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a b s t r a c t

Ketenimine intermediates, generated in situ by the addition of copper acetylides to aryl- or alkylsulfonyl
azides, are trapped by cyanoguanidine to yield 2,6-diamino-4-sulfonamidopyrimidine derivatives in
moderate to good yields.
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Nitrogen heterocycles are abundant in nature and are found in
many natural products such as vitamins, hormones, antibiotics,
and alkaloids.1 The pyrimidine moiety is a prominent structural
motif found in numerous bioactive compounds. Consequently, sev-
eral methods have been developed for the construction of this ring
system.2–5 Diaminopyrimidine derivatives are widely used as key
building blocks for pharmaceutical agents.6–8

Among several methods leading to the generation of keteni-
mines, the copper-catalyzed azide–alkyne cycloaddition reaction
has attracted much attention because of its mild conditions.9 The
in situ generated ketenimine intermediates can be trapped by var-
ious nucleophiles.10 In this way, frameworks of various heterocy-
cles were successfully synthesized.11–13 Applying this strategy,
we used cyanoguanidine to trap in situ generated ketenimines
and obtained 2,6-diamino-4-sulfonamidopyrimidine derivatives
(Scheme 1). Herein, we report the details of this letter.14

First, we studied the reaction between the ketenimine interme-
diate generated from phenylacetylene (1a) and p-toluensulfonyl
azide (2a) with cyanoguanidine (3). This reaction proceeded
smoothly at room temperature and afforded N1-(2,6-diamino-5-
phenyl-4-pyrimidinyl)-4-methyl-1-benzenesulfonamide (4a) in
an 83% yield. This result prompted us to optimize the reaction con-
ditions for the synthesis of other 2,6-diamino-4-sulfonamidopyr-
imidines (see Scheme 1).

Several catalysts including CuI, CuBr, CuCl, Cu2O, and copper
powder were tested with CuI giving the best result. Among the
ll rights reserved.
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solvents screened, tetrahydrofuran (THF) proved to be the best.
Thus, the optimized reaction conditions were as follows:
10 mol % of CuI, 1 mmol of the terminal alkyne 1, 1.2 mmol of
the sulfonyl azide 2 and 1 mmol of cyanoguanidine (3) in THF at
room temperature.

Phenylacetylene readily participated in the coupling to furnish
the corresponding diaminopyrimidine derivatives in good yields
(Scheme 1). Aliphatic acetylenes served as lower yielding sub-
strates compared to phenylacetylene. Aromatic and aliphatic sulfo-
nyl azides reacted efficiently and the corresponding products were
obtained in good yields.

The structures of compounds 4a–i were assigned from IR, 1H NMR,
13C NMR, and mass spectral data. The 1H NMR spectrum of 4a exhib-
ited four singlets for the methyl (2.51 ppm), NH2 (4.28 and 4.50 ppm),
and NH (8.33 ppm) protons, along with characteristic multiplets for
the phenyl protons. The 13C NMR spectrum of 4a exhibited 13 signals
in agreement with the proposed structure. The mass spectrum of 4a
displayed the molecular ion peak at m/z = 355.

A plausible mechanism for the formation of compounds 4 is gi-
ven in Scheme 2. The yellow copper acetylide 5, formed from 1 and
CuI, undergoes a 1,3-dipolar cycloaddition reaction with sulfonyl
azide 2, to generate the triazole derivative 6.15 This intermediate
can then be converted into the ketenimine derivative 7, which is
attacked by cyanoguanidine (3) to afford 8. This intermediate
undergoes intramolecular cyclization and tautomerization to pro-
duce 4.

In summary, ketenimine intermediates generated by the addi-
tion of copper acetylides to sulfonyl azides are trapped by cyanogua-
nidine to yield 2,6-diamino-4-sulfonamidopyrimidine derivatives.
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Scheme 1. Synthesis of compounds 4.
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Scheme 2. A plausible mechanism for the formation of compounds 4.
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The present method may be considered a practical route for the syn-
thesis of functionalized sulfonamidopyrimidines. The short reaction
times and readily available starting materials and catalyst are the
main advantages of this methodology.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.tetlet.2011.12.041.
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