

Published on Web 06/22/2010

Gold-Catalyzed Stereocontrolled Oxacyclization/[4+2]-Cycloaddition Cascade of Ketone-Allene Substrates

Tse-Min Teng and Rai-Shung Liu*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC

Received May 20, 2010; E-mail: rsliu@mx.nthu.edu.tw

Abstract: We report the first success on the Au-catalyzed tandem oxacyclization/[4+2]-cycloaddition cascade using ketone-allene substrates to give highly substituted oxacyclics with excellent stereocontrol. In contrast to oxo-alkyne substrates, the resulting cycloadducts are isolable and efficiently produced from a reasonable scope of enol ethers.

Metal-catalyzed cycloaddition/annulation reactions are important tools to access complex molecular frameworks.¹ The Au- and Pt-catalyzed activation of alkynes enables the generation of unusual intermediates to react with dipolarophiles in a cycloaddition fashion.² Such reactions have attained considerable success only on oxo-alkyne substrates.^{1a,b} In the presence of Au or Pt catalysts, 2-oxo-1-alkynylbenzenes form metal-containing benzopyriliums (I) or carbonyl ylides (I') that react with dipolarophiles to give hypothetic [4+2]- or [3+2]-cycloaddition intermediates.^{3,4} Generation of 1,n-dipole species remains unexplored for oxo-allene substrates. This approach is mechanistically appealing because of the uncertain workability of oxonium-vinylmetal (II) or benzopyrilium (III) as 1,n-dipoles (n = 4, 5). Species II is kinetically favored by the Pt or Au- π -allene bonding,⁵ but its participation is absent in this work.

Scheme 1

We prepared alkynyl acetate 1a readily from 2'-bromoacetophenone. This substrate works as a precursor to generate ketone-allene 3a via a catalytic 1,3-acyloxy shift.⁶ As shown in Table 1, treatment of compound 1a with n-butyl vinyl ether (2a, 3 equiv) with PtCl₂/ CO or AuCl₃ in hot dichloroethane (50-80 °C) gave an exclusive recovery of unreacted 1a. The use of PPh₃AuCl/AgSbF₆ (3 mol %) in dichloromethane (DCM) produced ketone-allene 3a in 83% yield, but with no tractable amount of cycloadducts 4a/4a'. We were pleased to discover that ClAuP(t-Bu)2(o-biphenyl)/AgSbF6 (3 mol %) enabled the desired cyclization/cycloaddition cascade to give 4a (29%) and 4a' (56%) as a diastereomeric mixture, separable on a silica column. The stereoselectivity is greatly enhanced with ClAuP(t-Bu)₂(o-biphenyl)/AgNTf₂, giving only 4a' in 79% yield (entry 5); within a brief time (1 h), we obtained ketone-allene 3a in 40% yield in addition to the desired 4a' (46%, entry 6). The intermediacy of ketone-allene 3a was confirmed by a complete
 Table 1.
 Screening of Catalytic Activity over Various Metal Catalysts

entry	substrate ^a	catalyst (mol %)	condition	product (yield) ^b
1	1a	$AuCl_3$ (5)	DCE	1a (85%)
2	1a	PtCl ₂ /CO (5)	(80 °C, 24 h) DCE (50 °C, 20 h)	1a (46%) ^c
3	1a	Ph ₃ PAuCl (3)/	DCM	3a (83%)
4	1a	$AgSbF_6$ (3) AuCIL (3)/	(30 °C, 8 h) DCM	4a (29%),
5	1a	AgSbF ₆ (3) AuCIL (3)/	(30 °C, 2 h) DCM	4a' (56%) 4a (trace),
6	1a	$\begin{array}{c} \text{AgNTf}_2(3) \\ \text{AuCIL}(3) \\ \end{array}$	$(30 \ ^{\circ}C, 2.5 \ h)$ DCM $(20 \ ^{\circ}C, 1 \ h)$	4a' (79%) 3a (40%), 4a' (40%)
7	3a	AgN Π_2 (3) AuCIL (3)/	$(30 ^\circ\mathrm{C}, 1 \mathrm{n})$ DCM $(20 ^\circ\mathrm{C}, 2 \mathrm{h})$	4a (46%) 4a $(trace),$
8	1a	Agivit $_2(3)$ AuCIL (5)	$(30^{\circ}C, 21)$ DCM $(30^{\circ}C, 20 h)$	1a (94%)
9	1a	AgNTf ₂ (5)	DCM (30 °C 20 h)	1a (62%), 3a (17%)
10	1a	IPrAuCl (3)/ AgNTf ₂ (3)	DCM (30 °C, 2 h)	4a (48%), 4a' (22%)

 a L = P(*t*-Bu)₂(*o*-biphenyl), [substrate] = 0.1 M, DCM = dichloromethane, DCE = 1,2-dichloroethane. b Isolated yields were reported after purification from a silica gel column. c Decomposition of starting **1a** was observed in entry 2.

conversion to **4a**' with the same gold catalyst (entry 7). Control experiments indicate that $ClAuP(t-Bu)_2(o-biphenyl)$ and $AgNTf_2$ alone were catalytically inactive (entries 8–9). An altered chemose-lectivity was observed for IPrAuCl/AgNTf₂ (IPr = 1,3-bis(diiso-propyl-phenyl)imidazol-2-ylidene) that preferably gave **4a** as the major product (entry 10). Characterization of the structure of product **4a**' relies on an X-ray diffraction study of its analogue **4b**' (Table 2, entry 1).

We prepared ketone substrates 1b-1e bearing altered R¹ and R² substituents to examine the scope of this catalysis, as depicted in Table 2. Herein, the aldehyde substrates are not studied due to the intrinsic instability of 2-allenyl benzaldehyde intermediates.⁷ This reaction works well with both ethyl- and *n*-butyl vinyl ether (**2a**-**2b**), and it is also efficient with alterations of the R¹ (Me, *n*-Bu, *i*-Bu) and R² alkyls (Me, *n*-Pr) of substrates **1a**-**1e**. In entries 2, 4, and 5, due to the poor diastereoselectivity or chromatographic inseparable property, the cycloadducts **4b/4b'** and **4c/4c'** were subject to deacylation with NaOMe in MeOH to give ketone derivatives **5b**, **6b**, and **6c** with high dr values (8.5-10.0:1). For

Table 2. Au(I)-Catalyzed Oxacyclization/Cycloaddition Cascade with Vinyl Ethers

^{*a*} ClAuP(*t*-Bu)₂(*o*-biphenyl)/AgNTf₂ (3 mol %), [substrate] = 0.1 M, DCM, enol ethers (3 equiv). ^{*b*} Isolated yields were reported after purification from a silica gel column. ^{*c*} The configuration at the *C carbon is responsible for the occurrence of two diastereomers. ^{*d*} Messy mixture was obtained for portion of **1e**.

substrates **1a** and **1d–1e** bearing a bulky $R^1 (R^1 = n$ -Bu or *i*-Bu), the same reactions gave compounds **4a'** and **4d'–4e'** with excellent dr values (>20:1), due to a large steric interaction of the other isomers **4**. The structure of representative compound **4b'** is determined by an X-ray diffraction study.⁸

The scope of this new synthetic method is substantially expanded with its compatibility with substituted enol ethers including 1-ethoxypro-1-ene (2c, Z/E = 1.8, 3 equiv) and cyclic enol ethers 2d-2e, as illustrated in Table 3. These enol ethers proceeded with excellent diastereoselectivity that we did not obtain any epimers bearing mutual *trans*-R³ and OR⁴ substituents. For starting ketones 1a-1c and 1-ethoxypro-1-ene (entries 1-3), their cycloadducts 8a-8c were obtained as one single diastereomer with its structure carefully determined by ¹H-NOE, suggesting that *cis*-enol ether **2c** is more active than its *trans* isomer. Indeed, the reaction of 2c (Z/E = 0.5, 3 equiv) with ketone 1a gave cycloadduct 8a in diminished yield (31%) together with ketone-allene 3a (61%). This new tandem cascade also works with 3,4-dihydro-2H-pyran (2d) that reacts with ketones 1a-1f smoothly (entries 5-10), giving satisfactory yields (58-82%) of the expected cycloadducts 7a', 7d'-7f' or the deacylation products 9b-9c. 2,3-Dihydrofuran is also applicable to this catalysis, and it reacts with ketone 1b to deliver compound **10b** in 53% yield (dr = 6.5:1).

We also prepared new substrates 1g-1l to examine the effects of their phenyl substituents; their reactions with 3,4-dihydro-2*H*pyran are described in Table 4. Good yields (72–87%) were obtained for cycloadducts 7g'-7h' and 7k'-7l' bearing fluoro and methoxy substituents because these π -donor groups stabilize proposed benzopyriliums III (*vide infra*). Hypothetic [4+2]cycloadditions of free benzopyriliums^{3f-h} and their metal-containing analogues³ are restricted to unsubstituted benzenes and methoxy derivatives. The workability with substrates 1i and 1j bearing electron-deficient benzenes highlights the high reactivity of our new benzopyrilium (III). Table 3. Au(I)-Catalyzed Oxacyclization/Cycloaddition Cascade with Substituted Enol Ethers

entry	substrates ^a	alkene	t (step i)	products ^b
1	$\mathbf{R}^1 = n \text{-} \mathbf{B} \mathbf{u}, \mathbf{R}^2 = \mathbf{M} \mathbf{e} (1 \mathbf{a})$	$R^3 = Me, R^4 = Et$ (2c, Z/E = 1.8)	4 h	8a $(76\%, dr > 20:1)^c$
2	$R^1 = R^2 = Me (\mathbf{1b})$	2c	4 h	8b $(82\%, dr = 7.3:1)^c$
3	$\mathbf{R}^1 = \mathbf{M}\mathbf{e}, \mathbf{R}^2 = n - \Pr(1\mathbf{c})$	2c	4 h	8c $(81\%, dr > 15:1)^c$
4	$\mathbf{R}^1 = n \text{-} \mathbf{B} \mathbf{u}, \mathbf{R}^2 = \mathbf{M} \mathbf{e} (1 \mathbf{a})$	2c (Z/E = 0.5)	4 h	8a $(31\%, dr > 20:1)^{c,d}$
5	$\mathbf{R}^1 = n \cdot \mathbf{B}\mathbf{u}, \mathbf{R}^2 = \mathbf{M}\mathbf{e} (1\mathbf{a})$	$R^3, R^4 = -(CH_2)_{3^-} (2d)$	1 h	7a' (82%, dr > 20:1)
6	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{Me} \ (\mathbf{1b})$	2d	2 h	9b $(72\%, dr = 10:1)^c$
7	$\mathbf{R}^1 = \mathbf{M}\mathbf{e}, \mathbf{R}^2 = n - \Pr\left(1\mathbf{c}\right)$	2d	1 h	9c $(64\%, dr = 7.5:1)^c$
8	$\mathbf{R}^1 = n \text{-} \mathbf{B} \mathbf{u}, \mathbf{R}^2 = n \text{-} \mathbf{P} \mathbf{r} \left(1 \mathbf{d} \right)$	2d	2 h	7d' (75%, dr > 20:1)
9	$\mathbf{R}^1 = i\text{-}\mathbf{B}\mathbf{u}, \mathbf{R}^2 = \mathbf{M}\mathbf{e} \left(1\mathbf{e}\right)$	2d	3 h	$7e' (63\%, dr > 20:1)^e$
10	$R^1 = Ph, R^2 = Me (1f)$	2d	5 h	7f' (58%) , dr > 20:1) ^e
11	$\mathbf{R}^1 = \mathbf{R}^2 = \mathrm{Me} \ (\mathbf{1b})$	R^3 , $R^4 = -(CH_2)_{2^-} (2e)$	2 h	10b (53%) , dr = $(6.5:1)^{c,e}$

^{*a*} ClAuP(*t*-Bu)₂(*o*-biphenyl)/AgNTf₂ (3 mol %), [substrate] = 0.1 M, DCM, enol ethers (3 equiv). ^{*b*} Isolated yields were given after purification from a silica gel column. ^{*c*} The configuration at the *C carbon is responsible for the occurrence of two diastereomers. ^{*d*} Ketone-allene **3a** was obtained in 61%. ^{*e*} Messy mixture was obtained for portion of **1b**, **1e**, or **1f**.

 Table 4.
 Au(I)-Catalyzed Oxacyclization/Cycloaddition Cascade of Substituted Aromatic Substrates

040

	$X \longrightarrow n-Bu + 0 \qquad \downarrow n-Bu + 0 \qquad \coprod n-Bu + 0 \qquad n-Bu +$	Au] X	Me 7'
entry	substrates ^a	<i>t</i> [h]	products (yield) ^b
1	$\mathbf{X} = \mathbf{H}, \mathbf{Y} = \mathbf{F} (\mathbf{1g})$	6	7g ' (78%, dr >20:1)
2	$X = F, Y = H(1\mathbf{h})$	8	7h ′ (72%, dr >20:1)
3	X = H, Y = Cl (1i)	6	7i' (42%, dr >20:1)
4	X = Cl, Y = H(1j)	6	7 j' (47%, dr >20:1)
5	X = H, Y = OMe (1k)	2	7 k' (87%, dr >20:1)
6	X = OMe, Y = H (11)	2	7l' (85%, dr >20:1)

^{*a*} ClAuP(*t*-Bu)₂(*o*-biphenyl)/AgNTf₂ (3 mol %), [substrate] = 0.1 M, DCM, enol ethers (3 equiv.). ^{*b*} Isolated yields were given after purification from a silica gel column.

Scheme 2

Structural analysis of resulting cycloadducts asserts the intermediacy of benzopyrilium (III), although gold- π -allene species **3** has cationic character located mainly at the C(1)- and C(3)-carbons.⁵ We hypothesize a fast equilibrium between ketone-allene (**3**) and intermediate (II), but the cycloadducts expected from species (II) fail to proceed. Here, we propose a concerted mechanism (i) for the [4+2]-cycloadditions of the new benzopyrilium (III). As shown in Scheme 2, *cis*-substituted enol ether approaches the pyrilium core of species III with its R³ and OR⁴ lying away from the bulky gold-containing substituent. We envisage that the allylic gold fragment of benzopyrilium III raises the HOMO energy level at the C(4)-carbon, facilitating this concerted process.^{2b,9} The stepwise pathway (ii) involving cationic intermediates V and V' is opposed by our observation that no epimers resulted from the conformer V' which is actually favored by steric interactions of the *cis*-R³ and OR⁴ substituents of species V. Species (III) is more useful than reported benzopyriliums³ in synthetic utility, because of its isolable and stereocontrolled [4+2]-cycloadducts.

Equation 1 shows the use of this catalysis for a stereoselective synthesis of a highly oxygenated molecule. A sequential treatment of compound **6c** with *m*-CPBA (1.5 equiv), followed by the DIBAL-H cleavage of resulting acetal, gave triol derivative **11** (65%) as a single diastereomer.

In summary, we report the first success on the Au-catalyzed tandem oxacyclization/[4+2]-cycloaddition cascade using ketoneallene substrates to give highly substituted oxacyclics with excellent stereocontrol. Control experiments reveal the involvement of benzopyrilium intermediates (III) that is active for [4+2]-cycloaddition reactions.⁹ In contrast to oxo-alkyne substrates,³ the resulting cycloadducts are isolable and efficiently produced from a reasonable scope of enol ethers. Efforts to realize the asymmetric version of this catalysis is under current investigation.

Acknowledgment. The authors wish to thank the National Science Council, Taiwan for supporting this work.

Supporting Information Available: Experimental procedures, characterization data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

 Reviews for gold-catalyzed annulation and cycloaddition reactions, see:(a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (b) Abu Sohel, S. Md.; Liu, R.-S. *Chem. Soc. Rev.* **2009**, *38*, 2269. (c) Shapiro, N. D.; Toste, F. D. *Synlett* **2010**, 675.

- Selected examples: (a) Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654. (b) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 9244. (c) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944. (d) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814. (e) Liu, F.; Yu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2009, 48, 5505.
- (3) [4+2]-Cycloadducts from benzopyrilium (I) are kinetically unstable and easily rearranged to naphthalene derivatives; only allylic alcohols^{3e} allow the interception. See selected examples: (a) Asao, N. Synlett 2006, 1645.
 (b) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2003, 42, 3504. (c) Asao, N.; Akiwa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458. (d) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem., Int. Ed. 2003, 42, 4399. (e) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am. Chem. Soc. 2009, 131, 2090. (f) Barluenga, J.; Vázquez-Villa, H.; Ballesteros, A.; González, J. M. Adv. Synth. Catal. 2005, 347, 526. (g) Barluenga, J.; Vázquez-Villa, H.; Ballesteros, A.; González, J. M. Org. Lett. 2003, 5, 4121. (h) Hu, Z.-L.; Qian, W.-J.; Wang, S.; Wang, S.; Yao, Z.-J. Org. Lett. 2009, 11, 4676.
- (4) For [3+2]-cycloadducts, see selected examples: (a) Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 2709. (b) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605. (c) Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew. Chem., Int. Ed. 2008, 47, 7505. (d) Oh, C. H.; Lee, S. M.; Hong, C. S. S. Org. Lett. 2010, 12, 1308.
- (5) For metal-allene bonding having the following dipolar character, see selected examples: (a) Kusama, H.; Ebisawa, M.; Funami, H.; Iwasawa, N. J. Am. Chem. Soc. 2009, 131, 16352. (b) Lee, J. H.; Toste, F. D. Angew. Chem., Int. Ed. 2007, 46, 912. (c) Lemiere, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2009, 131, 2993.

$$\overline{\mathbb{T}}^{\bullet=}_{\mathsf{M}} \longleftrightarrow_{\mathbb{T}^{\mathsf{M}}}^{\bullet}$$

- (6) (a) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. (b) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (c) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503. (d) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. (e) Cordonnier, M.-C.; Blanc, A.; Pale, P. Org. Lett. 2008, 10, 1569.
- (7) Previously, we attempted to synthesize allenyl aldehydes in pure form, but its rapid decomposition in solution hampers its purification and isolation. See: Teng, T.-M.; Lin, M.-S.; Vasu, D.; Bhunia, S.; Liu, T.-A.; Liu, R.-S. *Chem.-Eur. J.* 2010, *16*, 4744.

- (8) The X-ray crystallographic data of compound 4b' are provided in the Supporting Information.
- (9) (a) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488. (b) Jiménez-Núñez, E.; Raducan, M.; Lauterbach, T.; Molawi, T.; Solorio, C. R.; Echavarren, A. M. Angew. Chem., Int. Ed. 2009, 48, 6152.

JA1043837