Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of highly potent dual EP₂ and EP₃ agonists with subtype selectivity

Akihiro Kinoshita^{a,*}, Masato Higashino^a, Yoshiyuki Aratani^a, Akito Kakuuchi^a, Hidekazu Matsuya^b, Kazuyuki Ohmoto^{a,*}

^a Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan ^b Department of Biology & Pharmacology, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan

ARTICLE INFO

Article history: Received 9 October 2015 Revised 28 November 2015 Accepted 11 December 2015 Available online 12 December 2015

Keywords: Prostaglandin EP₂ receptor EP₃ receptor Dual agonist Underactive bladder

ABSTRACT

The cyclic carbamate derivatives, $2-\{[2-((4S)-4-\{(1E,3R)-8-fluoro-3-hydroxy-4,4-dimethyl-1-octenyl]-2-oxo-1,3-oxazolidin-3-yl)ethyl]sulfanyl]-1,3-thiazole-4-carboxylic acid ($ **5** $) and <math>2-\{[2-((4S)-4-\{(1E,3R)-3-[1-(4-fluorobutyl)cyclobutyl]-3-hydroxy-1-propenyl]-2-oxo-1,3-oxazolidin-3-yl)ethyl]sulfanyl]-1,3-thiazole-4-carboxylic acid ($ **7**) were identified as the first potent dual EP₂ and EP₃ agonists with selectivity against the EP₁ and EP₄ subtypes. Compounds**5**and**7**demonstrated highly potent dual EP₂ and EP₃ agonist activity with EC₅₀ values of 10 nM or less. In addition, these compounds possess structural features distinct from natural prostaglandins, such as a cyclic carbamate moiety, a dimethyl or cyclobutyl group and a terminal fluorine atom.

© 2015 Elsevier Ltd. All rights reserved.

Prostanoid receptors are members of the G-protein coupled receptor superfamily. Receptors for prostaglandin E_2 (PGE₂) can be classified into four subtypes, EP₁, EP₂, EP₃, EP₄.¹ The diverse biological activities of PGE₂ are considered to be expressed as a hybrid of the activities mediated by these four EP receptor subtypes. Among them, the EP₂ receptor subtype^{2,3} induces smooth muscle relaxation,⁴ while the EP₃ receptor subtype inhibits smooth muscle relaxation.⁵

Underactive bladder (UAB) represents dysfunctional conditions of the bladder where patients are unable to produce an effective voiding contraction. The most common clinical signs are the elevation of post-void residual urine volume and the lowering of urine flow rate. These symptoms have a profoundly negative impact on quality of life. The primary drugs currently used for UAB are a cholinesterase inhibitor, distigmine bromide and a muscarinic receptor agonist, bethanechol chloride. The systemic cholinergic side effects of these two drugs negatively impact this therapy.

PGE₂ is considered to act on both bladder and urethral smooth muscle. It has been reported that PGE₂ prompts contraction of the isolated bladder and relaxation of the isolated urethra.⁶ In addition our pharmacological tests revealed that an EP₃ agonist contracts

* Corresponding authors. Tel.: +81 75 961 1151; fax: +81 75 962 9314.

the bladder and an EP_2 agonist relaxes the urethra (American Urology Association, 2015).

Our purpose was to develop PGE_2 analogs possessing highly potent dual EP_2 and EP_3 agonist activity with selectivity against the other two subtypes because a dual EP_2 and EP_3 agonist has the potential as an effective therapeutic addressing unmet medical needs for UAB.

So far, a potent dual EP_2 and EP_3 agonist with selectivity against the EP_1 and EP_4 receptor subtypes has not been identified. On the other hand, a dual EP_2 and EP_4 agonist with selectivity against

	EP_1	EP_2	EP ₃	EP_4
Mouse Binding Assay <i>K</i> i (nM)	>10 ⁴	9.3	540	0.41
Rat Functional Assay EC ₅₀ (nM)	-	90	-	0.79

Figure 1. EP₂ and EP₄ dual agonist 1.

E-mail addresses: ak.kinoshita@ono.co.jp (A. Kinoshita), k.ohmoto@ono.co.jp (K. Ohmoto).

Figure 2. Molecular design of γ -lactam PGE analogs.

Table 1

Activity profiles of γ -lactam derivatives

Compd	Human functional assay, EC ₅₀ ^a (nM)			
	EP ₂	EP ₃	EP ₄	
2	0.39	310	3.0	
3	0.91	8.4	4.2	

^a EC₅₀ values represent the mean of at least two experiments.

Table 2

Effect of the incorporation of oxygen atom into 5-membered ring

0 s ^{CO} 2 ^H	
X HC CH	3 : X = CH ₂
CH3 CH3	4 : X = O
Ōн	

Compd	Human functional assay, EC_{50}^{a} (nM)			
	EP ₂	EP ₃	EP ₄	
3	0.91	8.4	4.2	
4	7.4	50	320	

^a EC₅₀ values represent the mean of at least two experiments.

the EP₁ and EP₃ receptor subtypes was reported (compound **1** in Fig. 1).⁷

Our first molecular design for a dual EP_2 and EP_3 agonist is described in Figure 2. At first, an increase in affinity for the EP_3 receptor was required for compound **1**. The ω side chain of limaprost or gemeprost, which are prostaglandin E_1 (PGE₁) analogs in clinical use with high affinity for the EP_3 receptor, was introduced into **1**. The activity profiles of the resulting γ -lactam derivatives **2** and **3** are shown in Table 1. Of the two resulting compounds, *gem*dimethyl **3** demonstrated potent EP_3 agonist activity comparable

Table 3

Activity profiles of cyclic carbamate derivatives

Compd	R	Human functional assay, EC ₅₀ ª (nM)		tional (nM)	Human binding assay Ki ^a (nm)
		EP ₂	EP ₃	EP ₄	EP1
4	H ₃ C CH ₃ CH ₃	7.4	50	320	120
5	H ₃ C CH ₃ *	5.7	4.7	1220	431
6	.*СН3	2.9	3.9	73	220
7	*~~~F	2.9	10	195	1080
8	*OCH_3	18	25	705	>10,000
9	*~CH3	29	2606	745	8418
10	*	160	27	465	802
11	*	60	7.4	8390	1332
12	* CH3	21	18	240	89
13	* CH ₃ CH ₃	3700	6.7	4710	149

 $^{\rm a}~{\rm EC}_{50}$ or Ki values represent the mean of at least two experiments.

Table 4

Pharmaco	kinetics	profile	of 7	/ in	rats	

Iv dosing (0.01 mg/kg)		Oral dosing (1 n	Oral dosing (1 mg/kg)		
CL (mL/min/kg)	$T_{1/2}$ (h)	AUC (µg·h/mL)	F (%)		
9.5	4.4	0.041	2.5		

to its EP_2 and EP_4 agonist activity. Therefore, the second step was to optimize the 5-membered ring and the ω side chain of **3** toward reduction of EP_4 agonist activity.

According to the published data,⁸ lipophilicity at 5-membered ring seems to relate to EP_4 agonist activity. Therefore, the reduction of EP_4 agonist activity can be expected by the incorporation of oxygen atom into 5-membered ring. As shown in Table 2, the effect of modification of the 5-membered ring was investigated. The functional assay revealed that cyclic carbamate **4** showed a distinct decrease in EP_4 agonist activity versus its lactam counterpart **3** as expected.

Structure–activity relationships (SAR) of the cyclic carbamate derivatives are shown in Table 3. First, the effect of ω side chain was investigated. The functional assays for human EP₂–EP₄ receptor subtypes and the binding affinity for human EP₁ receptor subtype were performed to determine subtype selectivity. Surprisingly, the incorporation of a terminal fluorine atom into **4** enhanced EP₃ agonist activity while reducing EP₄ agonist activity.

Scheme 1. Syntheses of **4** and **5**. Reagents and conditions: (a) K₂CO₃, water, triphosgene, toluene, 0 °C; (b) NaBH₄, EtOH, rt, 51% (for 2 steps); (c) TBSCl, imidazole, DMF, rt; (d) bromo ethyl acetate, KOtBu, THF, rt; (e) NaBH₄, THF–EtOH, rt, 89% (for 3 steps); (f) MsCl, Et₃N, CH₂Cl₂, 0 °C; (g) KSAc, DMF, rt, 99% (for 2 steps); (h) ethyl 2-bromo-1,3-thiazole-4-carboxylate, tributylphosphine, K₂CO₃, EtOH, 50 °C; (i) TBAF, THF, rt, 76% (for 2 steps); (j) SO₃-Py, Et₃N, DMSO, EtOAc, 10 °C; (k) NaH, dimethyl (3,3-dimethyl-2-oxoheptyl) phosphonate or **23**, THF, 0 °C, 46–59% (for 2 steps); (l) NaBH₄, MeOH, AcOH, –78 °C, then separation by silica gel column chromatography; (m) NaOH (aq), MeOH, 0 °C, 26–44% (for 2 steps); (n) 1-Bromo-4-fluorobutane, *n*-BuLi, *i*-Pr₂NH, THF, 0 °C; (o) SOCl₂, reflux; (p) dimethyl methylphosphonate, *n*-BuLi, THF, –78 °C, 57% (for 3 steps).

The resulting compound 5 indicated the possibility of potent and selective dual EP₂ and EP₃ agonist. Furthermore, compound 7 which possesses a cyclobutyl group in place of the *gem*-dimethyl in **5** preserved the feature of a potent dual EP_2 and EP_3 agonist. Meanwhile, the activities of other cyclobutyl derivatives 8 and 9 possessing terminal alkoxy group dropped overall. Compound 9, in particular, suffered a significant loss in EP3 agonist activity. In contrast, the incorporation of a bulky terminal group like phenyl, cyclohexyl or tert-butyl led to a selective EP₃ agonist. In addition, the linear ω side chain of internal alkyne **12** restored the EP₁ binding affinity. Regarding the cyclic carbamate derivatives, the combination of sterically-bulky dimethyl or cyclobutyl group and the terminal fluorine atom turned to be advantageous potent dual EP₂ and EP₃ agonist activity with selectivity against the EP₁ and EP₄ subtypes. Compounds 5 and 7 were expected to be good candidates for a UAB drug.

Unfortunately, the acceptable in vitro dual EP_2 and EP_3 agonist activity of compounds **5** and **7** was offset by pharmacokinetic problems. Table 4 shows the bioavailability of **7** is only 2.5% in rats. So, optimization of these compounds toward improvement in pharmacokinetic properties must be done to elaborate a clinical candidate.

The syntheses of **4** and **5** are described in Scheme 1. Commercially available p-serine methyl ester hydrochloride **14** was treated with triphosgene to form cyclic carbamate. Subsequent reduction of the methyl ester afforded alcohol **15**. Protection of the hydroxyl group of **15** was followed by N-alkylation of cyclic carbamate, reduction of the ethyl ester, mesylation of the resulting alcohol **16** and substitution by thioacetate to extend the α side chain. Treatment of thioacetate **17** with ethyl 2-bromo-1,

3-thiazole-4-carboxylate and removal of TBS group provided alcohol **18**. Horner–Emmons olefination between the aldehyde derived from **18** and dimethyl (3,3-dimethyl-2-oxoheptyl)phosphonate or **23** provided **19** or **20**, respectively. Reduction of ketone **19** or **20** resulted in a diastereomeric mixture of each corresponding alcohol. The desired alcohols were separated by silica gel column chromatography, followed by hydrolysis to provide **4** and **5**, respectively. The configuration of the hydroxyl group was determined using the Mosher ester method.⁹ Regarding preparation of phosphonate **23**, at first carboxylic acid **21** was α -alkylated with 1-bromo-4-fluorobutane to prepare **22**. Carboxylic acid **22** was converted into the corresponding acid chloride, and then treated with dimethyl methylphosphonate to give phosphonate **23**.

The syntheses of **6–13** are described in Scheme 2. Alkylation of cyclobutyl carboxylic acid **24** with alkylbromide (R-Br) afforded carboxylic acids **25a–h**. Acid chlorides derived from carboxylic acids **25a–h** were coupled with dimethyl methylphosphonate to prepare the corresponding phosphonates **26a–h**. Oxidation of **18** and Horner–Emmons reaction with **26a–h** were performed to provide alkenes **27a–h**. Ketones **27a–h** were reduced with NaBH₄ and then purified by silica gel column chromatography. The desired alcohols were hydrolyzed with aqueous NaOH to give **6–13**.

In summary, we have discovered compounds **5** and **7** as the first highly potent dual EP_2 and EP_3 agonists with selectivity against the EP_1 and EP_4 subtypes. The cyclic carbamate, dimethyl or cyclobutyl group and terminal fluorine atom were considered key moieties for dual EP_2 and EP_3 agonist activity. Further optimization of **5** and **7** to improve their pharmacokinetic profiles and subtype selectivity will be reported in due course.

Scheme 2. Syntheses of 6–13. Reagents and conditions: (a) R-Br, n-BuLi, i-Pr₂NH, THF, 0 °C; (b) SOCl₂, reflux; (c) dimethyl methylphosphonate, n-BuLi, THF, –78 °C, 54–87% (for 3 steps); (d) SO₃-Py, Et₃N, DMSO, EtOAc, 10 °C; (e) NaH, 26a-h, THF, 0 °C, 28–77% (for 2 steps); (f) NaBH₄, MeOH, ACOH, -78 °C, then separation by a silica gel column chromatography; (g) NaOH(aq), MeOH, 0 °C, 22-40% (for 2 steps).

Acknowledgments

We thank Professor Jason J. Chruma (Sichuan University) for careful reading of this manuscript and helpful suggestions. We also thank Mr. Masaki Tsujimura for measuring pharmacokinetic profiles, Mr. Koji Teraishi and Ms. Hiroko Takano for performing the biological tests.

References and notes

- Coleman, R. A.; Smith, W. L.; Narumiya, S. Pharmacol. Rev. 1994, 46, 205.
 Katsuyama, M.; Nishigaki, N.; Sugimoto, Y.; Morimoto, K.; Negishi, M.; Narumiya, S.; Ichikawa, A. FEBS Lett. 1995, 372, 151.

- 3. Regan, J. W.; Bailey, T. J.; Pepperl, D. J.; Pierce, K. L.; Bogardus, A. M.; Donello, J. E.; Fairbairn, C. E.; Kedzie, K. M.; Woodward, D. F.; Gil, D. W. Mol. Pharmacol. **1994**, 46, 213.
- 4. Coleman, R. A.; Kennedy, I.; Humphrey, P. P. A.; Bunce, K.; Lumley, P. In Comprehensive Medicinal Chemistry; Emmett, J. C., Ed.; Pergamon: Oxford, 1990; Vol. 3, pp 643-714.
- 5. Ushikubi, F.; Hirata, M.; Narumiya, S. J. Lipid Mediators Cell Signalling 1995, 12, 343.
- 6.
- Persson, C. G. *Acta Physiol. Scand.* **1976**, *97*, 139. Kambe, T.; Maruyama, T.; Nakai, Y.; Oida, H.; Maruyama, T.; Abe, N.; Nishiura, A.; Nakai, H.; Toda, M. *Bioorg. Med. Chem.* **2012**, *20*, 3502. 7.
- Kambe, T.; Maruyama, T.; Nagase, T.; Ogawa, S.; Minamoto, C.; Sakata, K.; Maruyama, T.; Nakai, H.; Toda, M. Bioorg. Med. Chem. **2012**, *20*, 702. 8.
- 9. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.