1 H, J = 9.5 Hz, OC H_R H_SC), 4.77 (s, 1 H, CH₃OCH), 4.59 (d, 1 H, J = 11.0 Hz, PhC H_2), 4.52 (d, 1 H, J = 11.0 Hz, PhC H_2), 4.05 (d, 1 H, J = 9.5 Hz, OCH_R H_3 C), 3.71 (s, 3 H, CO₂CH₃), 3.70 (s, 3 H, OCH₃), 1.59 (s, 3 H, CCH₃), 0.91 (s, 9 H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 173.3 (NC=O), 171.0 (CO₂CH₃), 137.8 (Ar), 128.3 (Ar), 127.6 (Ar), 127.1 (Ar), 95.9 $(CH(CH_3)_3)$, 85.9 (PhCH₂OC), 85.5 (CH₃OCH), 75.7 (CCO₂CH₃), 69.1 (OCH_RH_SC), 67.0 (PhCH₂), 59.2 (OCH₃), 52.7 (CO₂CH₃), 36.5 (C(CH₃)₃), 24.9 (C(CH₃)₃), 13.9 (CCH₃); HRMS (ESI) calcd for (M+Na) C₂₁H₂₉NNaO₆: 414.1887. Found: 414.1885. Data for **34**: R_f 0.47 (3:1 hexane-EtOAc); $[\alpha]_D = +40.3$ (c 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) δ 7.33–7.26 (m, 5 H, ArH), 4.96 (s, 1 H, $CH(CH_3)_3$), 4.92 (d, 1 H, J = 11.5 Hz, $PhCH_2$), 4.62 (d, 1 H, J = 11.5 Hz, $PhCH_2$), 4.59 (d, 1 H, J = 8.5 Hz, OCH_RH_SC), 4.42 (s, 1 H, CH_3OCH), 4.31 (d, 1 H, J = 8.5 Hz, OCH_RH_SC), 3.83 (s, 3 H, CO_2CH_3), 3.75 (s, 3 H, OCH_3), 1.48 (s, 3 H, CCH_3), 0.91 (s, 9 H, $C(CH_3)_3$); ¹³C NMR (125 MHz, CDCl₃, δ_C) 175.0 (NC=O), 171.5 (CO_2CH_3), 138.6 (Ar), 128.3 (Ar), 127.3 (Ar), 127.1 (Ar), 96.4 (CH(CH₃)₃), 86.6 (CH₃OCH), 82.5 (PhCH₂OC), 77.5 (CCO_2CH_3) , 68.4 (OCH_RH_SC) , 67.8 $(PhCH_2)$, 60.3 (OCH_3) , 52.8 (CO_2CH_3) , 36.3 $(C(CH_3)_3)$,

24.9 (C(CH₃)₃), 17.6 (CCH₃); HRMS (ESI) calcd for (M+Na) C₂₁H₂₉NNaO₆: 414.1887. Found: 414.1883.

(2*S*,3*S*,4*R*)-methyl 3-(benzyloxy)-2-(hydroxymethyl)-4-methoxy-3-methyl-5-oxopyrrolidine -2-carboxylate (36) To a solution of 33 (620 mg, 1.58 mmol) in CF₃CH₂OH (4.0 mL) were added 1,3-propanedithiol (4.0 mL) and HCl (12 N, 60 μL). The mixture was stirred at 60 °C for 2 h, cooled, concentrated and the resulting crude product was purified by flash chromatography (silica gel, gradient 75→100% EtOAc-hexane) to afford 36 (414 mg, 81% yield) as a white amorphous solid; R_f 0.18 (2:3 hexane–EtOAc); $[\alpha]_D$ = +61.7 (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) δ 7.36–7.23 (m, 5 H, ArH), 6.27 (br, 1 H, NH), 4.60 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.50 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.25 (dd, 1 H, J = 11.0, 5.5 Hz, CCH₂OH), 4.04 (s, 1 H, CH₃OCH), 3.78 (dd, 1 H, J = 11.0, 5.5 Hz, CCH₂OH), 3.75 (s, 3 H, CO₂CH₃), 3.67 (s, 3 H, OCH₃), 2.25 (t, 1 H, J = 5.5 Hz, OH), 1.45 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 172.9 (NC=O), 171.0 (CO₂CH₃), 137.9 (Ar), 128.3 (Ar), 127.6 (Ar), 126.8 (Ar), 84.4 (PhCH₂OC), 82.3 (CH₃OCH), 72.1 (CCO₂CH₃), 65.8 (PhCH₂), 64.6 (CCH₂OH), 59.3 (OCH₃), 52.8 (CO₂CH₃), 12.7 (CCH₃); HRMS (ESI) calcd for (M+Na) C₁₆H₂₁NNaO₆: 346.1261. Found: 346.1259.

3-(benzyloxy)-2-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-methoxy-3-methyl-5-oxopyrrolidine-2-carboxylate (37) To a solution of 36 (60.0 mg, 0.19 mmol) in CH₂Cl₂ (5.0 mL) were added imidazole (19.4 mg, 0.28 mmol) and TBSCl (42 mg, 0.28 mmol). The mixture was stirred at room temperature for 12 h. Thereafter, the organic phase was washed with brine, dried over Na₂SO₄, concentrated, and subjected to flash column chromatography (silica gel, gradient 20→25% EtOAc−hexane) to yield 37 (73.6 mg, 92% yield) as a colorless oil;

 $R_{\rm f}$ 0.26 (3:1 hexane–EtOAc); [α]_D = +26.9 (c 0.6, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.31–7.21 (m, 5 H, ArH), 6.20 (br, 1 H, NH), 4.57 (d, 1 H, J = 11.4 Hz, PhC H_2), 4.47 (d, 1 H, J = 11.4 Hz, PhC H_2), 4.23 (d, 1 H, J = 8.8 Hz, CC H_2 OTBS), 3.87 (s, 1 H, CH₃OCH), 3.69 (d, 1 H, J = 8.8 Hz, CC H_2 OTBS), 3.76 (s, 3 H, CO₂CH₃), 3.63 (s, 3 H, OCH₃), 1.41 (s, 3 H, CCH₃), 0.85 (s, 9 H, SiC(CH₃)₃), 0.05 (s, 3 H, SiCH₃), 0.04(s, 3 H, SiCH₃); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.5 (NC=O), 170.5 (CO₂CH₃), 138.0 (Ar), 128.3 (Ar), 127.5 (Ar), 126.8 (Ar), 83.8 (PhCH₂OC), 82.2 (CH₃OCH), 73.0 (CCO₂CH₃), 65.49 (PhCH₂), 65.48 (CCH₂OTBS), 59.2 (OCH₃), 52.4 (CO₂CH₃), 25.6 (SiC(CH₃)₃), 18.1 (SiC(CH₃)₃), 12.7 (CCH₃), -5.5 (SiCH₃), -5.7(SiCH₃); HRMS (ESI) calcd for (M+Na) C₂₂H₃₅NNaO₆Si: 460.2126. Found: 460.2125.

(2*S*,3*S*,4*R*)-methyl 3-(benzyloxy)-2-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-methoxy-1,3-dimethyl-5-oxopyrrolidine-2-carboxylate (38) To a solution of 37 (50 mg, 0.11 mmol) in DMF (3 mL) was added CH₃I (162 mg, 1.14 mmol). Then the mixture was cooled to 0 °C and NaH (11 mg, 60% in mineral oil, 0.28 mmol) was added. After 1 h, a satd aq solution of NH₄Cl (5 mL) was added dropwise and the mixture was extracted with EtOAc. The organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 20 \rightarrow 25% EtOAc–hexane) to afford 38 (46 mg, 90% yield) as a colorless oil. R_f 0.33 (3:1 hexane–EtOAc); [α]_D = +31.3 (c 0.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ _H) 7.35–7.25 (m, 5 H, ArH), 4.64 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.52 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.23 (d, 1 H, J = 11.0 Hz, CCH₂OTBS), 4.01 (s, 1 H, CH₃OCH), 3.98 (d, 1 H, J = 11.0 Hz, CCH₂OTBS), 3.69 (s, 3 H, OCH₃), 3.68 (s, 3 H, CO₂CH₃), 2.94 (s, 3 H, NCH₃), 1.41 (s, 3 H, CCH₃), 0.89 (s, 9 H, SiC(CH₃)₃), 0.105 (s, 3 H, SiCH₃), 0.098(s, 3 H, SiCH₃); ¹³C NMR (125 MHz, CDCl₃, δ _C) 172.5 (NC=O), 170.1 (CO₂CH₃), 138.3 (Ar), 128.3 (Ar), 127.4 (Ar),

126.8 (Ar), 83.2 (PhCH₂OC), 82.4 (CH₃OCH), 75.2 (CCO₂CH₃), 65.8 (PhCH₂), 63.1 (CCH₂OTBS), 59.3 (OCH₃), 52.2 (CO₂CH₃), 28.4 (NCH₃), 25.6 (SiC(CH₃)₃), 18.0 (SiC(CH₃)₃), 13.3 (CCH₃), -5.7 (SiCH₃), -5.9(SiCH₃); HRMS (ESI) calcd for (M+Na) C₂₃H₃₇NNaO₆Si: 474.2282. Found: 474.2283.

(2*R***,3***S***,4***R***)-methyl 3-(benzyloxy)-2-formyl-4-methoxy-1,3-dimethyl-5-oxopyrrolidine-2-carboxylate (39)** To a mixture of **10** (90 mg, 0.27 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (8 mL) were added NMO (47 mg, 0.40 mmol) and TPAP (4.9 mg, 0.014 mmol) at room temperature. The mixture was stirred for 6 h and then concentrated. The crude product was purified by flash column chromatography (silica gel, gradient 20→25% EtOAc–hexane) to afford **39** (76 mg, 84% yield) as a colorless oil. R_f 0.65 (3:1 hexane–EtOAc); [α]_D = +89.2 (c 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 10.08 (s, 1 H, CHO), 7.38–7.27 (m, 5 H, ArH), 4.64 (d, 1 H, J = 14.5 Hz, PhCH₂), 4.56 (d, 1 H, J = 14.5 Hz, PhCH₂), 4.18 (s, 1 H, CH₃OCH), 3.79 (s, 3 H, CO₂CH₃), 3.68 (s, 3 H, OCH₃), 2.84 (s, 3 H, NCH₃), 1.34 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 194.3 (CHO), 172.5 (NC=O), 167.8 (CO₂CH₃), 137.5 (Ar), 128.5 (Ar), 127.8 (Ar), 127.0 (Ar), 84.4 (PhCH₂OC), 82.3 (CH₃OCH), 80.2 (CCO₂CH₃), 66.9 (PhCH₂), 59.4 (OCH₃), 53.2 (CO₂CH₃), 28.9 (NCH₃), 14.3 (CCH₃); HRMS (ESI) calcd for (M+Na) C₁₇H₂₁NNaO₆: 358.1261. Found: 358.1260.

(2*R*,3*S*,4*R*)-3-(benzyloxy)-4-methoxy-2-(methoxycarbonyl)-1,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid (40) A solution of 39 (155 mg, 0.44 mmol) in *t*-BuOH (5 mL) and 2-methyl-2-butene (3 mL) was treated with a freshly prepared solution of NaClO₂ (396 mg, 4.4 mmol, 10 equiv) in 20% aqueous NaH₂PO₄ (3 mL) at room temperature. The mixture was stirred for 2 h

and then water was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated to afford **40** (149 mg, 92% yield) as a white amorphous solid. R_f 0.55 (3:1 CH₂Cl₂–CH₃OH); [α]_D = +46.6 (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ _H) δ 7.41–7.27 (m, 5 H, ArH), 4.74 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.58 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.11 (s, 1 H, CH₃OCH), 3.88 (s, 3 H, CO₂CH₃), 3.74 (s, 3 H, OCH₃), 2.90 (s, 3 H, NCH₃), 1.52 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ _C) 172.1 (NC=O), 171.2 (CO₂CH₃), 164.6 (CO₂H), 137.3 (Ar), 128.5 (Ar), 127.9 (Ar), 127.0 (Ar), 84.3 (PhCH₂OC), 82.5 (CH₃OCH), 78.0 (CCO₂CH₃), 66.8 (PhCH₂), 59.5 (OCH₃), 54.5 (CO₂CH₃), 28.8 (NCH₃), 15.2 (CCH₃); HRMS (ESI) calcd for (M+Na) C₁₇H₂₁NNaO₇: 374.1210. Found: 374.1212.

8-Azidooctyl 4-[(2'R,3'S,4'R)-3'-(benzyloxy)-4'-methoxy-2'-(methoxycarbonyl)-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamido]-2,3-di-O-benzyl-4,6-dideoxy- α -D-galactopyranoside (41) To a solution of 9 (40 mg, 0.08 mmol) in DMF (5 mL) was added 40 (35 mg, 0.10 mmol), TBTU (35 mg, 0.11 mmol) and DIEA (16 mg, 0.12 mmol). The mixture was stirred at room temperature over night and then water was added and the mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel, gradient 30 \rightarrow 50% EtOAc-hexane) to afford 41 (50 mg, 76% yield) as a colorless oil. R_f 0.52 (1:1 hexane-EtOAc); [α]_D = +128.3 (c 0.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ _H) 8.20 (d, 1 H, J = 10.0 Hz, NH), 7.41–7.25 (m, 15 H, ArH), 4.88 (d, 1 H, J = 11.0 Hz, PhCH₂, C-3), 4.85 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.83 (d, 1 H, J_{1,2} = 4.0 Hz, H-1), 4.69 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.69 (d, 1 H, J = 11.5 Hz, PhCH₂O lactam), 4.61 (dd, 1 H, J_{NH,4} = 10.0 Hz, J_{3,4} =

4.0 Hz, H-4), 4.59 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂, C-3), 4.53 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂O lactam), 4.21 (qd, 1 H, *J*_{5,6} = 6.5 Hz, *J*_{4,5} = 1.5 Hz, H-5), 4.03 (dd, *J*_{2,3} = 10.0 Hz, *J*_{3,4} = 4.0 Hz, 1H, H-3), 3.95 (s, 1 H, CH₃OC*H*), 3.72 (s, 3 H, CO₂CH₃), 3.67 (dt, 1 H, *J* = 10.0, 6.5 Hz, octyl OC*H*₂), 3.65 (s, 3 H, OCH₃), 3.61 (dd, 1 H, *J*_{2,3} = 10.0 Hz, *J*_{1,2} = 4.0 Hz, H-2), 3.50 (dt, 1 H, *J* = 10.0, 6.5 Hz, octyl OC*H*₂), 3.29 (t, 2 H, *J* = 7.0 Hz, CH₂N₃), 2.69 (s, 3 H, NCH₃), 1.69–1.62 (m, 4 H, CH₂ x 2), 1.51 (s, 3 H, CCH₃), 1.43–1.34 (m, 8 H, CH₂ x 4), 1.20 (d, 3 H, *J*_{5,6} = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 172.3 (CH₃NC=O), 169.5 (CO₂CH₃), 164.7 (HNC=O), 138.7 (Ar), 138.6 (Ar), 137.8 (Ar), 128.4 (Ar), 128.2 (Ar), 128.1 (Ar), 127.8 (Ar), 127.6 (Ar), 127.4 (Ar), 126.9 (Ar), 97.5 (C-1), 83.7 (PhCH₂OCCH₃), 82.3 (CH₃OCH), 79.3 (CCO₂CH₃), 77.5 (C-3), 75.5 (C-2), 73.1 (PhCH₂, C-2), 71.8 (PhCH₂, C-3), 68.4 (octyl OCH₂), 66.2 (PhCH₂O lactam), 64.0 (C-5), 59.3 (OCH₃), 53.1 (CO₂CH₃), 51.9 (C-4), 51.5 (CH₂N₃), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 29.0 (NCH₃), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 17.3 (C-6), 14.8 (CCH₃); HRMS (ESI) calcd for (M+Na) C₄₅H₅₉N₅NaO₁₀: 852.4154. Found: 852.4138.

8-Azidooctyl 4-[(2'R,3'S,4'R)-3'-(benzyloxy)-4'-methoxy-2'-carboxyl-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamido]-2,3-di-O-benzyl-4,6-dideoxy- α -D-galactopyranoside (42) To a solution of 41 (45 mg, 0.054 mmol) in THF (5 mL) and water (5 mL) was added LiOH monohydrate (34 mg, 0.81 mmol) at room temperature. The mixture was stirred at room temperature for 16 h. Then 1 M HCl was added to adjust the pH to 1. The mixture was diluted with water (5 mL) and extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated to afford 42 (42 mg, 96% yield) as a colorless oil. R_f 0.65 (10:1 CH₂Cl₂-CH₃OH); [α]_D = +106.7 (c 0.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ _H) 7.38–7.20 (m, 15 H, ArH), 6.61 (d, 1 H, J = 10.0 Hz, NH), 4.87 (d, 1 H, J = 10.5 Hz, PhCH₂, C-

3), 4.84 (d, 1 H, $J_{1,2}$ = 4.0 Hz, H-1), 4.79 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.66 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.65 (d, 1 H, J = 10.5 Hz, PhC H_2 , C-3), 4.64 (dd, 1 H, $J_{NH,4} = 10.0$ Hz, $J_{3,4} = 4.0 \text{ Hz}$, H-4), 4.48 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.29 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.26 (qd, 1 H, $J_{5,6} = 6.5$ Hz, $J_{4,5} = 1.0$ Hz, H-5), 4.21 (s, 1 H, CH₃OCH), 4.05 (dd, 1 H, $J_{2,3}$ = 10.0 Hz, $J_{3,4}$ = 4.0 Hz, H-3), 3.67 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OC H_2), 3.61 (s, 3 H, OCH₃), 3.50 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OCH₂), 3.43 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{1,2} = 4.0$ Hz, H-2), 3.29 (t, 2 H, J = 7.0 Hz, CH₂N₃), 2.91 (s, 3 H, NCH₃), 1.70–1.61 (m, 4 H, CH₂ x 2), 1.45–1.34 (m, 8 H, CH₂ x 4), 1.32 (s, 3 H, CCH₃), 1.19 (d, 3 H, $J_{5,6}$ = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.3 (CH₃NC=O), 170.9 (HNC=O), 167.0 (CO₂H), 138.0 (Ar), 137.7 (Ar), 137.6 (Ar), 128.4 (Ar), 128.32 (Ar), 128.31 (Ar), 128.2 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.5 (Ar), 126.9 (Ar), 97.2 (C-1), 84.5 (CH₃OCH), 82.6 (PhCH₂OCCH₃), 77.4 (C-3), 77.2 (CCO₂CH₃), 75.8 (C-2), 73.3 (PhCH₂, C-2), 72.9 (PhCH₂, C-3), 68.8 (octyl OCH₂), 66.4 (PhCH₂O lactam), 63.6 (C-5), 59.6 (OCH₃), 53.3 (C-4), 51.5 (CH₂N₃), 31.0 (NCH₃), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 17.2 (C-6), 15.7 (CCH₃); HRMS (ESI) calcd for (M-H) C₄₄H₅₆N₅O₁₀: 814.4033. Found: 814.4029.

(2S,3S,4R)-3-(benzyloxy)-2-(hydroxymethyl)-4-methoxy-1,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid (44) To a solution of 10 (200 mg, 0.59 mmol) in THF (8 mL) and water (8 mL) was added LiOH monohydrate (124 mg, 2.95 mmol) at room temperature. The mixture was stirred at room temperature for 16 h. Then 1 M HCl was added to adjust the pH to 1. The mixture was diluted by water and extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated to afford 44 (175 mg, 0.54 mmol, 92% yield) as a white amorphous solid. R_f 0.63 (3:1 CH₂Cl₂–CH₃OH); $[\alpha]_D = +58.2$ (c 0.2, CH₂Cl₂); ¹H NMR

(500 MHz, CDCl₃, δ_{H}) δ 7.27–7.21 (m, 5 H, ArH), 4.63 (d, 1 H, J = 11.5 Hz, PhC H_2), 4.49 (d, 1 H, J = 11.5 Hz, PhC H_2), 4.10 (s, 1 H, CH₃OCH), 4.09 (d, 1 H, J = 12.5 Hz, C H_2 OH), 3.99 (d, 1 H, J = 12.5 Hz, C H_2 OH), 3.65 (s, 3 H, OCH₃), 2.89 (s, 3 H, NCH₃), 1.44 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 173.4 (CO_2 H), 172.6 (NC=O), 138.0 (Ar), 128.3 (Ar), 127.5 (Ar), 126.7 (Ar), 83.4 (PhCH₂OC), 81.9 (CH₃OCH), 74.6 (CCO_2 CH₃), 66.0 (PhCH₂), 62.2 (CH₂OH), 59.4 (OCH₃), 27.8 (NCH₃), 12.8 (CCH₃); HRMS (ESI) (M+Na) calcd for C₁₆H₂₁NNaO₆: 346.1261. Found: 346.1256.

8-Azidooctyl 4-[(2'S,3'S,4'R)-3'-(benzyloxy)-4'-methoxy-2'-hydroxymethyl-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamidol-2,3-di-O-benzyl-4,6-dideoxy-α-D-galactopyranoside (45) To a solution of 44 (60 mg, 0.12 mmol) in DMF (5 mL) was added compound 9 (39 mg, 0.12 mmol), TBTU (51 mg, 0.16 mmol) and DIEA (23 mg, 0.18 mmol). The mixture was stirred at room temperature over night. Then water was added and the mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (silica gel, gradient 30→70% EtOAc– hexane) to afford 45 (64 mg, 67% yield) as a colorless oil. $R_f 0.39$ (2:3 hexane–EtOAc); $[\alpha]_D =$ +121.1 (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.40–7.23 (m, 15 H, ArH), 6.01 (d, 1 H, J = 10.0 Hz, NH), 4.78 (d, 1 H, J = 10.5 Hz, PhC H_2 , C-3), 4.72 (d, 1 H, J = 12.5 Hz, PhC H_2 , C-2), 4.69 (d, 1 H, $J_{1,2}$ = 4.0 Hz, H-1), 4.66 (d, 1 H, J = 12.5 Hz, PhC H_2 , C-2), 4.62 (d, 1 H, J = 12.0 Hz, PhC H_2 O lactam), 4.59 (d, 1 H, J = 10.5 Hz, PhC H_2 , C-3), 4.57 (ddd, 1 H, $J_{NH.4} = 10.0$ Hz, $J_{3,4} = 4.5$ Hz, $J_{4,5} = 1.5$ Hz, H-4), 4.50 (d, 1 H, J = 12.0 Hz, PhC H_2O lactam), 4.02 (qd, 1 H, $J_{5.6} = 6.5 \text{ Hz}, J_{4.5} = 1.5 \text{ Hz}, \text{ H--5}, 4.01 (dd, 1 \text{ H}, J = 12.5, 3.0 \text{ Hz}, \text{C}H_2\text{OH}), 3.94 (dd, 1 \text{ H}, J_{2.3} = 1.5 \text{ Hz})$ 10.0 Hz, $J_{3,4} = 4.5$ Hz, H-3), 3.85 (s, 1 H, CH₃OCH), 3.82 (dd, 1 H, J = 12.5, 8.0 Hz, CH₂OH),

3.66 (s, 3 H, OCH₃), 3.58 (dt, 1 H, J = 13.5, 6.5 Hz, octyl OC H_2), 3.44 (dt, 1 H, J = 13.5, 6.5 Hz, octyl OC H_2), 3.29 (t, 2 H, J = 7.0 Hz, CH₂N₃), 3.28 (dd, 1 H, $J_{2,3}$ = 10.0 Hz, $J_{1,2}$ = 4.0 Hz, H-2), 2.71 (s, 3 H, NCH₃), 1.64–1.60 (m, 4 H, CH₂ x 2), 1.52 (s, 3 H, CCH₃), 1.42–1.32 (m, 8 H, CH₂ x 4), 0.73 (d, 3 H, $J_{5,6}$ = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 172.5 (CH₃NC=O), 169.7 (HNC=O), 138.3 (Ar), 138.1 (Ar), 137.9 (Ar), 128.4 (Ar), 128.327 (Ar), 128.321 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 97.0 (C-1), 82.9 (CH₃OCH), 81.3 (PhCH₂OCCH₃), 77.2 (C-3), 75.7 (CCH₂OH), 74.9 (C-2), 72.6 (PhCH₂, C-2), 71.9 (PhCH₂, C-3), 68.4 (octyl OCH₂), 66.2 (PhCH₂O lactam), 63.9 (C-5), 62.9 (CH₂OH), 59.4 (OCH₃), 51.5 (CH₂N₃), 51.0 (C-4), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 28.3 (NCH₃), 26.7 (CH₂), 26.1 (CH₂), 16.4 (C-6), 13.2 (CCH₃); HRMS (ESI) calcd for (M+H) C₄₄H₆₀N₅O₉: 802.4386. Found: 802.4376.

8-Azidooctyl 4-[(2'*R*,3'*S*,4'*R*)-3'-(benzyloxy)-4'-methoxy-2'-formyl-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamido]-2,3-di-*O*-benzyl-4,6-dideoxy-α-D-galactopyranoside (46) To a mixture of 45 (60 mg, 0.075 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (8 mL) were added NMO (18 mg, 0.15 mmol) and TPAP (2.6 mg, 0.0075 mmol) at room temperature. The mixture was stirred for 6 h and then the mixture was concentrated and the crude product was purified by flash column chromatography (silica gel, gradient 30→50% EtOAc-hexane) to afford 46 (51 mg, 0.064 mmol, 85% yield) as a colorless oil. R_f 0.76 (1:1 hexane–EtOAc); [α]_D = +124.3 (*c* 0.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 10.09 (s, 1 H, CHO), 7.32–7.22 (m, 15 H, ArH), 6.43 (d, 1 H, J = 10.0 Hz, NH), 4.75 (d, 1 H, J = 10.5 Hz, PhCH₂, C-3), 4.67 (d, 1 H, J_{1,2} = 4.0 Hz, H-1), 4.65 (d, 1 H, J = 11.5 Hz, PhCH₂O lactam), 4.62 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.60 (ddd, 1 H, J_{NH,4} = 10.0 Hz, J_{3,4} = 4.5 Hz, J_{4,5} = 1.5 Hz, H-4), 4.54 (d, 1 H, J = 10.5 Hz,

PhC H_2 , C-3), 4.53 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.47 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.06 (qd, 1 H, $J_{5,6}$ = 6.5 Hz, $J_{4,5}$ = 1.5 Hz, H-5), 3.94 (dd, 1 H, $J_{2,3}$ = 10.0 Hz, $J_{3,4}$ = 4.5 Hz, H-3), 3.91 (s, 1 H, CH₃OCH), 3.60 (dt, 1 H, J = 10.7, 7.0 Hz, octyl OC H_2), 3.56 (s, 3 H, OCH₃), 3.44 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OC H_2), 3.29 (t, 2 H, J = 7.0 Hz, CH₂N₃), 3.25 (dd, 1 H, $J_{2,3}$ = 10.0 Hz, $J_{1,2}$ = 4.0 Hz, H-2), 2.75 (s, 3 H, NCH₃), 1.66–1.60 (m, 4 H, CH₂ x 2), 1.46 (s, 3 H, CCH₃), 1.42–1.32 (m, 8 H, CH₂ x 4), 0.87 (d, 3 H, $J_{5,6}$ = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ _C) 197.8 (CHO), 172.5 (CH₃NC=O), 165.7 (HNC=O), 138.3 (Ar), 138.2 (Ar), 137.6 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 97.0 (C-1), 84.2 (PhCH₂OCCH₃), 81.5 (CH₃OCH), 80.6 (CCHO), 76.5 (C-3), 75.2 (C-2), 72.7 (PhCH₂, C-2), 71.8 (PhCH₂, C-3), 68.5 (octyl OCH₂), 66.3 (PhCH₂O lactam), 63.8 (C-5), 59.1 (OCH₃), 51.5 (CH₂N₃), 51.4 (C-4), 29.4 (NCH₃), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 16.5 (C-6), 14.4 (CCH₃); HRMS (ESI) calcd for (M+H) C₄₄H₅₈N₅O₉: 800.4229. Found: 800.4214.

8-Azidooctyl 4-[(2'S,3'S,4'R)-3'-(benzyloxy)-4'-methoxy-2'-carboxyl-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamido]-2,3-di-O-benzyl-4,6-dideoxy- α -D-galactopyranoside (47) To a solution of 46 (45 mg, 0.056 mmol) in t-BuOH (5 mL) and 2-methyl-2-butene (3 mL) was treated with a freshly prepared solution of NaClO₂ (99 mg, 1.1 mmol, 20 equiv) in 20% aqueous NaH₂PO₄ (3 mL) at room temperature. The mixture was stirred for 2 h and then water was added and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated to afford 47 (43 mg, 95% yield) as a colourless oil. R_f 0.38 (10:1 CH₂Cl₂-CH₃OH); [α]_D = +80.8 (c 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CD₃OD, δ _H) δ 7.36–7.21 (m, 15 H, ArH), 4.78 (d, 1 H, J = 10.5 Hz, PhCH₂, C-3), 4.72 (d, 1 H, J = 13.0

Hz, PhC H_2 O lactam), 4.68 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 4.54 (d, 1 H, $J_{3,4} = 4.0$ Hz, H-4), 4.49 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.42 (d, 1 H, J = 10.5 Hz, PhC H_2 , C-3), 4.29 (d, 1 H, J = 11.5 Hz, PhC H_2 , C-2), 4.21 (d, 1 H, J = 11.5 Hz, PhC H_2 , C-2), 4.13 (q, 1 H, $J_{5,6} = 6.5$ Hz, H-5), 4.11 (s, 1 H, CH₃OCH), 3.91 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 4.5$ Hz, H-3), 3.63 (dt, 1 H, J = 13.0, 6.5 Hz, octyl OC H_2), 3.44 (s, 3 H, OCH₃), 3.40–3.36 (m, 2 H, octyl OC H_2 and H-2), 3.24 (t, 2 H, J = 7.0 Hz, CH₂N₃), 2.89 (s, 3 H, NCH₃), 1.63–1.52 (m, 4 H, CH₂x 2), 1.41–1.28 (m, 8 H, CH₂x 4), 1.30 (s, 3 H, CCH₃), 1.08 (d, 3 H, $J_{5,6} = 6.5$ Hz, H-6); ¹³C NMR (125 MHz, CD₃OD, δ_C) 172.6 (CH₃NC=O), 168.1 (HNC=O), 141.6 (Ar), 141.0 (Ar), 140.8 (Ar), 130.4 (Ar), 130.2 (Ar), 130.1 (Ar), 130.0 (Ar), 129.5 (Ar), 129.4 (Ar), 129.0 (Ar), 128.6 (Ar), 99.4 (C-1), 86.1 (PhCH₂OCCH₃), 85.5 (CH₃OCH), 79.0 (C-3), 78.7 (C-2), 74.8 (PhCH₂, C-2), 73.6 (PhCH₂, C-3), 70.2 (octyl OCH₂), 68.0 (PhCH₂O lactam), 66.5 (C-5), 61.0 (OCH₃), 54.8 (C-4), 53.3 (CH₂N₃), 31.3 (CH₂), 31.2 (NCH₃), 31.1 (CH₂), 30.8 (CH₂), 28.6 (CH₂), 28.1 (CH₂), 18.0 (CCH₃), 16.6 (C-6); HRMS (ESI) calcd for (M-H) C₄₄H₅₆N₅O₁₀; 814.4033. Found: 814.4027.

(3*S*,4*R*)-methyl 3-(benzyloxy)-4-methoxy-1,3-dimethyl-5-oxopyrrolidine-2-carboxylate (48) A solution of 40 (250 mg , 0.71 mmol) in toluene (25 mL) was heated at reflux for 24 h. Then the mixture was concentrated and the crude product was purified by flash column chromatography (silica gel, gradient $10\rightarrow25\%$ EtOAc-hexane) to afford 48 (170 mg, 0.55 mmol, 78% yield) as a 1:1 mixture of inseparable diastereomers. These are defined below as *cis* and *trans*, to describe the relationship between the carboxymethyl and benzyloxy groups. R_f 0.35 (2:3 hexane–EtOAc); 1 H NMR (500 MHz, CDCl₃, δ_H) 7.38–7.29 (m, 10 H, ArH (*cis* and *trans*)), 4.69–4.60 (m, 4 H, PhCH₂O(*cis* and *trans*)), 4.25 (s, 1 H, CH₃OC*H*(*cis*)), 4.22 (s, 1 H, CHCO₂CH₃(*trans*)), 3.99 (s, 1 H, CHCO₂CH₃(*cis*)), 3.86 (s, 1 H, CH₃OC*H*(*trans*)), 3.85 (s, 3 H,

CO₂CH₃(trans)), 3.72 (s, 3 H, OCH₃(cis)), 3.71 (s, 3 H, CO₂CH₃(cis)), 3.68 (s, 3 H, OCH₃(trans)), 2.88 (s, 3 H, NCH₃(trans)), 2.85 (s, 3 H, NCH₃(cis)), 1.55 (s, 3 H, CCH₃(cis)), 1.38 (s, 3 H, CCH₃(trans)); ¹³C NMR (125 MHz, CDCl₃, δ_C) 171.8 (NC=O(cis)), 171.4 (NC=O(trans)), 169.6 (CO₂CH₃(cis)), 168.9 (CO₂CH₃(trans)), 138.1 (Ar), 138.0 (Ar), 128.5 (Ar), 128.3 (Ar), 127.7 (Ar), 127.5 (Ar), 127.1 (Ar), 126.8(Ar), 83.5 (CH₃OCH(trans)), 82.5 (CH₃OCH(cis)), 81.6 (PhCH₂OC), 81.4 (PhCH₂OC), 70.1 (CHCO₂CH₃(trans)), 68.8 (CHCO₂CH₃(cis)), 66.3 (PhCH₂), 65.7 (PhCH₂), 59.4 (OCH₃), 59.3 (OCH₃), 52.5 (CO₂CH₃), 52.4 (CO₂CH₃), 29.2 (NCH₃(cis)), 28.9 (NCH₃(trans)), 18.0 (CCH₃(cis)), 14.8 (CCH₃(trans)); HRMS (ESI) calcd for (M+Na) C₁₆H₂₁NNaO₅: 330.1312. Found: 330.1307.

8-Azidooctyl 4-[(2'S,3'S,4'R)-3'-(benzyloxy)-4'-methoxy-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamido]-2,3-di-O-benzyl-4,6-dideoxy- α -D-galactopyranoside (50) To a solution of 48 (47 mg, 0.16 mmol) in THF (10 mL) and water (10 mL) was added LiOH monohydrate (67 mg, 1.6 mmol) at room temperature. The mixture was stirred at room temperature for 16 h. Then 1 M HCl was added to adjust the pH to 1. The mixture was diluted with water and extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated to afford crude acid 49. Then, to a solution of 9 (40 mg, 0.080 mmol) in DMF (5 mL) was added the above crude acid, TBTU (38 mg, 0.12 mmol) and DIEA (16 mg, 0.12 mmol). The mixture was stirred at room temperature over night. Water was then added and the mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (silica gel, gradient 30 \rightarrow 70% EtOAc—hexane) to afford 50 (39.8 mg, 64% yield) and 51 (9.8 mg, 16% yield). Data for 50: R_f 0.45 (2:3 hexane—EtOAc); [α]_D = +124.2 (c 0.4, CH₂Cl₂.); ¹H NMR (600

MHz, CDCl₃, δ_H) 7.36–7.21 (m, 15 H, ArH), 5.85 (d, 1 H, J = 10.5 Hz, NH), 4.75 (d, 1 H, J = 10.5 H 11.0 Hz, PhC H_2 , C-3), 4.69 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.68 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 4.67 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.60 (ddd, 1 H, $J_{4,NH} = 10.5$ Hz, $J_{3,4} = 4.5$ Hz, $J_{4,5} = 10.5$ Hz, $J_{4,$ 1.5 Hz, H-4), 4.56 (d, 1 H, J = 12.0 Hz, PhC H_2 , C-2), 4.52 (d, 1 H, J = 11.0 Hz, PhC H_2 , C-3), 4.50 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.05 (s, 1 H, CH₃OCH), 4.04 (qd, 1 H, $J_{5.6} = 6.5$ Hz, $J_{4,5} = 1.5 \text{ Hz}$, H-5), 3.94 (dd, 1 H, $J_{2,3} = 10.0 \text{ Hz}$, $J_{3,4} = 4.5 \text{ Hz}$, H-3), 3.90 (s, 1 H, CHC=ONH), 3.63 (s, 3 H, OCH₃), 3.58 (dt, 1 H, J = 10.0, 7.0 Hz, octyl OCH₂), 3.42 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OC H_2), 3.27 (t, 2 H, J = 7.0 Hz, CH₂N₃), 3.26 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{1,2} = 3.5$ Hz, H-2), 2.70 (s, 3 H, NCH₃), 1.63–1.58 (m, 4 H, CH₂ x 2), 1.52 (s, 3 H, CCH₃), 1.39–1.28 (m, 8 H, CH₂ x 4), 0.90 (d, 3 H, $J_{5.6} = 6.5$ Hz, H-6); ¹³C NMR (150 MHz, CDCl₃, $\delta_{\rm C}$) 171.8 (CH₃NC=O), 167.9 (HNC=O), 138.4 (Ar), 138.3 (Ar), 138.2 (Ar), 128.3 (Ar), 128.2 (Ar), 128.18 (Ar), 128.0 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 97.1 (C-1), 82.7 (CH₃OCH), 80.9 (PhCH₂OCCH₃), 76.2 (C-3), 75.5 (C-2), 72.8 (PhCH₂, C-2), 72.4 (CHC=ONH), 71.5 (PhCH₂, C-3), 68.4 (octyl OCH₂), 66.5 (PhCH₂O lactam), 64.0 (C-5), 59.3 (OCH₃), 51.5 (CH₂N₃), 51.0 (C-4), 29.4 (NCH₃), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 18.3 (CCH₃), 16.6 (C-6); HRMS (ESI) calcd for (M+H) C₄₃H₅₈N₅O₈: 772.4280. Found: 772.4279. Data for **51**: R_f 0.49 (1:1 hexane–EtOAc); $[\alpha]_D = +118.3$ (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.44–7.26 (m, 15 H, ArH), 6.62 (d, 1 H, J = 10.0 Hz, NH), 4.92 (d, 1 H, J = 11.0 Hz, PhC H_2 , C-3), 4.85 (d, 1 H, J = 12.5 Hz, PhC H_2 , C-2), 4.79 (d, 1 H, $J_{1,2} = 4.0$ Hz, H-1), 4.70 (d, 1 H, J = 12.5 Hz, PhC H_2 , C-2), 4.67 (d, 1 H, J = 11.0 Hz, PhC H_2 , C-3), 4.57 (d, 1 H, J = 11.5Hz, PhC H_2 O lactam), 4.54 (ddd, 1 H, $J_{4,NH}$ = 10.5 Hz, $J_{3,4}$ = 4.0 Hz, $J_{4,5}$ = 1.5 Hz, H-4), 4.53 (d, 1 H, J = 11.5 Hz, PhC H_2 O lactam), 4.15 (qd, 1 H, $J_{5.6} = 6.5$ Hz, $J_{4.5} = 1.5$ Hz, H-5), 4.03 (s, 1 H, CHC=ONH), 4.01 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 4.0$ Hz, H-3), 3.66 (dt, 1 H, J = 10.0, 7.0 Hz,

octyl OCH₂), 3.57 (s. 1 H, CH₃OCH), 3.50 (dt. 1 H, J = 10.0, 6.5 Hz, octyl OCH₂), 3.47 (dd. 1 H, $J_{2,3} = 10.0 \text{ Hz}, J_{1,2} = 4.0 \text{ Hz}, \text{H-2}, 3.42 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 2.87 \text{ (s, 3 H, OCH}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J = 7.0 \text{ Hz}, \text{CH}_2\text{N}_3), 3.29 \text{ (t, 2 H, } J =$ 3 H, NCH₃), 1.69–1.61 (m, 4H, CH₂ x 2), 1.38 (s, 3 H, CCH₃), 1.42–1.33 (m, 8 H, CH₂ x 4), 1.12 (d, 3 H, $J_{5.6} = 6.5$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.1 (CH₃NC=O), 168.8 (HNC=O), 138.7 (Ar), 138.5 (Ar), 137.9 (Ar), 128.5 (Ar), 128.4 (Ar), 128.1 (Ar), 128.0 (Ar), 127.8 (Ar), 127.7 (Ar), 127.5 (Ar), 127.4 (Ar), 127.1 (Ar), 97.5 (C-1), 83.7 (CH₃OCH), 80.4 (PhCH₂OCCH₃), 77.6 (C-3), 75.4 (C-2), 73.0 (PhCH₂, C-2), 72.8 (CHC=ONH), 71.9 (PhCH₂, C-3), 68.5 (octyl OCH₂), 65.4 (PhCH₂O lactam), 64.0 (C-5), 59.3 (OCH₃), 51.5 (CH₂N₃), 51.2 (C-4), 29.4 (CH₂), 29.3 (CH₂), 29.1 (NCH₃), 29.1 (CH₂), 28.8 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 16.9 (C-6), 14.1 (CCH₃),; HRMS (ESI) calcd for (M+H) C₄₃H₅₈N₅O₈: 772.4280. Found: 772.4270. (2S,3R)-1-tert-butyl 2-methyl 3-acetoxy-3-methyl-5-oxopyrrolidine-1,2-dicarboxylate (54) To a solution of 15 (0.46 g, 1.7 mmol) in pyridine (15.0 mL) and Ac₂O (15.0 mL) were added DMAP (21 mg, 0.17 mmol). The mixture was stirred at room temperature for 12 h. After completion of the reaction, the mixture was concentrated and diluted with CH₂Cl₂ (30 mL). The organic phase was washed with 1N HCl, brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 20 \rightarrow 40\% EtOAchexane) to yield 54 (472 mg, 89% yield) as a white amorphous solid; R_f 0.65 (4:3) EtOAc-hexane); $[\alpha]_D = -18.9$ (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 4.56 (s, 1 H, NCH), 3.83 (s, 3 H, OCH₃), 3.11 (d, 1 H, J = 17.5 Hz, COCH₂), 2.98 (d, 1 H, J = 17.5 Hz, $COCH_2$), 2.02 (s, 3 H, $CH_3C=0$), 1.78 (s, 3 H, CCH_3), 1.52 (s, 9 H, $C(CH_3)_3$); ¹³C NMR (125) MHz, CDCl₃, δ_C) 169.8 (NC=O), 169.0 (CH₃C=O), 168.8 (CO₂CH₃), 148.9 (CO₂C(CH₃)₃), 84.4

(OC(CH₃)₃), 77.1 (CH₃COAc), 68.6 (NCH), 52.5 (OCH₃), 44.3 (CH₂), 27.9 (C(CH₃)₃), 24.8

(CCH₃), 21.4 (CH₃C=O); HRMS (ESI) calcd for (M+Na) $C_{14}H_{21}NNaO_7$: 338.1210. Found: 338.1208.

(2*S*,3*R*)-methyl 3-acetoxy-3-methyl-5-oxopyrrolidine-2-carboxylate (55) To a solution of 54 (0.36 g, 1.7 mmol) in CH₂Cl₂ (30.0 mL) was added TFA (5.0 mL) at 0 °C. The mixture was stirred at room temperature for 2 h. Then, the mixture was concentrated, diluted with CH₂Cl₂ (40 mL), washed with a satd aq solution of NaHCO₃ and brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient $100\rightarrow300\%$ EtOAc–hexane) to yield 55 (227 mg, 93% yield) as a white amorphous solid; R_f 0.15 (4:3 EtOAc–Hexane); $[\alpha]_D = +5.7$ (c 0.7, CH₂Cl₂); 1 H NMR (500 MHz, CDCl₃, δ_H) 6.52 (br s, 1 H, NH), 4.21 (s, 1 H, NC*H*), 3.82 (s, 3 H, OCH₃), 3.09 (d, 1 H, J = 18.0 Hz, COCH₂), 2.65 (d, 1 H, J = 18.0 Hz, COCH₂), 2.00 (s, 3 H, CH₃C=O), 1.85 (s, 3 H, CCH₃); 13 C NMR (125 MHz, CDCl₃, δ_C) 174.7 (NC=O), 169.5 (CH₃C=O), 169.0 (CO₂CH₃), 82.9 (CH₃COAc), 66.1 (NCH), 52.5 (OCH₃), 42.2 (CH₂), 23.6 (CCH₃), 21.7 (CH₃C=O); HRMS (ESI) calcd for (M+Na) C₉H₁₃NNaO₅: 238.0686. Found: 238.0686.

(2S,3R)-methyl 3-acetoxy-1,3-dimethyl-5-oxopyrrolidine-2-carboxylate (57) To a solution of **55** (0.2 g, 0.93 mmol) in acetone (25 mL) was added paraformaldehyde (0.1 g, 4.4 mmol), potassium carbonate (20 mg) and water (0.2 mL) at room temperature. The mixture was placed in a sonication bath. After 3 h, the solution was filtered, concentrated and the residue was purified by flash chromatography on silica gel (gradient 50→25% hexane–EtOAc) to afford hemiaminal **56** (190 mg). To this hemiaminal in CHCl₃ (25 mL) was added TFA (2.0 mL) and Et₃SiH (2.0 mL). This mixture was stirred at room temperature over night. Thereafter, the

organic phase was washed with a satd aq solution of NaHCO₃ and brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography (silica gel, gradient 50 \rightarrow 25% hexane–EtOAc) to yield **57** (172 mg, 81% yield over two steps) as a white amorphous solid; R_f 0.25 (4:3 EtOAc–hexane); $[\alpha]_D = -5.1$ (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 4.09 (s, 1 H, NCH), 3.82 (s, 3 H, OCH₃), 2.97 (d, 1 H, J = 17.0 Hz, COCH₂), 2.85 (s, 3 H, NCH₃), 2.79 (d, 1 H, J = 17.0 Hz, COCH₂), 2.00 (s, 3 H, CH₃C=O), 1.76 (s, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 172.2 (NC=O), 169.2 (CH₃C=O), 168.8 (CO₂CH₃), 79.1 (CH₃COAc), 72.3 (NCH), 52.5 (OCH₃), 42.8 (CH₂), 28.8 (NCH₃), 25.1 (CCH₃), 21.5 (CH₃C=O); HRMS (ESI) calcd for (M+Na) C₁₀H₁₅NNaO₅: 252.0842. Found: 252.0840.

8-Azidooctyl 4-[(2'S,3'R)-3'-(hydroxy)-1',3'-dimethyl-5'-oxopyrrolidine-2'-carboxamido]- 2,3-di-*O*-benzyl-**4,6-dideoxy-**α-**D**-galactopyranoside (**58**) To a solution of **9** (6.0 mg, 0.012 mmol) in DMF (2 mL) was added the **14** (4.1 mg, 0.024 mmol), TBTU (9.6 mg, 0.030 mmol) and DIEA (3.9 mg, 0.030 mmol). The mixture was stirred at room temperature over night. Then water was added and the mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (silica gel saturated with TEA, gradient 50–16% hexane/EtOAc) to afford **58** (4.0 mg, 52% yield) as a colorless oil. R_f 0.21 (2:3 hexane–EtOAc); [α]_D = +129.3 (c 0.1, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.39–7.27 (m, 10 H, ArH), 5.75 (d, 1 H, J = 10.5 Hz, NH), 4.84 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.79 (d, 1 H, J = 10.0 Hz, PhCH₂, C-3), 4.65 (dd, 1 H, J_{NH,4} = 10.5 Hz, J_{3,4} = 4.5 Hz, H-4), 4.64 (d, 1 H, J_{1,2} = 4.0 Hz, H-1), 4.62 (d, 1 H, J = 10.0 Hz, PhCH₂, C-3), 4.62 (d, 1 H, J = 12.0 Hz, PhCH₂, C-2), 4.19 (q, 1 H, J_{5,6} = 6.5, Hz, H-5), 4.00 (dd, 1 H, J_{2,3} = 10.0 Hz, J_{3,4} = 4.5 Hz, H-3), 3.65 (s, 1 H, CHC=ONH), 3.62 (dt, 1 H, J =

10.0, 7.0 Hz, octyl OC H_2), 3.50 (dd, 1 H, $J_{2,3} = 10.0$ Hz, $J_{1,2} = 4.0$ Hz, H-2), 3.45 (dt, 1 H, J = 10.0, 6.5 Hz, octyl OC H_2), 3.27 (t, 2 H, J = 7.0 Hz, CH₂N₃), 3.07 (br s, 1 H, OH), 2.78 (s, 3 H, NCH₃), 2.11 (d, 1 H, J = 16.5 Hz, C H_2 C=O), 1.95 (d, 1 H, J = 16.5 Hz, C H_2 C=O), 1.66–1.55 (m, 4 H, CH₂x 2), 1.42 (s, 3 H, CCH₃), 1.39–1.24 (m, 8 H, CH₂x 4), 1.18 (d, 3 H, $J_{5,6} = 6.5$ Hz, H-6); 13C NMR (125 MHz, CDCl₃, δ_C) 173.4 (CH₃NC=O), 168.8 (HNC=O), 138.2 (Ar), 137.2 (Ar), 128.5 (Ar), 128.4 (Ar), 128.2 (Ar), 128.1 (Ar), 127.9 (Ar), 97.6 (C-1), 77.7 (C-3), 74.8 (C-2), 73.7 (CHC=ONH), 73.5 (PhCH₂, C-2), 72.8 (PhCH₂, C-3), 68.6 (octyl OCH₂), 63.7 (C-5), 51.7 (C-4), 51.5 (CH₂N₃), 44.5 (CH₂C=O), 29.7 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.1 (NCH₃), 28.9 (CCH₃), 28.7 (CH₂), 26.7 (CH₂), 26.0 (CH₂), 16.8 (C-6); HRMS (ESI) calcd for (M+H) C₃₅H₅₀N₅O₇: 652.3705. Found: 652.3695.

Supporting Information

NMR spectra for compounds **5–58** and X-ray crystallographic data for **11**. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgements

This work was supported by the Alberta Glycomics Centre and the Department of Chemistry, University of Alberta. LW thanks Alberta Innovates Technology Futures for a Studentship Award. We thank Dr. Robert McDonald (X-ray Crystallography Laboratory, University of Alberta Department of Chemistry) for obtaining the structure of 11.

References

- (1) Bing, B. Chu, C.-J., Lowary, T. L. Israel. J. Chem. Accepted.
- (2) Hunter, S. W.; Murphy, R. C.; Clay, K.; Goren, M. B.; Brennan, P. J. J. Biol. Chem. 1983, 258, 10481-10487.

- (3) Saadat, S.; Ballou, C. E. J. Biol. Chem. 1983, 258, 1813-1818.
- (4) Gilleron, M.; Puzo, G. *Glycoconjugate J.* **1995**, *12*, 298-308.
- (5) Gilleron, M.; Vercauteren, J.; Puzo, G. J. Biol. Chem. **1993**, 268, 3168-3179.
- (6) Gilleron, M.; Vercauteren, J.; Puzo, G. *Biochemistry* **1994**, *33*, 1930-1937.
- (7) McNeil, M.; Tsang, A. Y.; McClatchy, J. K.; Stewart, C.; Jardine, I.; Brennan, P. J. *J. Bacteriol.* **1987**, *169*, 3312-3320.
- (8) Burguiere, A.; Hitchen, P.; Dover, L.; Kremer, L.; Ridell, M.; Alexander, D.; Liu, J.; Morris, H.; Minnikin, D.; Dell, A.; Besra, G. *J. Biol. Chem.* **2005**, *280*, 42124-42133.
- (9) Rombouts, Y.; Burguière, A.; Maes, E.; Coddeville, B.; Elass, E.; Guérardel, Y.; Kremer,
 L. J. Biol. Chem. 2009, 284, 20975-20988.
- (10) Rombouts, Y.; Elass, E.; Biot, C.; Maes, E.; Coddeville, B.; Burguière, A.; Tokarski, C.; Buisine, E.; Trivelli, X.; Kremer, L. J. Am. Chem. Soc. 2010, 132, 16073-16084.
- (11) Daffe, M.; McNeil, M.; Brennan, P. J. *Biochemistry* **1991**, *30*, 378-388.
- (12) Ren, H.; Dover, L. G.; Islam, S. T.; Alexander, D. C.; Chen, J. M.; Besra, G. S.; Liu, J. Molec. Microbiol. 2007, 63, 1345-1359.
- (13) Rombouts, Y.; Alibaud, L.; Carrère-Kremer, S.; Maes, E.; Tokarski, C.; Elass, E.; Kremer, L.; Guérardel, Y. J. Biol. Chem. 2011, 286, 33678-33688.
- (14) Qin, D.; Zha, H.; Yao, Z. J. Org. Chem. 2002, 67, 1038-1040.
- (15) Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J. Carbohydr. Res. 1986, 147, 221-236.
- (16) Ling, T.; Potts, B. C.; Macherla, V. R. J. Org. Chem. **2010**, 75, 3882-3885.
- (17) A reviewer suggested another possible mechanism: attack of benzylate anion, generated by elimination of **33**, onto alkene **35**. We view this unlikely, however, as such a

mechanism would be expected to generate products with scrambling of the sterochemistry α to the lactam carbonyl group. Such products were not isolated.