Rhodium(I)-Catalyzed Cycloisomerization Reaction of Yne-Allenamides: An Approach to Cyclic Enamides

Kay M. Brummond,* Bingli Yan

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA Fax +1(412)6248611; E-mail: kbrummon@pitt.edu *Received 24 February 2008*

Abstract: In this paper, we demonstrate a successful conversion of alkynyl allenamides to triene-containing heterocycles via a rhodium(I)-catalyzed cycloisomerization reaction.

Key words: cycloisomerization, cyclocarbonylation, allenamide, enamide, Diels–Alder

Transition-metal-catalyzed cycloisomerization reactions represent a powerful strategy for making carbon-carbon bonds.¹ Our group reported the first example of a rhodium(I)-catalyzed cycloisomerization reaction of an allenyne to afford a cross-conjugated triene.² The synthetic potential of this structurally interesting triene seems high, yet it has only seen limited use. In large, because of the limited methods available for their preparation, and controlling the reacting double bonds of the trienyl unit is challenging.³ The rhodium(I)-catalyzed allenic Alder-ene reaction discovered in our lab, addresses both of these shortcomings. Firstly, the conditions required to generate the triene are mild and show a high degree of functionalgroup compatibility. Secondly, the newly formed triene is comprised of two structurally unique dienes capable of undergoing discreet reactions. Recently, we have extended the scope of the allenic Alder-ene reaction to include allenamides which cycloisomerize to provide enamidecontaining trienes.⁴ Enamides are important subunits frequently found in natural products and biologically active compounds.⁵ They are also useful intermediates in organic transformations.⁶ Herein, the results of this study are reported.

Initially, we conducted a reaction on allenamide **1b** using the standard conditions developed in our group $\{[Rh(CO)_2Cl]_2 (10 \text{ mol}\%), \text{ toluene, r.t., argon atmo$ $sphere} and in 30 minutes, enamide$ **2b**was obtained in79% yield (Scheme 1). Encouraged by the successful cycloisomerization reaction of the allenamide**1b**, a varietyof alkynyl allenamides were prepared to further explorethe scope and limitations of this reaction.

A variety of alkyne-substituted carbamates were prepared using the protocols depicted in Scheme 2 and Scheme 3. The alkynes were installed by first alkylating the protected methyl ester of glycine 3^7 with 4a,b or 5b,c to give 6a,band 7b,c. Next the protecting group was removed from the

SYNLETT 2008, No. 15, pp 2303–2308 Advanced online publication: 28.08.2008 DOI: 10.1055/s-2008-1078169; Art ID: S02008ST © Georg Thieme Verlag Stuttgart · New York

amine using 1 N HCl, then the methyl ester was reduced to a hydroxyl group. Reaction of the resulting amino alcohol with triphosgene⁸ afforded compounds **8a,b** and **9a,b** in 26–70% yield for the four steps. Finally, the terminus of the alkyne was further functionalized with trimethylsilyl, phenyl, and methoxyphenyl groups to give **8c**, **9c**, **8d** and **9d**, respectively.

Propargylic carbamates were prepared from Garner's aldehyde $10.^9$ Reacting 10 with dimethyl-1-diazo-2-oxopropylphosphonate (Seyferth reagent)¹⁰ under basic conditions gave alkyne 11a in 61% yield.¹¹ Compound 11a was converted to 11b in nearly quantitative yield by using *n*-BuLi and methyl iodide. Carbamates 12a and 12bwere obtained by treatment of 11a and 11b with trifluoroacetic acid in MeOH followed by ring closure in the presence of triphosgene. The terminus of the alkyne was further functionalized with a trimethylsilyl and phenyl group to give 12c and 12d in 90% and 72% yield, respectively.

With carbamates 8a-d, 9a-d, and 12a-d in hand, the coupling reaction with the allenyl halides was examined.¹² After some experimentation, it was determined that a slight modification to the Hsung protocol [copper thiophene-2-carboxylate (CuTC), N,N-dimethylethylenediamine (DMEDA), Cs₂O₃, BaO, and allenyl iodide at 50 °C] worked best for the preparation of allenamides.^{13,14} The results of this study are reported in Tables 1 and 2. Reaction of the carbamate 12a with allene 13b using the modified Hsung coupling protocol (BaO was added as an acid scavenger), afforded none of the allenamide 14a, instead only a trace amount of triene 15a was isolated. The terminal alkyne was assumed to be a complicating factor in this reaction and as predicted, the reaction of carbamate 12b (R = Me) under identical conditions gave allenamide 14b in 52% yield (Table 1, entry 2). Interestingly, reaction of carbamate 12c and 12d with allene 13b gave only trienes 15c and 15d in 52% and 53% yield, respectively (entries 3, 4). However, carbamate 12c, possessing a TMS group on the terminus of the alkyne, underwent the cou-

Scheme 3

pling reaction with the less sterically encumbered allene **13a**, to give the allenamide **14e** in 56% yield (entry 5). These results suggest that complication can be partially attributed to the reactivity of the intermediate allenamide towards carbocyclization and the instability of the resulting trienes. Triene **15c** was not stable enough to obtain a ¹³C NMR spectrum and **15d** decomposed upon storage overnight in the freezer. A control experiment was performed where **14d** was isolated and heated in toluene at 40 °C to give triene **15d**, suggesting that triene formation is a thermal process.

We turned to alkynes possessing one methylene unit between the alkyne and the carbamate moiety (Table 2). This series of substrates proved to be more tolerant of these coupling conditions, evidenced by terminal alkynes giving moderate yields of allenamides (entries 1 and 5). Carbamate **8c**, possessing an internal alkyne substituted with a trimethylsilyl group gave an 88% yield of allenamide **1c** (entry 3). Substitution of the alkyne with an ethyl group and an aryl group (4-MeOC₆H₄) gave allenamides **1b**¹⁵ and **1d** in 79% and 35% yield, respectively (entries 2 and 4). Allenamide formation with the less sterically encumbered allene (**13a**) gave good yields of allenamide **1f–h** (entries 5–8). Also the carbamate **8b** underwent the coupling reaction with the electron-deficient allenyl iodide **13c**, to form the desired product, albeit in low yield (entry 9). This is the first example of coupling reaction between a carbamate and an electron-deficient allenyl iodide partner. The allenamides (**1e–i**) were isolated as a mixture of diastereomers (about 1:1).

The allenamide forming protocol was tested on a series of carbamates **9a–d** possessing two methylene units between the alkyne and the carbamate (Table 3). Surprisingly, the yield for the silyl-substituted alkynes (entries 2 and 5) were typically lower than that for terminal alkyne (entry 3) or alkynes substituted with alkyl (entries 1 and 4).

Each of the allenamides was subjected to the rhodium(I)catalyzed Alder-ene reaction conditions developed in our lab { $[Rh(CO)_2Cl]_2$ (10 mol%) in toluene, under an argon atmosphere at r.t.}.² Exposure of allenamide **14b** to these conditions gave the triene **15b**¹⁶ in 72% after 3.5 hours (Table 4, entry 1). Unfortunately, this triene is not stable

O NH 12 R	+ 13a, R ¹ = H 13b, R ¹ = Me	$(CH_2NHMe)_2$ CuTC, Cs ₂ CO ₃ , BaO toluene, 50 °C, 14 h	R B		R 5	
Entry	Carbamate	Allene	14	Yield (%)	15	Yield (%)
1	12a R = H	$13b R^1 = Me$	14a	-	15a	trace
2	12b R = Me	$13b R^1 = Me$	14b	52	_	_
3	12c R = TMS	$13b R^1 = Me$	14c	-	15c	52
4	12d R = Ph	$13b R^1 = Me$	14d	_	15d	53
5	12c R = TMS	13a $R^1 = H$	14e	56	_	-

Table 1 Formation of Allenamides 14b,e and Trienes

Table 2 Copper-Catalyzed Coupling to Form Allenamides 1a-i

 Table 3
 Copper-Catalyzed Coupling to Form Allenamides 16a–f

 O
 O

and can only be stored at room temperature for 2–3 hours. Reaction of allenamide **14e** under these conditions gave a mixture of unidentifiable compounds (Table 4, entry 2).

Next, the cycloisomerization reaction of the allenamides **1a–i** was investigated. To our delight, each one of these substrates underwent an allenic Alder-ene reaction to afford the trienes in high yields (Table 4, entries 3–11). The mechanism for the formation of trienes **15** and **2** involves coordination of rhodium to the allenamides **14** and **1** to form the rhodium-metallocycle intermediate. β -Hydride elimination of the intermediate rhodium metallocycle fol-

lowed by reductive elimination of a metallo-hydride species to give trienes 15 and 2^{2a} Interestingly, the electrondeficient alkynoate 1i underwent the Alder-ene reaction smoothly to give the desired triene 2i in 85% yield (Table 4, entry 11). The presence of the ester can help to differentiate the reactivity of the double bonds of the triene. Furthermore, there is no different cycloisomerization rate observed between the diastereosiomers of allenamides 1e–i.

Cycloisomerization of allenamides **16a–f** was examined (Table 5). Attempts to effect the cycloisomerization on trisubstitued allenamides **16a** and **16b** afforded trace quantities of a product resulting from an isomerization of the allene to a 1,3-diene along with small amount of cycloisomerization product **17** and cyclocarbonylation prod-

 Table 4
 Rhodium(I)-Catalyzed Alder-Ene Reaction of Allenamides to Form Five- and Six-Membered Trienes

 Table 5
 Rhodium(I)-Catalyzed Cyclizations of 16a–f to Form

 Seven-Membered Rings
 Form

^a Isomerization of allene to 1,3-diene observed by crude ¹H NMR.

uct 18 (Table 5, entries 1 and 2). For the disubstituted allenamide 16c, possessing a terminal alkyne, Alder-ene product 17a¹⁷ formed under cycloisomerization conditions, albeit in 12% yield (Table 5, entry 3). However, subjecting allenamide 16d to the Alder-ene conditions afforded cyclocarbonylation product 18a in 35% yield, but no Alder-ene product was observed (Table 5, entry 4). Changing the atmosphere from argon to carbon monoxide gave 18a in 75% yield¹⁸ (Table 5, entry 5). This Pauson-Khand-type reaction of allenamides to form bicyclo[4.3.0]nonadecadienones has also been reported by Hsung and co-workers.¹⁹ Replacement of isopropyl group on the terminus of alkyne with trimethylsilyl or phenyl group gave 18b and 18c in 89% and 75% yield, respectively, as a mixture of diastereomers (Table 5, entries 6 and 7). The cyclocarbonylation products 18a-c have diastereomeric ratios ranging from 3:1 to 3.6:1 and the starting allenamides 16d-f have diastereomeric ratios ranging from 1:1 to 1.5:1. It is not known at this time whether the epimerization occurs during the cyclocarbonylation process or after the formation of products. It seems that the substitution pattern on the alkyne moiety of the disubstituted allenamide plays an important role. For the substituted alkyne, CO insertion is faster than β -H elimination affording the cyclocarbonylation products 18a-c. However, for the terminal alkyne, β -H elimination is faster than CO insertion affording enamide triene 17a as the only product.

Reactions involving the trienes were briefly examined. Triene **2b** underwent Diels–Alder reaction with *N*-phenylmaleimide to give the tetracyclic compound 19^{20} as a single diastereomer (Scheme 4). The stereochemistry was confirmed by X-ray crystallographic analysis.

In summary, a series of alkyne allenamides were prepared via a copper-catalyzed coupling reaction between carbamates and allenyl iodides. Allenic cycloisomerization reactions of the corresponding alkyne allenamides proceeded smoothly to give triene-containing enamides when embedded in a six-membered ring. Cycloisomerization reactions producing trienes as part of a five-membered ring were too reactive and decomposed upon short-term storage. For cycloisomerization reactions involving the formation of enamides embedded in a seven-membered ring, competing isomerization and cyclocarbonylation process-

Scheme 4

es were observed. The synthetic utility of these enamidecontaining trienes has briefly been investigated and preliminary studies demonstrated chemo- and stereoselectivity in a Diels–Alder reaction.

References and Notes

- For a recent review, see: Brummond, K. M.; Loyer-Drew, J. A. C-C Bond Formation (Part 1) by Addition Reactions: Alder-Ene Reaction, In Comprehensive Organometallic Chemistry III, Vol. 10; Crabtree, R. H.; Mingos, M. P.; Ojima, I., Eds.; Elsevier: Oxford, **2007**, Chap. 10.12.
- (2) (a) Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186. (b) Brummond, K. M.; Mitasev, B. Org. Lett. 2004, 6, 2245. (c) Subsequently a similar finding was reported: Shibata, T.; Takesue, Y.; Kadowaki, S.; Takagi, K. Synlett 2003, 268.
- (3) For example, see: (a) Brummond, K. M.; You, L. *Tetrahedron* 2005, *61*, 6180. (b) Mitasev, B.; Yan, B.; Brummond, K. M. *Heterocycles* 2006, *70*, 367; and references cited therein.
- (4) For an enamide cycloisomerization, see: (a) Trost, B. M.; Pedregal, C. J. Am. Chem. Soc. 1992, 114, 7292.
 (b) Arisawa, M.; Terada, Y.; Theeraladanon, C.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Organomet. Chem. 2005, 690, 5398.
- (5) For preparation of cyclic enamides and natural products containing cyclic enamides, see: (a) Kinderman, S. S.; Maarseveen, J. H. V.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. Org. Lett. 2001, 3, 2045. (b) Klapars, A.; Campos, K. R.; Chen, C.-Y.; Volante, R. P. Org. Lett. 2005, 7, 1185. (c) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170. (d) Toumi, M.; Couty, F.; Evano, G. Angew. Chem Int. Ed. 2007, 46, 572. (e) Yet, L. Chem. Rev. 2003, 103, 4283; and references cited therein.
- (6) For an example, see: Zhang, W.; Zhang, X. Angew. Chem. Int. Ed. 2006, 45, 5515.
- (7) O'Donnell, M. J.; Plot, R. L. J. Org. Chem. 1982, 47, 2663.
- (8) Ni, Y.; Amarasinghe, K. K. D.; Ksebati, B.; Montgomery, J. Org. Lett. 2003, 5, 3771.
- (9) (a) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361.
 (b) Koskinen, A. M. P.; Otsomaa, L. A. Tetrahedron 1997, 53, 6473. (c) Roush, W. R.; Hunt, J. A. J. Org. Chem. 1995, 60, 798.
- (10) (a) Seyferth, D.; Marbor, R. S.; Hilbert, P. J. Org. Chem. **1971**, 36, 1379. (b) Ohira, S. Synth. Commun. **1989**, 19, 561.
- (11) (a) Crisp, G. T.; Jiang, Y.-L.; Pullman, P. J.; Savi, C. D. *Tetrahedron* 1997, *53*, 17489. (b) Meffre, P.; Gauzy, L.; Branquet, E.; Durand, P.; Goffic, F. L. *Tetrahedron* 1996, *52*, 11215. (c) Meffre, P.; Gauzy, L.; Perdigues, C.; Desanges-Levecque, F.; Branquet, E.; Durand, P.; Goffic, F. L. *Tetrahedron Lett.* 1995, *36*, 877.
- (12) Trost, B. M.; Stiles, D. T. Org. Lett. 2005, 7, 2117.
- (13) Shen, L.; Hsung, R. P.; Zhang, Y.; Antoline, J. E.; Zhang, X. *Org. Lett.* **2005**, *7*, 3081.
- (14) For a recent review, see: Wei, L.-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773; and references cited therein.
- (15) General Procedure for the Copper-Catalyzed Coupling Protocol to Prepare an Allenamide – Preparation of 3-(3-Methylbuta-1,2-dienyl)-4-(pent-2-ynyl)oxazolidin-2-one (1b)

A flame-dried 25 mL round-bottom flask was charged with oxazolidinone 8b (0.321 g, 2.10 mmol), copper(I)

thiophene-2-carboxylate (CuTC, 0.040 g, 0.21 mmol), BaO

(0.643 g, 4.20 mmol), and Cs₂CO₃ (1.367 g, 4.20 mmol). After flushing with nitrogen, toluene (15 mL) was added, followed by DMEDA (45 μ L, 0.42 mmol), then 1-iodo-3-methylbuta-1,2-diene (500 μ L, 4.20 mmol). The flask was covered with aluminum foil and heated at 50 °C for 20 h. The reaction was then cooled to r.t., filtered through a short pad of Celite, and concentrated in vacuo. The residue was purified by column chromatography [SiO₂, eluting with 95% to hexanes–EtOAc (1:1), 5% Et₃N] to afford the allenamide **1b** (0.363 g, 79%) as a pale yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 6.57 (sept, J = 2.6 Hz, 1 H), 4.43 (app t, J = 8.7 Hz, 1 H), 4.32 (dd, J = 8.8, 4.3 Hz, 1 H), 3.97–3.90 (m, 1 H), 2.54–2.47 (m, 2 H), 2.20–2.11 (m, 2 H), 1.83 (d, J = 2.6 Hz, 3 H), 1.80 (d, J = 2.6 Hz, 3 H), 1.12 (t, J = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 191.5, 155.5, 108.9, 93.0, 85.3, 72.8, 67.1, 53.8, 22.3, 22.0, 21.8, 14.2, 12.5. IR (neat): 1968, 1757 cm⁻¹. MS: m/z (%) = 220 (10), 219 (50), 204 (31), 190 (68), 152 (88), 108 (87), 81 (100), 67 (92). HRMS (EI): m/z calcd for C₁₃H₁₇NO₂ [M⁺]: 219.1259; found: 219.1259.

- (16) General Procedure for the Alder-ene Reaction -Preparation of (7Z)-7-Ethylidene-7,7a-dihydro-6-(prop-1-en-2-yl)pyrrolo[1,2-c]oxazol-3(1H)-one (15b) To a flame-dried test tube equipped with a magnetic stirring bar was added allenamide 14b (0.022 g, 0.12 mmol). The test tube was evacuated and charged with nitrogen $(3\times)$. Then, toluene (4.4 mL) was added followed by addition of [Rh(CO)₂Cl]₂ (0.002 g, 0.01 mmol). The reaction mixture was stirred at r.t. for 3.5 h and upon completion, the light yellow-brown solution was chromatographed [SiO₂, hexanes-EtOAc (4:1)] to give the desired cross-conjugated triene 15b (0.016 g, 72% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 6.67$ (s, 1 H), 5.76 (qd, J = 7.2, 3.1 Hz, 1 H), 5.21–5.11 (m, 3 H), 4.84 (app t, *J* = 8.5 Hz, 1 H), 4.24 (app t, J = 8.7 Hz, 1 H), 1.93 (s, 3 H), 1.68 (dd, J = 7.1, 1.8 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 157.4, 140.1, 135.8, 130.3 130.0, 116.5, 115.0, 70.7, 61.6, 23.3, 16.0. IR (neat): 1772 cm^{-1} . MS: m/z (%) = 191 (30), 146 (46), 132 (61), 117 (47), 91 (36), 86 (64), 84 (100). HRMS (EI): m/z calcd for C₁₁H₁₃NO₂ [M⁺]: 191.0946; found: 191.0952.
- (17) (**Z**)-7,8,9,9a-Tetrahydro-7-methylene-6-vinyloxazolo[3,4-*a*]azepin-3-(1*H*)-one (17a) Following the general procedure for the Alder-ene reaction, 17a was obtained in 12% yield. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.62$ (s, 1 H), 6.32 (dd, J = 17.1, 10.6 Hz, 1 H), 5.33 (dd, J = 17.1, 1.4 Hz, 1 H), 5.24 (br s, 1 H), 5.06 (dd, J = 10.6, 1.4 Hz, 1 H), 5.06 (s, 1 H), 5.05 (s, 1 H), 4.50 (app t, J = 8.4 Hz, 1 H), 4.20–4.10 (m, 1 H), 3.94 (app t, J = 8.4 Hz, 1 H), 2.71– 2.65 (m, 1 H), 2.38–2.29 (m, 1 H), 2.16–2.08 (m, 1 H), 1.88– 1.77 (m, 1 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.4$, 142.0, 136.5, 126.3, 123.7, 117.9, 114.4, 68.4, 56.9, 35.1, 34.1. IR (neat): 1755, 1640 cm⁻¹. MS: m/z (%) = 191 (87), 176 (46), 158 (54), 157 (30), 129 (45), 105 (100), 104 (42). HRMS (EI): m/z calcd for C₁₁H₁₃NO₂ [M⁺]: 191.0946; found: 191.0947.

(18) General Procedure for the Pauson-Khand Reaction – Preparation of Enone 18a

To a flame-dried test tube equipped with a magnetic stirring bar was added allenamide **16d** (0.009 g, 0.04 mmol). The test tube was evacuated and charged with carbon monoxide (3×), then toluene (5.2 mL) was added followed by [Rh(CO)₂Cl]₂ (0.002 g, 0.004 mmol). The reaction mixture was heated at 85 °C for 1 h. Upon completion of the reaction (TLC), the mixture was cooled to r.t. and chromatographed [SiO₂, hexanes–EtOAc (1:1)] to give **18a** as an oil (dr, 3:1, 0.008 g, 75% yield).

Major diastereomer: ¹H NMR (300 MHz, CDCl₃): $\delta = 6.68$

(s, 1 H), 4.60 (app t, J = 8.3 Hz, 1 H), 4.19–4.09 (m, 1 H), 3.96 (dd, J = 10.0, 8.5 Hz, 1 H), 3.25 (dt, J = 18.4, 3.2 Hz, 1 H), 2.86–2.76 (m, 2 H), 2.61 (ddd, J = 17.1, 12.8, 3.5 Hz, 1 H), 2.09 (dt, J = 14.1, 4.0 Hz, 1 H), 2.00–1.86 (m, 1 H), 1.24 (d, J = 7.2 Hz, 6 H), 1.20 (d, J = 6.9 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 206.6$, 159.8, 155.2, 146.5, 123.0, 117.8, 67.6, 58.6, 44.6, 29.2, 28.4, 25.7, 20.3, 20.1, 16.0. IR (neat): 1760, 1682, 1651 cm⁻¹. MS: m/z (%) = 261 (62), 246 (100), 232 (16), 218 (47), 174 (6). HRMS (EI): m/z calcd for C₁₅H₁₉NO₃ [M⁺]: 261.1365; found: 261.1361.

- (19) Xiong, H.; Hsung, R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell, B. Org. Lett. 2000, 2, 2869.
- (20) Diels-Alder Reaction Preparation of Tetracyclic Compound 19

To a solution of triene **2b** (0.006 g, 0.03 mmol) in toluene (0.5 mL) was added *N*-phenylmaleimide (0.005 g, 0.03 mmol). The reaction mixture was heated at 75 °C for 5 h

then, after cooling to r.t. was chromatographed [SiO₂, hexanes-EtOAc, (1:1)] to give the product 19 as a white solid (0.008 g, 75% yield). ¹H NMR (300 MHz, CDCl₃): δ = 7.46–7.34 (m, 3 H), 7.11–7.08 (m, 2 H), 5.49 (t, J = 7.5 Hz, 1 H), 4.60 (dd, J = 9.0, 5.8 Hz, 1 H), 4.40 (t, J = 7.4 Hz, 1 H),4.35–4.34 (m, 1 H), 4.11 (dd, J = 11.5, 7.8 Hz, 1 H), 3.95– 3.84 (m, 1 H), 3.27 (ddd, J = 8.9, 7.1, 1.7 Hz, 1 H), 2.77 (dd, J = 14.5, 1.7 Hz, 1 H), 2.69 (dd, J = 12.7, 3.2 Hz, 1 H), 2.40-2.32 (m, 1 H), 2.17-2.07 (m, 2 H), 2.02 (s, 3 H), 1.87 (t, J = 12.3 Hz, 1 H), 1.00 (t, J = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CD_2Cl_2): $\delta = 178.5, 176.7, 157.4, 134.8, 132.5, 130.4,$ 130.2, 129.3, 128.9, 128.6, 127.1, 69.6, 57.0, 52.8, 40.1, 39.3, 32.3, 28.9, 22.6, 21.7, 14.3. IR (neat): 1746, 1706 cm⁻¹. MS: *m/z* (%) = 393 (40), 392 (100), 377 (10), 333 (17), 219 (31), 190 (90), 91 (45). HRMS (EI): m/z calcd for C₂₃H₂₄N₂O₄ [M⁺]: 392.1736; found: 392.1719.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.