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Abstract—Missing among the unsaturated carbocyclic nucleosides is the 1’,6’-double bond isomer of neplanocin A. A practical
synthesis of this compound and its 2'-deoxy derivative is reported from readily accessible cyclopentenols.

© 2005 Elsevier Ltd. All rights reserved.

Considerable evidence has shown that the introduction
of a rigid structural element into the cyclopentyl moiety
of carbocyclic nucleosides can lead to compounds with
interesting biological properties.! The most studied
examples in this class are neplanocin A (1), fused cyclo-
propyl derivatives (as represented by 23), and 2’,3’-dide-
hydro-2',3’-dideoxy derivatives of carbaguanosine.*
These results prompted our interest in the neplanocin
C-1'/C-6"°% alkenic isomer 3, which presents a planar
arrangement at the C-1' center. Such derivatives®’ lend
themselves to interesting biological studies by present-
ing, for example, an unexplored structural dimension
for mono-, oligo-, and polymeric nucleosidic
compositions.'->>-8

Our initial goal in investigating this class of nucleosides
was to develop a general synthetic procedure that would
be adaptable to a variety of heterocyclic base deriva-
tives. In this direction, because adenine is the base com-

ponent of neplanocin A, 3 and the 2’-deoxy 4 were
selected to serve as the platform from which to develop
this series. A preliminary account of the preparation of 3
and 4 is reported here (Fig. 1).

The key feature of our plan to 3 and 4 was to place a
leaving group at C-6' of a requisite adenine derivative
and conduct a 1,2-elimination procedure between C-1’
and C-6'. Epoxides were envisioned as offering stereo-
chemically and functionally versatile synthetic frame-
works for this purpose.

The preparation of 3 began with allylic alcohol 5,° which
was converted to the B-alcohol 6 by, first, a Mitsunobu
reaction followed by ammonolysis (Scheme 1). The cru-
cial precursor for this investigation, 7, was then pre-
pared from 6 following a literature procedure!® and
protected as its p-methoxybenzyl derivative 8. Direct
epoxidation of 8 gave exclusively B-epoxide rather than
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Scheme 1. Reagents and conditions: (a) (i) p-nitrobenzoic acid, DIAD, Ph;P, THF; (i) NH3, MeOH (81% for two steps); (b) pMBnCl, NaH, DMF
(86%); (c) (i) HCI, MeOH; (ii)) mCPBA, CH,Clp; (iii)) Me,C(OMe),, acetone, pTSA (80% for three steps); (d) adenine, NaH, 15-crown-6, DMF (10,
43%; 11, 39%); (e) (i) TFA; (ii) 1 N HCI (83%); (f) (i) HC(OMe),NMe,, DMF; (ii) MsCl, DMAP, CH,Cl,; (iii) NaOMe, THF/MeOH, reflux; (iv)
MeOH, reflux (60% for four steps); (g) (i) 10% TFA, CH,Cly; (ii) 1 N HCI (51% for two steps).

the a-isomer 9, which was desired for purine nucleo-
philic ring opening.!' Since formation of the B-isomer
could be rationalized by invoking iso-propylidene steric
control embodied within the Henbest rule,!"!? the fol-
lowing sequence to 9 as the only product was employed:
deprotection of the iso-propylidene of 8 (to the 2,3-diol),
epoxidation with mCPBA, and re-introduction of the
iso-propylidene (step ¢, Scheme 1). Nucleophilic opening
of 9 with adenine gave, after careful silica gel column
chromatographic separation (MeOH/EtOAc, 1:30), 10
(43%) and 11 (39%). A similar result was achieved with
sodium azide as nucleophilic source on a substrate anal-
ogous to 9.11:13

The structure of 10 was established by comparing NMR
spectra: (i) compound 10 with a similarly C-5' protected
aristeromycin'! and (ii) compound 12, from deprotec-
tion of 10, with a racemic analog.!' Compound 11 was
confirmed by using a proton—proton COSY NMR
analysis, which will be detailed in the full paper on
this research.

Introduction of a mesylate to C-6’ of 10 was sought to
provide the desired leaving group at this center. How-
ever, direct mesylation of 10 using methylsulfonyl chlo-
ride failed. In view of this, blocking the C-6 purine
amine of 10 with N,N-dimethylformamide dimethyl ace-
tal then allowed smooth mesylate formation. Refluxing
this amino protected compound (not shown) with so-
dium methoxide in tetrahydrofuran followed by metha-

nol provided 13 (4 steps, 65% yield from 10).
Debenzylation of 13 with trifluoroacetic acid and, subse-
quent acidic deketalization completed the synthesis of
3!4 (Scheme 1). Structural confirmation for 3 came from
a proton NMR analysis!>: (i) appearance of a peak at &
6.60 is in the expected region'® for H-6'; (ii) H-6’ of iso-
meric neplanocin A has been reported to appear at ¢
5.6915%; and (iii) presence of an H-4' peak for 3 (6
2.79) while there was, of course, no corresponding peak
for neplanocin A.!5°

The synthesis of 4 began with a Tamao oxidation of 14'7
(Scheme 2) followed by selective trityl protection of the
resultant primary alcohol to give 15 in 65% yield. Epox-
idation!! of 15 followed by methoxybenzylation affor-
ded 16. Nucleophilic opening!'® of 16 with adenine
resulted in the desired, single product 17.!® Following
the same steps for converting 10-3 (steps f and g of
Scheme 1), target 4'4%1¢ was obtained from 17 (via 18).

The regiochemistry of 4 was confirmed by analyzing its
"H NMR spectrum,'® which was substantially different
from the isomeric 2’-deoxyneplanocin.!®-2° Particularly
diagnostic was its H-6" absorption (6 6.48), which is very
similar to 3, while the H-6' for 2’-deoxyneplanocin exists
further upfield (6 5.75).

The biological analysis of 3 and 4 is underway and will
be presented in the full paper on this new class of nucleo-
side derivatives.
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Scheme 2. Reagents and conditions: (a) (i) KF, KHCO;, H,O,, MeOH/THF (v/v, 50%), 75%; (ii) TrCl, pyridine, DMAP, 86%; (b) (i) mCPBA,
CH,Cl,, 75%; (ii) pMBnCl, NaH, DMF, 94%; (c) adenine, NaH, 15-crown-6, DMF, 91%; (d) (i) HC(OMe),NMe,, DMF; (ii) MsCl, DMAP, CH,Cl,;
(iii) NaOMe, THE/MeOH, reflux; (iv) MeOH, reflux (65% for four steps); (e) (i) 10% TFA, CH,Cl,; (ii) 1 N HCI (55% for two steps).
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