Tetrahedron 68 (2012) 6513-6516

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

S-Benzyl isothiouronium chloride as a recoverable organocatalyst for the reduction of conjugated nitroalkenes with Hantzsch ester

Quynh Pham Bao Nguyen^a, Jae Nyoung Kim^b, Taek Hyeon Kim^{a,*}

^a School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea ^b Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju, 500-757, Republic of Korea

ARTICLE INFO

Article history: Received 5 March 2012 Received in revised form 22 May 2012 Accepted 24 May 2012 Available online 31 May 2012

Keywords: S-Benzyl isothiouronium chloride Recoverable organocatalyst Hydrogen bonding Hantzsch ester Conjugated nitroalkenes

ABSTRACT

The reduction of conjugated nitroalkenes into nitroalkanes with Hantzsch ester using *S*-benzyl isothiouronium chloride as a recoverable organocatalyst was successfully accomplished with high yield and excellent chemoselectivity.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nitroalkanes have great potential for organic synthesis because the nitro group is converted easily into the corresponding functionalities, such as carbonyl, nitrile oxide, and amino groups.¹ Several methods have been reported for the reduction of conjugated nitroalkenes to nitroalkanes. However, they have some limitations in controlling chemoselectivity.² For instance, lithium aluminum hydride provided a mixture of products containing saturated amines, nitroalkanes, oximes, and hydroxyl amines, whereas borohydride reduction furnished primarily the corresponding nitroalkane, which was often contaminated with the dimeric byproduct formed by Michael addition of the nitronate intermediate to the starting nitroalkene.^{2f}

Hantzsch esters have been explored as powerful biomimetic reductants because they overcome some limitations encountered with traditional reductive reagents, such as hydrogen gas/metal and metal hydrides.³ The selective reduction of nitroalkenes into nitroalkanes using Hantzsch esters has done by the combination of effective catalysts, such as acetic acid,^{2c} silica gel,^{2d,g} and thiourea.^{2h,5c} Recently, we reported *S*-benzyl isothiouronium chloride as a novel organocatalyst for the direct reductive amination of aldehydes using Hantzsch esters.⁴ The combination of Hantzsch esters

and *S*-benzyl isothiouronium chloride as an organocatalyst is herein introduced for the reduction of conjugated nitroalkenes into nitroalkanes resulting in high efficiency, chemoselectivity, and easy recovery of organocatalyst. Isothiouronium salts have been explored quite recently as a new class of hydrogen-bonding subunit for anion recognition.⁵ Isothiouronium group as an anion-binding site has several advantages: (i) it enhances the NH acidity compared to the corresponding thiourea; (ii) the chemical modification is readily varied to prepare several types of functional molecular systems.^{6f} Therefore we expect that some isothiouronium salts might work as an activator for the reduction of conjugated nitroalkenes (Scheme 1).

2. Results and discussion

Mechanically, the hydrogen bonding between the nitro group of the substrate and the isothiouronium moiety of organocatalyst may reduce the activation energy of the alkene (LUMO activation), leading to acceleration of the reaction (Scheme 1).^{2h} With this mind, the reduction of nitrostyrene **1a** was first investigated. Pleasingly, this reaction gave the required product at 71% and 90% yields in dichloromethane and methanol, respectively (entries 3 and 4 in Table 1). To identify the hydrogen bonding between nitrostyrene and S-benzyl isothiouronium chloride catalyst, the ¹H NMR spectrometry method was used by monitoring the changes in the spectra of the catalyst in the presence of the excess reagent **1a** (10 equiv) in DMSO-d₆. It was obviously observed that the protons

^{*} Corresponding author. E-mail addresses: thkim@chonnam.ac.kr, thkim@jnu.ac.kr (T.H. Kim).

^{0040-4020/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2012.05.104

Scheme 1. Reduction of conjugated nitroalkenes using S-benzyl isothiouronium chloride catalyst.

Table 1

Optimization of the reduction of conjugated nitroalkenes

Entry	Equiv of catalyst	Solvent	Time (h)	Temperature (°C)	Yield of 2a (%)
1	0	CH_2Cl_2	24	Reflux	0
2	0	MeOH	10	60	50
3	0.1	CH_2Cl_2	24	Reflux	71 (0) ^a
4	0.1	MeOH ^b	5	60	90 (41) ^a
5	0.1	MeOH	24	rt	55
6	0.05	MeOH	5	60	82

 $^{\rm a}$ Yields in the parentheses were obtained in the presence of the excess TBAA (1.5 equiv).

^b The insoluble solvents of isothiouronium catalyst (heterogeneous solution), such as CH₂Cl₂, toluene, benzene, dioxane, and THF are less suitable than the soluble solvent MeOH (homogeneous solution).

of -NH and -CH₂Ph moieties of the S-benzyl isothiouronium chloride catalyst were shifted from 9.37 to 9.44 ppm and from 4.55 to 4.57 ppm, respectively. In addition, the excess tetrabutylammonium acetate (TBAA) was added to the reaction mixture and their yields dramatically were reduced (entries 3 and 4 in Table 1), which can destroy the hydrogen bonding between the S-benzyl isothiouronium chloride and nitro group of the nitroalkene due to the higher coordination of the acetate anion with the isothiouronium ion. $^{6-8}$ From this control experiments the hydrogen bonding activation by isothiouronium ion would be a crucial factor in this reaction. Next the effect of solvents on the reduction was examined to optimize the reaction. The best solvent was MeOH dissolving the catalyst, while the insoluble solvents, such as CH₂Cl₂, toluene, benzene, dioxane, and THF were less suitable. This result was quite different from that of thiourea.^{2h} One of the most considerable advantages of isothiouroniums over thioureas, as known in anion recognition field, is that they gave higher binding constants even in polar protic solvents, such as methanol or water, proving the strong hydrogen bonding of isothiouronium derivatives.⁶ It is also worth noting that without the organocatalyst in the methanol (entry 2 in Table 1), there is generally loss of product due to the formation of the dimeric by-product **3a** derived from the Michael addition of the nitronate intermediate to the starting nitroalkene.^{2a,h} Running the reaction at room temperature and loading low amount of catalyst gave reduced yields of 2a (entries 5 and 6 in Table 1). In MeOH at 60 $^\circ C$ as a best conditions S-benzyl isothiouronium chloride provided 90% yields with only a trace of by-product 3a (entry 4 in Table 1).

The various conjugated nitroalkenes (Table 2) were examined in MeOH at 60 $^{\circ}$ C. As expected, the present protocol provided the desired products in a various conjugated nitroalkenes **1**, such as

aromatic (entries 1-10 and 15-16), aliphatic (entry 17), and heterocyclic (entries 11–13) nitroalkenes in high yields. The variations of the substituent in the aromatic ring made no effect on the outcome of this reaction. No reductions of the nitro (entry 7), nitrile (entry 8), and carbonyl (entries 9 and 10) moieties were observed and the free hydroxyl group (entry 4) was tolerated. The nitroalkene with the methyl group substituted at the β -position of the double bond also ran smoothly (entry 14). In the structures with two conjugated carbon-carbon double bonds, only the one adjacent to the nitro group was reduced selectively, while the other one remained intact even in an excess of the reducing reagent and catalyst as well as under extended reaction time (entries 15 and 16). In addition, the enone systems, such as cinnamaldehyde and 2cyclohenxen-1-one were not reduced at all under this reaction condition and recovered, showing only nitroalkenes were reduced chemoselectively.

Finally, the recycling of the catalyst was a remarkable feature of this protocol. As an organic salt, the *S*-benzyl isothiouronium chloride catalyst was readily precipitated out by adding the excess cooled dichloromethane. Therefore, commercially available *S*-benzyl isothiouronium chloride organocatalyst can be easily recovered and reused as many times as desired without loss of efficiency (Table 3).

3. Conclusion

In summary, S-benzyl isothiouronium chloride has been explored successfully as a new class of hydrogen bonding organocatalysts for the reduction of conjugated nitroalkenes. The isothiouronium catalyst acquired certain valuable characteristics, such as working even on polar protic solvents, and being recycled and reused. The asymmetric reduction of disubstituted or trisubstituted nitroalkenes using a novel chiral isothiouronium organocatalysts is under consideration.

4. Experimental section

4.1. General

All reagents and solvents were obtained from commercial suppliers and were used without further purification. All air- and moisture-sensitive reactions were carried out under an argon atmosphere. The products were purified by using flash column chromatography. TLC was developed on Merck silica gel 60 F₂₅₄ aluminum sheets. The ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively, using CDCl₃ as solvent. HRMS were measured on a Micromass Q-TOF instrument (ES+ ion mode).

4.2. Typical procedure for the reduction of conjugated nitroalkenes

The mixture of nitroalkenes **1** (0.1 g, 0.67 mmol), Hantzsch ester (0.19 g, 0.74 mmol) and *S*-benzyl isothiouronium chloride (14 mg,

Table 2

Scope of conjugated nitroalkenes

Entry	Nitroalkenes 1	Product 2	Yield (%)
1	NO ₂	2a	90
2	NO ₂	2b	97
3	NO ₂ OMe	2c	71
4	HO NO2	2d	96
5	Br NO ₂	2e	75
6		2f	80
7		2g	92
8	NC NO2	2h	95
9	H ₃ CO	2i	91
10		2j	82
11	CONNO2	2k	87
12	S NO2	21	82
13	NO ₂	2m	84
14	NO ₂	2n	90
15	NO ₂	20 ^a	65
16	NO ₂	2p ^a	68
17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2q	80

^a Hantzsch ester (2.2 equiv), isothiouronium catalyst (0.2 equiv), 24 h.

0.067 mmol) in methanol (5 ml) was stirred at 60 °C for 5–12 h. After completion of the reaction, the crude product in methanol was concentrated and added into the excess cooled CH₂Cl₂. The *S*-benzyl isothiouronium chloride was readily precipitated out, and then filtered and washed many times with CH₂Cl₂ to be reused. The filtrate was evaporated and the residue was purified by flash column chromatography to give the required nitroalkanes products **2**. All nitroalkanes except **2j** and **2p** were characterized with the reported spectroscopic data.^{2,5}

Table 3

Recovery of the catalyst

Recycle	Yield of recovered catalyst (%)	Yield of product 2a (%)
First	93	90
Second	90	85
Third	94	88
Fourth	92	87

4.2.1. Compound **2a** [6125-24-2]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.23 (t, J=7.35 Hz, 2H), 4.53 (t, J=7.35 Hz, 2H), 7.10–7.30 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ =33.3, 76.2, 127.3, 128.5, 128.7, 135.6.

4.2.2. Compound **2b** [72538-33-1]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =2.34 (s, 3H), 3.28 (t, J=7.35 Hz, 2H), 4.59 (t, J=7.35 Hz, 2H), 7.00–7.30 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ =21.0, 33.0, 76.4, 128.4, 129.6, 132.5, 137.1.

4.2.3. Compound **2c** [123312-23-2]. Colorless oil; ¹H NMR (300 MHz, CDCl₃): δ =3.29 (t, J=7.41 Hz, 2H), 3.80 (s, 3H), 4.61 (t, J=7.41 Hz, 2H), 6.78 (m, 3H), 7.25 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =33.4, 55.2, 76.1, 112.7, 114.4, 120.7, 130.0, 137.1, 160.0.

4.2.4. Compound **2d** [37567-58-1]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.22 (t, J=7.23 Hz, 2H), 4.57 (t, J=7.23 Hz, 2H), 5.20 (br s, 1H), 6.76 (d, J=6.55 Hz, 2H), 7.04 (d, J=6.55 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =32.6, 76.6, 115.8, 127.6, 129.8, 154.8.

4.2.5. Compound **2e** [137521-07-4]. Colorless oil; ¹H NMR (300 MHz, CDCl₃): δ =3.27 (t, J=7.20 Hz, 2H), 4.59 (t, J=7.20 Hz, 2H), 7.08 (d, J=6.63 Hz, 2H), 7.44 (d, J=6.63 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =32.8, 75.9, 121.5, 130.3, 132.1, 134.6.

4.2.6. Compound **2f** [72538-34-2]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.40 (t, J=7.14 Hz, 2H), 4.63 (t, J=7.14 Hz, 2H), 7.20 (s, 2H), 7.40 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =30.8, 73.9, 127.6, 129.7, 131.9, 134.3, 134.6.

4.2.7. Compound **2g** [155988-20-8]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.60 (t, J=6.84 Hz, 2H), 4.77 (t, J=6.84 Hz, 2H), 7.30–8.20 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ =31.2, 75.2, 125.5, 128.9, 131.4, 132.8, 133.9.

4.2.8. Compound **2h** [126158-10-9]. White solid; mp 80 °C; ¹H NMR (300 MHz, CDCl₃): δ =3.37 (t, *J*=7.02 Hz, 2H), 4.65 (t, *J*=7.20 Hz, 2H), 7.34 (d, *J*=8.07 Hz, 2H), 7.62 (d, *J*=8.07 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =33.0, 75.2, 111.4, 118.3, 129.4, 132.6, 141.1.

4.2.9. *Compound* **2i** [745059-98-7]. White solid; mp 60 °C; ¹H NMR (300 MHz, CDCl₃): δ =3.36 (t, *J*=7.23 Hz, 2H), 3.90 (s, 3H), 4.64 (t, *J*=7.23 Hz, 2H), 7.28 (d, *J*=8.22 Hz, 2H), 8.00 (d, *J*=8.22 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =33.1, 52.0, 75.6, 128.5, 129.3, 130.1, 140.8, 166.6.

4.2.10. Compound **2***j*. Colorless oil; IR (neat): v_{max} =1681, 1547, 1267 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =2.60 (s, 3H), 3.38 (t, *J*=7.20 Hz, 2H), 4.65 (t, *J*=7.20 Hz, 2H), 7.20–7.90 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ =26.6, 33.2, 75.9, 127.6, 128.2, 129.3, 133.2, 136.4,

137.9, 197.7; HRMS (ESI) calcd for $C_{10}H_{12}NO_3 \ [M+H^+]$: 194.0817, found: 194.0817.

4.2.11. Compound **2k** [5462-90-8]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.36 (t, J=7.11 Hz, 2H), 4.64 (t, J=7.11 Hz, 2H), 6.13 (d, J=4.70 Hz, 1H), 6.30 (m, 1H), 7.34 (d, J=2.50 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =26.0, 73.3, 107.4, 110.5, 142.2, 149.3.

4.2.12. Compound **2I** [30807-46-6]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.54 (t, *J*=7.08 Hz, 2H), 4.63 (t, *J*=7.08 Hz, 2H), 6.88 (d, *J*=5.40 Hz, 1H), 6.96 (m, 1H), 7.21 (d, *J*=5.40 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =27.5, 76.0, 124.9, 126.3, 127.3, 137.3.

4.2.13. Compound **2m** [115149-33-2]. Yellow oil; ¹H NMR (300 MHz, CDCl₃): δ =3.38 (t,*J*=7.02 Hz, 2H), 4.68 (t,*J*=7.02 Hz, 2H), 7.37 (m, 1H), 7.68 (d, *J*=7.86 Hz, 1H), 8.56 (d, *J*=4.11 Hz, 1H), 8.62 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =30.5, 75.5, 123.7, 131.3, 136.1, 149.0, 149.9.

4.2.14. Compound **2n** [17322-34-8]. Colorless oil; ¹H NMR (300 MHz, CDCl₃): δ =1.55 (d, J=7.50 Hz, 3H), 3.01 (q, J=7.50 Hz, 1H), 3.32 (q, J=7.50 Hz, 1H), 4.80 (m, 1H), 7.10–7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ =18.8, 41.2, 84.4, 127.4, 128.8, 129.0, 135.5.

4.2.15. Compound **20** [76024-91-4]. Colorless oil; ¹H NMR (300 MHz, CDCl₃): δ =2.90 (m, 2H), 4.51 (t, *J*=7.00 Hz, 2H), 6.13 (m, 1H), 6.56 (d, *J*=13.29 Hz, 1H), 7.20–7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ =30.7, 75.0, 122.9, 126.3, 127.8, 128.6, 134.0, 136.4.

4.2.16. Compound **2p**. Colorless oil; IR (neat): ν_{max} =1547, 1377 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =1.90 (s, 3H), 2.87 (t, *J*=7.26 Hz, 2H), 4.58 (t, *J*=7.26 Hz, 2H), 6.36 (s, 1H), 7.20–7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ =17.4, 38.1, 74.3, 126.7, 128.2, 128.8, 128.9, 132.3, 137.3; HRMS (ESI) calcd for C₁₁H₁₄NO₂ [M+H⁺]: 192.1025, found: 192.1042.

4.2.17. Compound **2q** [2216-21-9]. Colorless oil; ¹H NMR (300 MHz, CDCl₃): δ =0.88 (t, J=7.08 Hz, 3H), 1.30 (m, 12H), 1.99 (m, 2H), 4.37 (t, J=7.08 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =14.0, 22.6, 26.2, 27.4, 28.8, 29.1, 29.2, 31.6, 75.7.

Acknowledgements

This research was supported by the Sabbatical Research Program of Chonnam National University, 2010. We wish to thank the Korea Basic Science Institute Gwangju center for analysis of LC–MS/ MS Spectrometry.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2012.05.104.

References and notes

- Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, Chichester, 2001.
- (a) Meyer, A. I.; Sircar, J. C. J. Org. Chem. 1967, 32, 4134; (b) Trefouel, T.; Tintiller, P.; Dupas, G.; Bourguignon, J.; Queguiner, G. Bull. Chem. Soc. Jpn. 1987, 60, 4492; (c) Inoue, Y.; Imaizumi, S.; Itoh, H.; Shinya, T.; Hashimoto, H.; Miyano, S. Bull. Chem. Soc. Jpn. 1988, 61, 3020; (d) Fujii, M. Bull. Chem. Soc. Jpn. 1988, 61, 4029; (e) Ranu, B. C.; Chakraborty, R. Tetrahedron Lett. 1991, 32, 3579; (f) Ranu, B. C.; Chakraborty, R. Tetrahedron Lett. 1992, 48, 5317; (g) Torchy, S.; Cordonnier, G.; Barbry, D.; Eynde, J. J. V. Molecules 2002, 7, 528; (h) Zhang, Z.; Schreiner, P. R. Synthesis 2007, 2559; (i) Toogood, H. S.; Fryszkowska, A.; Hare, V.; Fisher, K.; Roujeinikova, D. L.; Gardiner, J. M.; Stephens, G. M.; Scrutton, N. S. Adv. Synth. Catal. 2008, 350, 2789; (j) Yanto, Y.; Hall, M.; Bommarius, A. S. Org. Biomol. Chem. 2010, 8, 1826.
- Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741.
- 4. Nguyen, Q. P. B.; Kim, T. H. Tetrahedron Lett. 2011, 52, 5004.
- (a) Čzekelius, C.; Carreira, E. M. Org. Lett. 2004, 6, 4575; (b) Czekelius, C.; Carreira, E. M. Org. Process Res. Dev. 2007, 11, 633; (c) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976; (d) Soltani, O.; Martin, A. A.; Carreira, E. M. Org. Lett. 2009, 11, 4196; (e) Tang, Y.; Xiang, J.; Cun, L.; Wang, Y.; Zhu, J.; Liao, J.; Deng, J. Tetrahedron: Asymmetry 2010, 21, 1900; (f) Schneider, J. F.; Falk, F. C.; Frohlich, R.; Paradies, J. Eur. J. Org. Chem. 2010, 2265.
- 6. For the additional hydrogen bond created by the isothiouronium compound, see: (a) Yeo, W. S.; Hong, J. I. Tetrahedron Lett. **1998**, *39*, 3769; (b) Yeo, W. S.; Hong, J. I. Tetrahedron Lett. **1998**, *39*, 3769; (b) Yeo, W. S.; Hong, J. I. Tetrahedron Lett. **1998**, *39*, 8137; (c) Kubo, Y.; Tsukahara, M.; Ishihara, S.; Tokita, S. Chem. Commun. **2000**, 653; (d) Nishizawa, S.; Cui, Y. Y.; Minagawa, M.; Morita, K.; Kato, Y.; Taniguchi, S.; Kato, R.; Teramae, N. J. Chem. Soc., Perkin Trans. 2 **2002**, 866; (e) Kubo, Y.; Ishihara, S.; Tsukahara, M.; Tokita, S. J. Chem. Soc., Perkin Trans. 2 **2002**, 1455; (f) Kubo, Y.; Kato, M.; Misawa, Y.; Tokita, S. Tetrahedron Lett. **2004**, *45*, 3769; (g) Kato, R.; Cui, Y.-Y.; Nishizawa, S.; Yokobori, T.; Teramae, N. Tetrahedron Lett. **2004**, *45*, 4273; (h) Seong, H. R.; Kim, D.-S.; Kim, S.-G.; Choi, H.-J.; Ahn, K. H. Tetrahedron Lett. **2004**, *45*, 723; (i) Kubo, Y.; Uchida, S.; Kemmochi, Y.; Okubo, T. Tetrahedron Lett. **2005**, *46*, 4369; (j) Minami, T.; Kaneko, K.; Nagasaki, T.; Kubo, Y. Tetrahedron Lett. **2005**, *49*, 432; (k) Nguyen, Q. P. B.; Kim, J. N.; Kim, T. H. Bull. Korean Chem. Soc. **2009**, *30*, 2093; (l) Nguyen, Q. P. B.; Kim, T. H. Bull. Korean Chem. Soc. **2009**, *31*, 712.
- For an example of destroying the hydrogen bond in the presence of TBAA, see: Maher, D. J.; Connon, S. J. *Tetrahedron Lett.* **2004**, *45*, 1301.
 By monitoring the ¹H NMR spectra of the catalyst, it was found that the
- 8. By monitoring the ¹H NMR spectra of the catalyst, it was found that the proton of the –NH moieties of the S-benzyl isothiouronium chloride catalyst were disappeared in the presence of the excess tetrabutylammonium acetate, proving the strong interaction of the catalyst with the acetate anion.