
1815

D. Orain et al. LetterSyn  lett

SYNLETT0 9 3 6 - 5 2 1 4 1 4 3 7 - 2 0 9 6
© Georg Thieme Verlag  Stuttgart · New York
2015, 26, 1815–1818
letter

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
Synthesis of Orthogonally Protected 2,6-Diazaspiro[3.5]nonane 
and 2,6-Diazaspiro[3.4]octane Analogues as Versatile Building 
Blocks in Medicinal Chemistry
David Oraina 
Samuel Hintermanna 
Maciej Pudelko*b 
Diego Carballab 
Anna Jedrzejczakb

a Novartis Pharma AG, Werk Klybeck, Postfach, 4002 Basel, 
Switzerland

b Selvita S.A., Park Life Science, Bobrzynskiego 14, 30-348 Cracow, 
Poland
maciej.pudelko@selvita.com

N

COOEt

Bz

N

Bn

N

N

COOMe

Bn

N

Bn

N
Boc

Boc

26–53% yield over 6 steps
T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib
Received: 25.03.2015
Accepted after revision: 07.05.2015
Published online: 25.06.2015
DOI: 10.1055/s-0034-1378722; Art ID: st-2015-b0210-l

Abstract A novel and efficient synthesis of orthogonally protected spi-
rocyclic amines is described for the first time.
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Constrained spirocyclic amines are common structural
motifs in many natural products and drug molecules such
as sanglifehrin, azaspiroacid,1 and varenicline.2 They are
providing very rigid systems with three-dimensional struc-
tures associated with low molecular weights and they are
very efficient in terms of atom economy. A vast number of
active compounds generated in pharma industry is based
on five- and six-membered aliphatic rings that are either
fused or linked.3 In comparison to those, four-membered
rings are found less frequently. A number of spirocyclic
amino oxetanes,4 azetidine-thietanes,4 2,6-di-
azaspiro[3.3]heptanes,4 1,6-diazaspiro[3.4]octanes,6 and
2,7-diazaspiro[3.5]nonanes[5,8] are known in medicinal
chemistry and their syntheses are described in the litera-
ture. In addition, a review compiling multiple syntheses of
constrained diamine systems including several spirocycles,
for example, 1,6-diazaspiro[3.3]heptane has been pub-
lished.7

For our purposes, we were particularly interested in de-
veloping a reliable and efficient synthesis of 2,6-di-
azaspiro[3.5]nonane and 2,6-diazaspiro[3.4]octane systems
orthogonally protected on the respective nitrogen atoms.
The synthesis of 2,6-diazaspiro[3.5]nonane was not previ-
ously published. The synthesis of 6-benzyl-2,6-di-
azaspiro[3.4]octane was published before;9 however, the
reported yields were lower than reported herein. It is worth

noting that some of the building blocks based on the above-
mentioned spirocyclic amines are commercially available at
quite expensive price. For our purpose we were interested
in developing a reliable synthetic route to obtain gram
quantities of these spirocyclic amines. For some of the pre-
viously published strategies6,7 to synthesize similar spiro-
cyclic diamines the reasoning was based on the functional-
ization of the azetidine building block and then construct-
ing the pyrrolidine or piperidine ring. Thus, we attempted
to form the spirocyclic lactam intermediate (Scheme 1) in a
sequence of steps starting from azetidine derivative 1. First,
the acetal-protected side chain was introduced via classical
deprotonation followed by quenching with an appropriate
alkyl bromide to access 2; however, its deprotection to al-
dehyde 3 failed (no conversion of 2). In another approach,
similar deprotonation and subsequent alkylation with 3-
bromopropionitrile did not provide nitrile 4, which was ex-
pected to be further reduced with Raney nickel to form the
desired lactam (Scheme 1). Those approaches via azetidine
chemistry were not further pursued since a parallel ap-
proach was more promising.

In a parallel synthetic plan, we considered the reverse
approach that we thought to be more viable and which
would start from readily available and cheap starting mate-
rials. First, we pursued the synthesis towards the benzyl-
protected 2,6-diazaspiro[3.5]nonane 11 (Scheme 2).

Readily available piperidine ethyl ester 5 was protected
as its N-benzoyl form leading to 6 in good yield (98%);10 it is
noteworthy to mention that when methyl ester was used,
ester hydrolysis was observed during workup. Deprotona-
tion of 6 with in situ formed LDA followed by quenching of
the resultant enolate with ethyl chloroformate provided di-
ester 7 in good yield (98%). Reduction of 7 with LiAlH4 solu-
tion gave N-benzyl protected diol 8 in 91% yield. For the in-
troduction of the nitrogen atom in an elegant way, we en-
visaged that reaction of the ditosylate 9 (obtained in 87%
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2015, 26, 1815–1818
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yield) with an appropriately protected nitrogen equivalent
would form the azetidine ring. Unfortunately, direct con-
version of 9 with tert-butyl carbamate proved not to be suc-
cessful. When reacting ditosylate 9 with 2,4-dimethoxy-
benzylamine, the spirocyclic intermediate 21 was success-
fully obtained (Scheme 3). However, deprotection of the
azetidine nitrogen to provide intermediate 11 under vari-
ous conditions did not work. For instance TFA treatment
under reflux or microwave irradiation,11 conversion into the
trifluoroacetamide12 or oxidative cleavage with K2S2O8

14

were not successful. Fukuyama reported 2-nitrobenzene-

sulfonamide14 as a temporary protecting group for second-
ary amines that is easily cleavable by treatment with thio-
phenol. Following this approach, intermediate 10 was ob-
tained (78% yield) by reacting ditosylate 9 with 2-
nitrobenzenesulfonamide. Compound 10 was further
deprotected with thiophenol in Cs2CO3/DMF to give the spi-
rocyclic diamine 11 in an excellent yield (89%) after purifi-
cation over a short silica plug.15 It is noteworthy to mention
that cyclization works as well with p-toluenesulfonamide
but deprotection and purification proved to be less effi-
cient. The azetidine moiety in 11 was further Boc-protected
using standard conditions (85% yield) to give intermediate
12 that constitutes a versatile building block with orthogo-
nal protecting groups that can be cleaved using standard
conditions such as catalytic hydrogenation or HCl/TFA
treatment, respectively.

Scheme 3  Reagents and conditions: a) 2,4-dimethoxybenzylamine, 
MeCN, DIPEA, reflux (50%); b) i): TFA, reflux, or MW irradiation; ii) Tf2O, 
Et3N, CH2Cl2; iii) K2S2O8, MeCN–H2O.

Benzyl-protected 2,6-diazaspiro[3.4]octane 20 (Scheme
4) was synthesized following the same strategy as for
nonane derivative 12. TFA-catalyzed 1,3-dipolar cycloaddi-
tion between N-benzyl-N-(methoxymethyl)trimethylsilyl-
methylamine and methyl acrylate16 led to intermediate 14
in good yield (90%) and no ester hydrolysis was observed in
this case.

Deprotonation in the α-position of ester 14 with LDA
followed by quenching with methyl chloroformate gave di-
ester 15 (84% yield). Reduction to diol 16 with LiAlH4 (91%
yield) followed by tosyl protection in a similar fashion to
derivative 9 led to ditosyl intermediate 17 (54% yield). For-

Scheme 1  Reagents and conditions: a) LiHMDS, bromoacetal derivative, THF, –70 °C; b) PTSA, acetone–H2O, 50 °C; c) LDA, –78 °C, 3-bromopropio-
nitrile, THF.
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Scheme 2  Reagents and conditions: a) BzCl, DIPEA, CH2Cl2, r.t. (98%); b) 
LDA, ClCOOEt, THF, –78 °C to 0 °C (98%); c) LiAlH4, THF, 0 °C to reflux 
(91%); d) TosCl, Et3N–DMAP, CH2Cl2, r.t. (87%); e) 2-nitrobenzenesulfon-
amide, K2CO3, DMF, 100 °C (78%); f) PhSH, Cs2CO3, MeCN, r.t. (89%); g) 
Boc2O, NaHCO3, H2O–dioxane, r.t. (85%); h) H2 (5 bar), Pd/C, MeOH, r.t. 
(95%); i), NH2Boc, K2CO3, DMF, 100 °C.
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mation of the nosyl-protected azetidine 18 was high yield-
ing (95%)17 and subsequent thiophenol-mediated nosyl
group removal led to the spirocyclic amine 19 which was
Boc-protected giving intermediate 20 in 60% yield over two
steps.18 The orthogonally protected 2,6-di-
azaspiro[3.5]nonane and 2,6-diazaspiro[3.4]octane build-
ing blocks are ideally set up for further functionalizations.
The Boc group can be cleaved either with TFA or HCl in di-
oxane allowing functionalization of the azetidine nitrogen.
Then, the benzyl protecting group can be hydrogenolytical-
ly cleaved to functionalize the piperidine nitrogen. Alterna-
tively, the order of functionalizations can be interconverted.

In summary, we have reported for the first time the syn-
thesis of the spirocyclic amines 2,6-diazaspiro[3.5]nonane
derivative and 2,6-diazaspiro[3.4]octane which are accessi-
ble in an excellent overall yield of 53% and 26% over six
steps, respectively. The syntheses were optimized on gram
scale and are amenable for further scale-up to multigram
scale.
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