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Abstract: A new catalytic C�C bond-forming reac-
tion has been developed. Catalyzed by cheap and
commercially available copper(II) bromide (CuBr2;
10 mol%), the reactions of a-electron-withdrawing
group (EWG)-substituted ketene S,S-acetals with
aldehydes or ketones in acetonitrile at room tem-
perature gave a variety of densely functionalized
coupling products in excellent yields (80–98%).
Based on this catalytic process, coumarin deriva-
tives were efficiently synthesized when salicylalde-
hydes were selected as the carbonyl components.
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Functionalized ketene S,S-acetals are versatile inter-
mediates in organic synthesis.[1–4] With the recent ad-
vances in the wide applications of these intermediates
for the construction of a diverse array of polysubsti-
tuted carbo- and heterocyclic compounds,[1–6] some ef-
forts have focused on the design and synthesis of new
ketene S,S-acetal-based synthons via a-functionaliza-
tion of a-EWG-substituted ketene S,S-acetals
(EWG=electron-withdrawing group).[7–9] In this con-
text, the C�C bond forming reactions at the nucleo-
philic a-carbon atom of these b,b-dialkylthio-activat-
ed alkenes have been found to be reliable and incor-
porate a wide variety of carbon electrophiles.[7,8] Our
previous research revealed that the reactions of Lewis
acid-activated aldehydes,[7a–d,g] simple ketones,[7d] or
enones[7e] with a-EWG-substituted ketene S,S-acetals
were accessible in the presence of over stoichiometric
amounts of TiCl4. Taking consideration of the impor-
tance of the C�C bond construction and with the aim

of making the above reactions more efficient for fur-
ther applications, we are interested in the catalytic
version of these processes. Transition metal catalysts
are widely used in the C�C coupling reactions.[10]

Among them, copper catalysts have received much at-
tention due to their low cost, easily handling, and
good functional tolerance.[11] Herein, we report a cop-
per(II) salt-catalyzed C�C bond forming reaction be-
tween nucleophilic a-EWG-substituted ketene S,S-
acetals 1 and electrophilic aldehydes/ketones 2, which
leads to the formation of 2:1 adducts 3 or coumarin
derivatives 4 in high to excellent yields under very
mild conditions.

Initially, a series of simple copper salts, including
CuBr2, CuCl2, Cu ACHTUNGTRENNUNG(OAc)2 and CuBr were evaluated in
the model reaction of a-cyanoketene cyclic S,S-acetal
1a with 4-chlorobenzaldehyde 2a as depicted in
Table 1. After extensive experiments, the best results
were obtained with CuBr2 as the catalyst. Under the
optimized conditions, i.e. , the mixture of 1a
(1.0 mmol), 2a (0.5 mmol), and CuBr2 (0.05 mmol) re-
acted at room temperature in acetonitrile (4.0 mL)
for 12 h, the 2:1 adduct 3aa[7d] was obtained in excel-
lent yield (Table 1, entry 2).

Under the conditions described in Table 1, entry 2,
the scope of the reaction was studied and some repre-
sentative results are listed in Table 2. It was found
that a wide range of electrophiles, including benzalde-
hyde (entry 2), aromatic aldehydes having both elec-
tron-withdrawing (entries 1 and 3) and electron-do-
nating (entry 4) substituents, heteroaromatic alde-
hydes (entry 5), a,b-unsaturated aldehydes (entry 6),
aliphatic aldehydes (entry 7), and ketones (entries 8
and 9), reacted smoothly with 1a to give the corre-
sponding 2:1 adducts 3aa–3ai in excellent yields. The
tolerance of substrates 1 was then investigated by
varying the EWG and SR groups. It is clear from
Table 2 that the reactions of 1b–1d with 2a could give
the desired products 3ba–3da in 82–94% yields, re-
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spectively (entries 10–12). In particular, the reaction
of 1d with 2a was much faster and was complete
within 3.0 h (entry 12). Similarly, when cyclic sub-
strate 1e was subjected to identical reaction condi-
tions, 3ea was obtained in 95% yield in a short time
(entry 13). In addition, this reaction can also tolerate

the acyclic alkylthio functionality of 1. Upon treat-
ment with 4-chlorobenzaldehyde 2a, the acyclic ana-
logues 1f and 1g afforded the corresponding 3fa and
3ga in 95% and 94% yields, respectively, under CuBr2

catalysis (entries 14 and 15).
Compared with the results mentioned above and

our previous reports,[7] a different reaction process of
this new catalytic C�C bond-forming reaction is pre-
dictable. Although the mechanism is not yet clear at
this stage, the reaction of 1e with allyl iodide
(10 equiv.) in the presence of 10 mol% of CuBr2

(Scheme 1) to deliver the C�C coupling product 2-
(1,3-dithian-2-ylidene)pent-4-enenitrile 3’ (70% isolat-
ed yield) might indicate that CuBr2 plays a duplicate
role and results in the activation not only of the car-
bonyl electrophiles,[7] but also of the b,b-dialkylthio-
activated alkenes 1.[12,13]

Attracted by the advantages, such as cheap catalyst,
broad scope of carbonyl compounds and a-EWG-sub-
stituted ketene S,S-acetals, high product yields, and

Table 1. Optimization of the reaction conditions.[a]

Entry Cat. [equiv.][b] Solvent Time [h] Yield [%][c]

1 CuBr2 (1.0) CH3CN 8.0 98
2 CuBr2 (0.1) CH3CN 12 98
3 CuBr2 (0.05) CH3CN 48 42
4 CuCl2 (1.0) CH3CN 23 90
5 CuCl2 (0.1) CH3CN 48 45
6 Cu ACHTUNGTRENNUNG(OAc)2 (0.1) CH3CN 24 –[d]

7 CuBr (1.0) CH3CN 72 –[d]

8 CuBr2 (0.1) CH2Cl2 14 95

[a] Reaction conditions: 1a (1.0 mmol), 2a (0.5 mmol), sol-
vent (4.0 mL), room temperature.

[b] Equivalents based on 2a.
[c] Isolated yield.
[d] No reaction.

Table 2. CuBr2-catalyzed C�C bond forming reactions of a-EWG-substituted ketene S,S-acetals 1 with aldehydes/ketones
2.[a]

Entry 1 EWG R or R,R 2 R1 R2 3 Time [h] Yield [%][b]

1 1a CN ACHTUNGTRENNUNG(CH2)2 2a 4-ClC6H4 H 3aa 12 98
2 1a CN ACHTUNGTRENNUNG(CH2)2 2b C6H5 H 3ab 12 93
3 1a CN ACHTUNGTRENNUNG(CH2)2 2c 4-NO2C6H4 H 3ac 18 96
4 1a CN ACHTUNGTRENNUNG(CH2)2 2d 4-MeOC6H4 H 3ad 15 97
5 1a CN ACHTUNGTRENNUNG(CH2)2 2e 2-furyl H 3ae 9.0 88
6 1a CN ACHTUNGTRENNUNG(CH2)2 2f E-C6H5CH=CH H 3af 14 90
7 1a CN ACHTUNGTRENNUNG(CH2)2 2g Me H 3ag 24 86
8 1a CN ACHTUNGTRENNUNG(CH2)2 2h Me Me 3ah 35 85
9 1a CN ACHTUNGTRENNUNG(CH2)2 2i ACHTUNGTRENNUNG(CH2)5 3ai 18 85
10 1b MeCO ACHTUNGTRENNUNG(CH2)2 2a 4-ClC6H4 H 3ba 22 82
11 1c PhCO ACHTUNGTRENNUNG(CH2)2 2a 4-ClC6H4 H 3ca 24 80
12 1d CO2Et ACHTUNGTRENNUNG(CH2)2 2a 4-ClC6H4 H 3da 3.0 94
13 1e CN ACHTUNGTRENNUNG(CH2)3 2a 4-ClC6H4 H 3ea 3.0 95
14 1f CN Me 2a 4-ClC6H4 H 3fa 19 95
15 1g CN Et 2a 4-ClC6H4 H 3ga 16 94

[a] Reaction conditions: 1 (1.0 mmol), 2 (0.5 mmol), CuBr2 (0.05 mmol), CH3CN (4.0 mL), room temperature.
[b] Isolated yield.

Scheme 1. Coupling of 1e with allyl iodide catalyzed by
CuBr2.
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mild reaction conditions, of the above catalytic C�C
bond-forming reactions, efforts were then focused on
developing a facile synthesis of coumarin derivatives.
Thus, salicylaldehydes 2j–2l were selected as the elec-
trophiles to react with acyclic ketene S,S-acetals 1g–1j
catalyzed by CuBr2. As expected, all the reactions
proceeded smoothly to afford coumarins 4 in good to
high yields in a single operation (Table 3). As a com-
parison, 4gj was obtained only in 35% isolated yield

along with the recovery of 1g (in 30% yield) by react-
ing 1g with 2j for 24 h under identical conditions, but
mediated with overstoichiometric amounts of TiCl4

(1.2 equiv.).
Coumarins are important heterocycles widely pres-

ent in natural products exhibiting a broad range of
biological and therapeutic activities.[14] A number of
classical approaches for accessing coumarins are avail-
able and novel synthetic routes are attracting much
attention in organic chemistry.[15] Recently, Pd-cata-
lyzed coumarin syntheses presented a new promising
strategy.[16] In 2006, Rao and Sivakumar reported a
route to the synthesis of 3-aroylcoumarins by the con-
densation of a-aroylketene S,S-acetals and salicylalde-
hydes in the presence of catalytic amount of piperi-
dine at reflux temperature.[8a] It is noteworthy that
our method for the synthesis of coumarins represents
a general route using a wide range of a-EWG-substi-
tuted ketene S,S-acetals, including a-aroyl, acetyl,
cyano, ethoxycarbonyl groups and the reactions can
be carried out under very mild conditions (Table 3).
Thus, this new protocol allows the more effective syn-
thesis of a combinatorial library of coumarins. The
proposed mechanism is described in Scheme 2. The
reaction begins with the addition of 1 to 2 catalyzed
by CuBr2 to give intermediate A along with the loss
of a molecule of HBr. Then, an intramolecular conju-
gate displacement leads to the formation of inter-
mediate B and Cu(OH)Br. Finally, coumarin 4 is
formed by hydrolysis of B. In the course of this reac-
tion, catalyst CuBr2 can be recycled by the reaction of
Cu(OH)Br with HBr. Clearly, this novel procedure
for the synthesis of coumarin derivatives has the ad-
vantages of mild reaction conditions and a broad
scope of substrates.[8a,15,16]

Table 3. Synthesis of coumarins via the reaction of 1 and 2
catalyzed by CuBr2.

[a]

Entry 1 EWG 2 R’ Time [h] 4 Yield [%][b]

1 1g CN 2j H 3.0 4gj 82
2 1h MeCO 2j H 6.0 4hj 50
3 1i PhCO 2j H 4.0 4ij 84
4 1j CO2Et 2j H 2.0 4jj 86
5 1g CN 2k 5-MeO 3.5 4gk 70
6 1h MeCO 2k 5-MeO 3.0 4hk 86
7 1i PhCO 2k 5-MeO 4.0 4ik 82
8 1j CO2Et 2k 5-MeO 2.0 4jk 74
9 1g CN 2l 5-Cl 5.0 4gl 79
10 1h MeCO 2l 5-Cl 5.0 4hl 77
11 1i PhCO 2l 5-Cl 3.0 4il 76
12 1j CO2Et 2l 5-Cl 1.0 4jl 90

[a] Reaction conditions: 1 (1.0 mmol), 2 (1.0 mmol), CuBr2

(0.1 mmol), CH3CN (4.0 mL), room temperature.
[b] Isolated yield.

Scheme 2. Proposed mechanism for the synthesis of coumarins from 1 and salicylylaldehydes 2j–2l catalyzed by CuBr2.
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In summary, we have developed a new Cu(II)-cata-
lyzed C�C bond forming reaction. A wide range of
densely functionalized double-coupling products 3
were obtained in excellent yields by reacting the read-
ily available a-EWG-substituted ketene S,S-acetals
with a variety of aldehydes and ketones under very
mild reaction conditions. Based on this catalytic pro-
cess, coumarin derivatives were synthesized in high
yields. The efficiency and convenience of the coumar-
in syntheses along with a broad range of EWG groups
at the 3-position make this synthetic strategy very at-
tractive for practical applications. Further studies on
the reaction mechanism and synthetic potential of this
catalytic reaction are in progress.

Experimental Section

General Procedure for the CuBr2-Catalyzed C�C
Bond-Forming Reactions of 1 with 2 (taking the
Reaction of 1a and 2a as an Example)

To a solution of 2-(1,3-dithiolan-2-ylidene)acetonitrile 1a
(143 mg, 1.0 mmol) and 4-chlorobenzaldehyde 2a (70 mg,
0.5 mmol) in dry acetonitrile (4.0 mL) was added CuBr2

(11.2 mg, 0.05 mmol). The reaction mixture was stirred for
12 h at room temperature and monitored by TLC. After
completion, the reaction mixture was poured into ice-water
(20 mL). The precipitate was collected by filtration, washed
with water (3 � 20 mL), and dried under vacuum to afford
the product 3aa as a white solid; yield: 199 mg (98%).
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