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Due to the unique scaffold of allene, numerous allenes showed 

biological activities and were widely used as building blocks in 

organic synthesis.
[1]

 An allene substituted by electron-

withdrawing-groups (EWGs) has at least two advantages: (a) the 

electrophilicity of the central carbon and the electron-deficiency 

of the double bonds can be enhanced significantly; (b) the 

functionalized products can be synthesized easily. As shown in 

Figure 1, 1-keto-3-allenecarboxylates 1 and 1,3-allenedicar-

boxylates 2 are two such typical allenes. Based on their 

electrophilic or nucleophilic additions and Diels-Alder reactions, 

many structurally novel natural products
[2] 

and heterocycles
[3]

 

have been synthesized. 
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Figure 1. The structures of allenes 1 and 2. 

However, in the past decades, the synthetic methods for 

allenes 1 and 2 were underdeveloped compared to other allenes.
[4]

 

As shown in Scheme 1a-b, the conventional methods used today 

for the synthesis of allenes 2 by dehydration of 3-oxo-1,5-

pentanedioates 3 were developed twenty years ago.
[5,6]

 Although 

allenes 1 are very attractive synthons, their synthesis by 

dehydration of 3,5-dioxopentanoates 4 normally suffered from 

low efficiency due to the low chemoselectivity between two 

keto-carbonyls (Scheme 1c).
[2f]

 The oxidation of 5-hydroxy-2-

pentynoate 5 provided an alternative approach, in which the 

initially produced 5-oxo-2-pentynoates can be tautomerized to 

thermodynamically stable allenes 1 even in acidic conditions 

(Scheme 1d).
[2b,3d]

 Since all these methods belong to the linear 

synthetic methods, the precursors 3-5 bearing the same carbon 

numbers as the target products 1-2 must be premade by multi-

step syntheses. 
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Scheme 1. Conventional methods for synthesis of 1 and 2. 

Herein, we report a direct method for synthesis of allenes 1 

and 2 by a copper(I)-catalyzed cross-coupling between -oxo-

alkynes 6 and -oxo-diazos 7 under mild conditions (Scheme 2). 

The efficiency and chemoselectivity of this method were simply 

controlled by adding -oxo-alkynes 6 terminally. 
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Scheme 2. Our new method. 
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A novel direct synthesis of 1,3-dioxo-substituted allenes was developed by copper(I)-catalyzed 

coupling of -oxo-alkynes and -oxo-diazos. It was a sequence of adding substrates-controlled 

method and the desired products were synthesized chemoselectively by adding -oxo-alkyne 

terminally. 
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In 2004, Fu
[7]

 reported a copper(I)-catalyzed coupling of 

terminal alkynes and -diazoacetates for the synthesis of 3-

alkynyl butyrates under mild conditions (Scheme 3a). In 2013, 

Maruoka
[8]

 employed Fu’s method directly to synthesize a group 

of 1,3-allenedicarboxylates 2 (Scheme 3b). To our surprise, since 

then these two methods almost have not been used for the 

synthesis of the allenes 1 and 2 in literature. 
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Scheme 3. Fu’s method and Maruoka’s method. 

When we tried to use Fu's method to couple 3-butyn-2-one 

(6a) with ethyl diazoacetate (7a), the yield of product ethyl 5-

oxo-2,3-hexadienoate (1a) varied widely (0-63%) from person to 

person. Thus, we assumed that the mechanisms for the methods 

in Scheme 3 may have not been clearly understood and solving 

this problem may lead to a general method for the synthesis of 

allenes 1 and 2 from easily accessible -oxo-alkynes 6 and -

oxo-diazos 7. Since the substrates and conditions used in these 

methods are very simple, we hypothesized that the problems may 

be caused by the sequence of adding substrates. Thus, three tests
 

were made as shown in Scheme 4: (a) under the solvent-free 

conditions, a cycloadduct ethyl 5-acetylpyrazole-3-carboxylate 

(8a) was obtained in 92% yield within two minutes from 6a and 

7a with or without CuI. This result is in agreement with the 

reference
[9]

 that the cycloaddition of an electron-poor alkyne and 

an -diazoacetate is an easy process; (b) by adding 7a into the 

mixture of 6a and CuI in CH3CN, 1a was obtained in 16% yield 

accompanied by 8a in 38% yield; (c) by adding 6a into the 

mixture of 7a and CuI in CH3CN, the coupling reaction was 

finished within 3 h to give 1a and 8a in 62% and 25% yields, 

respectively.  
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Scheme 4. Three conditional tests and results. 

The above results strongly supported our hypothesis and also 

promoted us to optimize the reaction conditions further. As 

shown in Table 1, the tests for different Cu(I)-catalysts (entries 1-

5) indicated that CuI was the only suitable catalyst for this 

coupling. The yield of 1a was decreased and the yield of 8a was 

increased by decreasing the amounts of CuI (entry 6). The best 

results were obtained when 10 mol% of CuI was used (entry 7). 

No 1a was obtained in the absence of CuI (entry 9). 

 

Table 1. Effects of catalysts on the yields of 1a and 8a.
a 
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entry Catalyst (mol%) 1a (%)b 8a (%)b 

1 CuI (5) 62 25 

2 CuBr (5) 5 31 

3 CuCl (5) trace 35 

4 CuCN (5) trace 38 

5 CuOAc (5) trace 45 

6 CuI (3) 55 30 

7 CuI (10) 65 21 

8 CuI (15) 61 17 

9 --- 0 65 

a To a solution of a catalyst and 7a (1 mmol) in CH3CN (2 mL) 
was added 6a (1 mmol) and the mixture was stirred at room 
temperature for 3 h. b Isolated yields.  

As shown in Table 2, CH3CN proved to be the best solvent for 

this coupling among all tested coordinative solvents (entries 1-4). 

As was expected, the yield of 1a was increased and the yield of 

8a was decreased by diluting the solutions (entries 5-7). The best 

results were obtained when 4 mL of CH3CN were used (entry 6). 

No improvements were observed when the reaction ran at 0 
o
C 

(entry 8), but the yield of 1a was decreased significantly when 

the reaction ran at 40 
o
C (entry 9). 

Table 2. Effects of solvents on the yields of 1a and 8a.
a 

entry Solvent 

(mL) 

temp  

(oC) 

time  

(h) 
1a  

(%)b 
8a  

(%)b 

1 NMP (2) 25 3 22 42 

2 DMF (2) 25 3 40 35 

3 n-PrCN (2) 25 3 45 33 

4 CH3CN (2) 25 3 65 21 

5 CH3CN (3) 25 1 68 17 

6 CH3CN (4) 25 3 71 10 

7 CH3CN (5) 25 3 71 9 

8 CH3CN (4) 0 3 71 9 

9 CH3CN (4) 40 3 43 39 
a 
To a solution of CuI (10 mol%) and 7a (1 mmol) in CH3CN was 

added 6a (1 mmol)
 
and the mixture was stirred for given 

temperature and time. 
b 
Isolated yields. 

To generalize this method, the scope of substrates was tested 

under the standard conditions. As shown in Scheme 5, by fixing 

6a, the corresponding 1a-1i were synthesized in moderate yields 

from 7a-7i. Aryl substituted product 1i was produced smoothly 

but with low stability (its decomposition was observed within 1 

h). When hex-1-yn-3-one (6b) was used as a substrate, the 

corresponding 1j-1k were synthesized. Similarly, 1,3-allene-

dicarboxylates 2a-2h were synthesized from the corresponding 

propargyl esters and -diazoacetates, whether the two 

carboxylates are the same (2a-2b) or different (2c-2h). 

Trisubstituted allenes 1e-1i, 1m and 2g-2h were easily 

synthesized by using -substituted -diazoacetates. Among 

them, the allyl and propargyl substituted products 1d, 1g-1h and 

2e are particularly significant to organic synthesis. As was 

expected, when 6a reacted with -diazoacetamides 7j and 7k, the 

products 9a and 9b were obtained, respectively. Under the 

standard conditions, 2a was prepared in 66% yield on a 3 grams 

scale. 
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Scheme 5. The synthesis of the products 1a-1k, 2a-2h and 9a-

9b. 

However, many substrates were seriously limited to this 

coupling method. For example, PhCOC≡CH mainly carried out a 

cycloaddition, possibly because it is a highly reactive 

dipolarophile. The diazos, such as CH3COCHN2, 

CH3COCHN2COCH3, PhCOCHN2COPh and EtO2CHN2CO2Et, 

were inert to the coupling and the last three were recovered in 

almost quantitative yields. These results may be caused by the 

fact that these diazos are too stable
[10]

 to be decomposed by 

Cu(I)-catalyst. The fact that the propargyl group in 1h stayed 

intact indicated that -oxo-alkynes have much higher reactivity 

than normal alkynes. The most challenge question is why the 

alkene in 1g stayed intact rather than carrying out a 

cyclopropanation? In fact, Fu has also reported
[7]

 that no 

cyclopropanation of alkenes and O–H insertion of alcohols were 

detected in his work, but without any explanation. 

Thus, a possible pathway for the formation of 1a was proposed 

as shown in Scheme 6. Initially, a catalytically inactive polymer 

(CuI)n was dissociated by CH3CN to generate a catalytically 

reactive CuI·CH3CN,
[11]

 which was then coordinated by alkyne 

6a to form Cu(I)-acetylide 10a. When 10a was attacked by diazo 

7a, it was converted into Cu(I)-carbene 11a with the loss of 

nitrogen. The initial cross-coupling product alkyne 13a was 

formed by an intramolecular alkynyl migration of 11a to give an 

intermediate 12a followed by a protonation. Finally, 13a was 

tautomerized to the thermodynamically stable allene 1a. 
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Scheme 6. Proposed pathway for the formation of 1a. 

However, this pathway must be supplemented by three 

hypotheses in order to explain all experimental phenomena. First, 

Cu(I)-acetylide 10a may be an in situ formed reactive 

mononuclear complex (Scheme 7a).
[12]

 The differences by adding 

6a early or terminally may be resulted from the formation of 

dinuclear or mononuclear Cu(I)-acetylides, respectively.
[13,14]

 By 

adding 6a terminally, the in situ formed reactive mononuclear 

Cu(I)-acetylide was captured by 7a rather than converting into a 

more stable dinuclear Cu(I)-acetylide (Scheme 7b). By adding 6a 

early, parts of Cu(I)-species and 6a were converted into inactive 

dinuclear Cu(I)-acetylide leading to a low efficient coupling. 

This hypothesis was also supported by two more facts: (a) the 

mononuclear Cu(I)-acetylide has been proposed as an 

intermediate for similar couplings by Wang based on DFT 

studies;
[15]

 (b) our further tests showed that the yield of 1a was 

further increased when 6a was added through a syringe pump 

(71% in one portion; 78% for 30 min; and 79% for 60 min). 

Secondary, Cu(I)-acetylide 10a may be the real catalyst for the 

decomposition of -diazoacetate 7a. Since the reactivity of 

Cu(I)-catalyst is significantly influenced by ligands, 10a may not 

catalyze the decomposition of those stable diazos. Third, no other 

Cu(I)-carbene formed except Cu(I)-acetylide-carbene 11a in this 

method. Thus, 11a preferentially carried out an intramolecular 

alkynyl migration rather than an intermolecular cyclopropanation 

or O–H insertion. 
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Scheme 7. Proposed three different types of Cu(I)-acetylides. 

In summary, a novel direct synthesis of 1,3-dioxo-substituted 

allenes was developed by copper(I)-catalyzed coupling of -oxo-

alkynes and -oxo-diazos. Its chemoselectivity was controlled 

simply by the sequence of adding substrates. The mononuclear 

Cu(I)-acetylide was proposed as a key intermediate and a real 

Cu(I)-catalyst to well explain most of the results and phenomena. 
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Since this method was as simple as by adding -oxo-alkynes 

terminally,
[16]

 we may expect that it will have widespread 

applications in organic synthesis. 
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The products 1b-1k, 2a-2h and 9a-9b were prepared by the similar 

procedure. 
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Highlights 
1. A new method for the synthesis of 1,3-

dioxo-substituted allenes was developed. 

2. It was achieved via CuI-catalyzed coupling of 

-oxo-alkynes and -oxo-diazos. 

3. Its efficiency was controlled by adding -oxo-

alkyne terminally. 

4.  The mononuclear Cu(I)-acetylide was proposed 

as a real Cu(I)-catalyst. 

 
 


