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Abstract: A Rh(I)-catalyzed carbocyclization reaction of allene-
ynones affords functionalized 2-alkylidene-3-vinylcyclohexenones
and 2-alkylidene-3-vinylcyclopentenones. The scope, limitations,
and utility of this triene-forming protocol have been examined and
the results reported within.
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Selective and concise entry into molecular complexity via
carbocyclization reactions of unsaturated carbon–carbon
bonds is an important area in organometallic chemistry.1

Recently, it was demonstrated that Rh(I)-catalyzed cy-
cloisomerization reactions of allenes lead to trienyl-con-
taining carbocycles,2 heterocycles,2 d- and e-lactams,3 and
d-lactones.4 Combining these functional motifs with a
cross-conjugated trienyl moiety provides functionally
dense substructures and if chemical reactivity can be con-
trolled, a means of gaining rapid access to molecular com-
plexity.

Using cross-conjugated trienes in complexity generating
reactions requires novel approaches to controlling double-
bond selectivity.5 It was this control element that led us to
consider the carbocyclization reactions of alkynones6 be-
cause the resulting trienones would possess double bonds
that are sterically biased and electronically differentiated
by the carbonyl group. In this Letter we report on the as-
sembly of the allene-ynones and their participation in
Rh(I)-catalyzed carbocylization reactions to produce
trienones. Selective reactions of the double bonds of the
trienones were briefly investigated and also reported on.

Allene-ynones 3a–j7 were conveniently prepared by addi-
tion of the corresponding lithium acetylides 2a–j to amide
1 (Scheme 1). Compound 3k, possessing a terminal
alkynone, was obtained by removal of the TMS group
from 3e.7c Subjecting allene-ynone 3e to the standard re-
action protocol developed in our group for the Rh(I)-cata-
lyzed cycloisomerization reaction {10 mol%
[Rh(CO)2Cl]2, r.t.} afforded a 10% yield of 4e. Reasoning
that alkynone 3e was either more reactive and/or trienone
4e less stable, the reaction was performed at 0 °C using
only 3 mol% of catalyst.8 To our delight, trienone 4e was
obtained in 95% yield after only five minutes at 0 °C (en-
try 5, Table 1).

Scheme 1 Formation of allenyl alkynones 3a–k

Next, the scope and limitations of this reaction were ex-
amined by varying the substituents on the alkyne. These
variations had a significant impact on the rate and yields
of these cycloisomerization reactions. For example, if
R1 = Me (3a) or a TBS-protected propanol 3b, conversion
to 4a or 4b required 90 minutes (entries 1 and 2, Table 1).
Interestingly, shortening the tether between the protected
alcohol and the alkyne from three to two methylene units
dramatically reduces the reaction time to ca. 20 minutes
(entries 3 and 4, Table 1).9 Alternatively, placing an aro-
matic ring on the alkyne terminus slows the reaction, re-
quiring that substrate 3g be heated to 50 °C and 8 mol%
of Rh(I) catalyst to effect the formation of trienone 4g. An
electron-withdrawing or electron-donating group on the
para-position of the aryl ring had a negligible effect on
this reaction; since each of these reactions occurred within
five minutes and the corresponding products were ob-
tained in similar yields (entries 7–9). An ethoxy group on
the alkyne terminus furnished a product that quickly de-
composed before it could be characterized (entry 10,
Table 1). Terminal alkynes were not tolerated under the
reaction conditions since complete decomposition was
observed immediately upon addition of the Rh(I) catalyst
(entry 11).10,11

Interestingly, the reaction of 3f, possessing a cyclohexe-
nyl group on the alkyne terminus, affords the tricyclic
compound 7 in 29% yield.12 The proposed reaction path-
way to account for the formation of 7 involves a carbocy-
clization of allene 3f to give trienone 5, then an
electrocyclization leading to 6 and an oxidative aromati-
zation reaction to give 7 (Scheme 2).
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Encouraged by the results in Table 1, the formation of
2-alkylidene-3-vinylcyclopentenones was investigated.
Construction of the corresponding allene-ynones was car-
ried out by the addition of alkynyl magnesium bromides
to allenic aldehydes 8a–c and subsequent oxidation of the
alcohols to afford 9a–g (equation 1, Scheme 3).13 Alter-
natively, allenic oxazolidiones14 10a–c were reacted with
methylmethoxylamine to afford the allenic Weinreb
amide intermediate, and without purification, the amide
was then transformed into the allene-ynones 11a–f by ad-
dition of the corresponding Grignard reagents15 to afford
cyclization precursors possessing an unsymmetrically
substituted quaternary carbon and a benzamide group
(equation 2, Scheme 3).16 For each of these substrates, the
quaternary carbon between the carbonyl and allene pre-

vented isomerization of the 1,2-diene of the allene to a
1,3-diene during the preparation of these substrates.

The [Rh(CO)2Cl]2-catalyzed cycloisomerization reactions
of 9a–g and 11a–f proceed smoothly at room temperature
to afford the cyclopentenones 12a–m (Table 2). These
trienones were found to be stable on the bench top for sev-
eral months.17 Interestingly, the carbocyclization reaction
was tolerant of coordinating heteroatoms, evidenced by
obtaining 12d in 50% yield (entry 4, Table 2); and the
methoxymethyl ether 12k in 53% yield (entry 11,
Table 2). Terminal alkynes are compatible with the reac-
tion conditions evidenced by the isolation of 12f and 12i
in 61% and 83% yield, respectively.18 A control experi-
ment was performed where allene-ynones 11b and 11c
were simply heated (no catalyst) in toluene at 100 °C for
one hour; trienones 12b and 12c were afforded in 63% and
68% yield, respectively. However, the products were con-
taminated with trace quantities of inseparable impurities.
Heating 9a in toluene at 100 °C afforded an unidentified
isomerization product in 71% yield. Based upon these re-
sults, the Rh(I)-catalyzed conditions were deemed more
reliable.

The highly functionalized cyclopentenones 12h–m serve
as ideal candidates for accessing compounds possessing
other interesting arrays of functionality. For example, re-
action of 12h with N-phenyl maleimide in toluene at
80 °C affords the Diels–Alder adduct 13 in 54% yield as
a single diastereomer (Scheme 4).19,20 The ketone func-
tionality prevents the newly formed 1,3-diene in 13 from

Table 1 Formation of 2-Alkylidene-3-cyclohexenones

Entry Reaction R1 Time (min) Yield (%)

1 3a → 4a Me 90 75

2 3b → 4b (CH2)3OTBS 90 80

3 3c → 4c (CH2)2OTBS 20 88

4 3d → 4d (CH2)2OTHP 15 93

5a 3e → 4e TMS 5 95

6b 3f → 4f cyclohexenyl – –

7c 3g → 4g Ph 5 81

8c 3h → 4h 4-MeOAr 5 77

9c 3i → 4i 4-CF3Ar 5 79

10d 3j → 4j OEt 45 –

11e 3k → 4k H – –

a Reaction performed at 0 °C.
b See the discussion below and Scheme 2.
c Reaction performed at 50 °C using 8 mol% catalyst.
d Obtained an unstable compound that could not be characterized.
e Immediate decomposition of starting material.
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undergoing a second Diels–Alder reaction with the same
dienophile.

Furthermore, a selective cyclopropanation reaction of the
vinyl group of trienone 12e occurs when reacted with di-
ethyl 4-diazo-2-pentenedioate and rhodium acetate

(Scheme 5).21 The corresponding cis-
divinylcyclopropane22 undergoes a Cope rearrangement
to provide 14 which is subsequently reacted with maleic
anhydride in toluene at 80 °C to afford the Diels–Alder
adduct 15 as a single diastereomer in 60% yield. The ste-
reochemistry of 15 has been assigned by X-ray crystallo-
graphic analysis of a related compound and this
information will be published in its entirety in the future.

In summary, a Rh(I)-catalyzed allenic cycloisomerization
reaction of alkynones affords 2-alkylidene-3-vinyl-3-cy-
clopentenones and 2-alkylidene-3-vinyl-3-cyclohex-
enones. This scope and limitations study demonstrate that
the reactions conditions are compatible with amides,
ethers, and terminal alkynes; and that the highly unsatur-
ated products are stable and undergo selective cycloaddi-
tion and cycloisomerization reactions. Further research on
these functionally rich trienones will be reported in due
course.
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by bubbling argon through the stirred solution for 20 min). 
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mol%} was then added and the reaction progress was 
monitored by TLC. Upon completion of the reaction, the 
mixture was diluted with a 10% EtOAc–hexanes solution 
and filtered through a pad of silica gel, further eluting with 
10% EtOAc–hexanes solution. The resultant yellow solution 
was concentrated under vacuum to yield the products as 
yellow oils without further purification.
Data for 4e: 1H NMR (300 MHz, CDCl3): d = 6.27 (dd, 
J = 11.3, 17.7 Hz, 1 H), 6.01 (s, 1 H), 5.45 (dd, J = 2.1, 11.3 
Hz, 1 H), 5.15 (dd, J = 2.1, 17.7 Hz, 1 H), 2.61–2.51 (m, 4 
H), 1.95 (s, 3 H), 0.13 (s, 9 H). 13C NMR (75 MHz, CDCl3): 
d = 200.6, 145.6, 139.1, 135.3, 134.0, 133.7, 119.8, 37.8, 
30.8, 21.8, –0.2. IR (thin film): n = 2945, 1701, 1542, 1245, 
856 cm–1. MS: m/z (%) = 220 (1) [M+], 205 (40), 75 (13). 
HRMS (EI): m/z calcd for C13H20OSi [M+]: 220.1283; 
found: 220.1281.
Data for 4h: 1H NMR (300 MHz, CDCl3): d = 7.44 (d, 
J = 8.7 Hz, 2 H), 6.83 (d, J = 8.8 Hz, 2 H), 6.61(s, 1 H), 6.34 
(dd, J = 11.2, 17.7, 1 H), 5.49 (dd, J = 2.1, 11.2 Hz, 1 H), 
5.27 (dd, J = 2.1, 17.8 Hz, 1 H), 3.81 (s, 3 H), 2.71–2.59 (m, 
4 H), 1.94 (s, 3 H). 13C NMR (75 MHz, CDCl3): d = 202.6, 
159.5, 133.7, 133.6, 132.7, 132.5, 131.3, 128.4, 119.7, 
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mmol), [Rh(CO2)Cl]2 (1.6 mg, 0.004 mmol, 5 mol%), 
purification by silica gel column chromatography eluting 
with 2% EtOAc–hexanes (column pretreated with a 1% 
solution of Et3N in hexanes) to afford 7 as a green solid (9 
mg, 29%). 1H NMR (300 MHz, CDCl3): d = 6.85 (d, J = 8.1 
Hz, 1 H), 6.63 (dd, J = 11.4, 17.8 Hz, 1 H), 6.56 (d, J = 8.1 
Hz, 1 H), 6.39 (s, 1 H), 5.58 (dd, J = 2.0, 11.4 Hz, 1 H), 5.23 
(dd, J = 2.0, 17.8 Hz, 1 H), 4.86 (dd, J = 5.7, 10.9 Hz, 1 H), 
2.60–1.19 (m, 8 H), 2.18 (s, 3 H). 13C NMR (75 MHz, 
CDCl3): d = 151.3, 137.5, 134.4, 133.7, 128.8, 127.8, 120.4, 
119.1, 114.9, 113.5, 76.1, 34.7, 33.2, 26.5, 24.2, 19.8. IR 
(thin film): n = 3078, 3058, 2932, 2857, 1582, 1468, 1235, 
1041, 811 cm–1. MS: m/z (%) = 226 (100) [M+], 225 (90), 
223 (82), 198 (61), 197 (60), 145 (43), 128 (44), 115 (60). 
HRMS (EI): m/z calcd for C16H18O [M+]: 226.1358; found: 
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(13) Preparation of Allenyl Alkynone 9e
A flame-dried 100 mL round-bottomed flask was charged 
with 2,2-diethylhexa-3,4-dienal (8b, 1.52 g, 10.0 mmol) and 
THF (40 mL). After cooling to 0 °C, 1-propynylmagnesium 
bromide (24 mL, 0.5 M in THF, 12 mmol) was slowly added 
via syringe and the mixture was stirred at 0 °C for 2 h. The 
reaction mixture was quenched with sat. NH4Cl (20 mL). 
The mixture was partitioned between Et2O (30 mL) and H2O 
(30 mL). The layers were separated and the aqueous phase 
was extracted with Et2O (2 × 30 mL). The combined organic 
layers were washed with brine, dried over MgSO4, and 
concentrated under reduced pressure to afford a light yellow 
oil (1.65 g). A portion of the oil (452 mg) was transferred 
into a 50 mL round-bottomed flask fitted with a Teflon-
coated stirring bar and dissolved in acetone (20 mL). After 
cooling to 0 °C, freshly prepared Jones reagent was added 
dropwise via a pipette until an orange color persisted. The 
reaction mixture was then poured into Et2O (20 mL) and 
H2O (10 mL). The layers were separated and the aqueous 
phase was extracted with Et2O (2 × 20 mL). The combined 
organic layers were washed with brine, dried over MgSO4, 
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and concentrated under reduced pressure. Purification of the 
yellow oil by flash chromatography (10% EtOAc–hexanes) 
afforded the title compound 9e (425 mg, 79%) as a light 
yellow oil. 1H NMR (300 MHz, CDCl3): d = 5.28–5.19 (m, 
2 H), 2.04 (s, 3 H), 1.78–1.70 (m, 4 H),1.68 (dd, J = 6.6, 3.6 
Hz, 3 H), 0.83 (t, J = 7.4 Hz, 3 H), 0.82 (t, J = 7.4 Hz, 3 H). 
13C NMR (75 MHz, CDCl3): d = 205.1, 191.4, 92.4, 90.6, 
88.2, 78.8, 56.5, 27.5, 14.1, 8.5, 4.1. IR (thin film): n = 2968, 
2938, 2218, 1963, 1666 cm–1. MS: m/z (%) = 190 (15) [M+], 
175 (28), 161 (95), 147 (65), 81 (100). HRMS: m/z calcd for 
C13H18O [M+]: 190.1357; found: 190.1358.
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(15) Tice, C. M.; Hormann, R. E.; Thompson, C. S.; Friz, J. L.; 
Cavanaugh, C. K.; Michelotti, E. L.; Garcia, J.; Nicolas, E.; 
Albericio, F. Bioorg. Med. Chem. Lett. 2003, 13, 475.

(16) Preparation of Allenyl Alkynone 11b
A flame-dried 25 mL round-bottomed flask was charged 
with N-[2-(N-methoxy-N-methylcarbamoyl)hexa-3,4-dien-
2-yl]benzamide (268 mg, 0.93 mmol) and THF (15 mL). 
After cooling to 0 °C, 1-propynylmagnesium bromide (4.4 
mL, 0.5 M in THF, 2.2 mmol) was slowly added via syringe 
and the mixture was stirred at 0 °C for 3 h. The reaction 
mixture was quenched with sat. NH4Cl (10 mL). The 
mixture was partitioned between Et2O (15 mL) and H2O (15 
mL). The layers were separated and the aqueous phase was 
extracted with Et2O (2 × 15 mL). The combined organic 
layers were washed with brine, dried over MgSO4, and 
concentrated under reduced pressure to afford a white solid. 
The solid was purified via silica gel column chromatography 
(50% EtOAc–hexanes) to give the title compound 11b (242 
mg, 97%) as a white solid. 1H NMR (300 MHz, CDCl3): d = 
7.81–7.78 (m, 2 H), 7.54–7.41 (m, 3  H), 7.21 (br s, 0.3 H),* 
7.11 (br s, 0.7 H), 5.24 (p, J = 7.1 Hz, 1 H), 5.40–5.32 (m, 1 
H), 2.02 (s, 1 H),* 1.99 (s, 2 H), 1.81 (s, 1 H),* 1.78 (s, 2 H), 
1.74 (dd, J = 7.0, 3.2 Hz, 2 H), 1.72 (dd, J = 7.0, 3.2 Hz, 1 
H)*. 13C NMR (75 MHz, CDCl3): d = 204.4, 204.2,* 185.9, 
166.6, 165.3,* 134.7, 134.6,* 131.8, 131.7,* 128.8, 127.1, 
93.8,* 93.6, 93.5,* 93.0, 91.9, 91.7,* 77.4,* 77.3, 63.7,* 
63.5, 21.9, 14.1,* 14.0, 4.50,* 4.42. IR (thin film): n = 3280, 
2211, 1966, 1688, 1627 cm–1. MS: m/z (%) = 267 (10) [M+], 
253 (28), 105 (100), 77 (65). HRMS: m/z calcd for 
C17H17NO2 [M

+]: 267.1259; found: 267.1263. *Denotes the 
minor diastereomer.

(17) With the exception of 12b, which had to be stored in benzene 
at –20 °C, the only literature report on the formation of five-
membered cross-conjugated triene stressed product 
instability. For details, see: Yamazaki, T.; Urabe, H.; Sato, F. 
Tetrahedron Lett. 1998, 39, 7333.

(18) General Procedure for the Preparation of Trienones 12
A flame-dried test tube equipped with a Teflon-coated stir 
bar was charged with allene-ynone 9 or 11 (1.0 mmol, 1 
equiv) and toluene (10 mL) under an atmosphere of N2. After 
adding [Rh(CO)2Cl]2 (0.05 mmol, 0.05 equiv), the reaction 
mixture was stirred at r.t. until complete consumption of 
starting material (as observed by TLC). The solution was 
concentrated under reduced pressure and the residue was 
purified via silica gel column chromatography (10% 
EtOAc–hexanes) to afford trienone 12.
Data for 12a: 1H NMR (300 MHz, CDCl3): d = 6.44 (dd, 
J = 17.6, 11.1 Hz, 1 H), 6.16 (t, J = 7.4 Hz, 1 H), 6.12 (s, 1 
H), 5.62 (dd, J = 17.6, 1.6 Hz, 1 H), 5.28 (dd, J = 11.1 1.6 
Hz, 1 H), 2.78 (q, J = 7.5 Hz, 2 H), 1.45–1.36 (m, 4 H), 1.12 
(s, 6 H), 0.92 (t, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, 
CDCl3): d = 210.8, 139.5, 137.5, 136.2, 134.9, 129.8, 116.8, 

48.3, 31.7, 27.2, 23.6, 22.5, 13.9. IR (thin film): n = 2959, 
2932, 2871, 1708 cm–1. MS: m/z (%) = 204 (43) [M+], 189 
(15), 175 (25), 119 (88), 91 (100). HRMS: m/z calcd for 
C14H20O [M+]: 204.1514; found: 204.1514.
Data for 12c: 1H NMR (300 MHz, CDCl3): d = 7.94 (dd, 
J = 7.8, 2.1 Hz, 2 H), 7.43–7.32 (m, 3 H), 6.85 (s, 1 H), 6.56 
(ddd, J = 17.4, 11.1, 1.2 Hz, 1 H), 6.29 (s, 1 H), 5.74 (dd, 
J = 17.4, 1.5 Hz, 1 H), 5.38 (dd, J = 11.1, 1.5 Hz, 1 H), 1.20 
(s, 6 H). 13C NMR (75 MHz, CDCl3): d = 208.6, 141.7, 
137.8, 135.2, 134.8, 133.0, 131.1, 130.5, 130.0, 129.6, 
128.2, 117.9, 48.6, 24.0. IR (thin film): n = 2942, 1708 
cm–1. MS: m/z (%) = 224 (40) [M+], 196 (50), 181 (65), 129 
(100). HRMS (EI): m/z calcd for C16H16O [M+]: 224.1201; 
found: 224.1198.
Data for 12e: 1H NMR (300 MHz, CDCl3): d = 6.44 (ddd, 
J = 17.6, 11.2, 0.9 Hz, 1 H), 6.19 (dq, J = 7.6, 0.7 Hz, 1 H), 
6.04 (s, 1 H), 5.63 (dd, J = 17.6, 1.6 Hz, 1 H), 5.27 (dd, 
J = 11.2, 1.6 Hz, 1 H), 2.25 (dd, J = 7.6, 0.7 Hz, 3 H), 1.66 
(dq, J = 13.6, 7.5 Hz, 2 H), 1.50 (dq, J = 13.6, 7.5 Hz, 2 H), 
0.74 (t, J = 7.5 Hz, 6 H). 13C NMR (75 MHz, CDCl3): d = 
212.1, 142.4, 137.9, 133.2, 130.5, 129.9, 116.7, 57.3, 29.6, 
14.1, 9.3. IR (thin film): n = 2963, 2929, 1720 cm–1. MS: 
m/z (%) = 190 (54) [M+], 161 (80), 133 (86), 84 (100). 
HRMS (EI): m/z calcd for C13H18O [M+]: 190.1357; found: 
190.1355.

(19) The stereochemistry has been assigned based upon X-ray 
crystal data of a similar compound. This information will be 
published in the near future.

(20) Preparation of N-{(1Z,3aS,8S,8aR,8bR)-6-Ethylidene-
1,2,3,3a,4,6,7,8,8a,8b-decahydro-8-methyl-1,3,7-trioxo-
2-phenylcyclopenta[e]isoindol-8-yl}benzamide (13)
A flame-dried test tube equipped with a Teflon-coated 
stirring bar was charged with N-[(13Z)-4-ethylidene-1-
methyl-5-oxo-3-vinylcyclopent-2-enyl]benzamide (12h, 
100 mg, 0.37 mmol) and 1-phenyl-1H-pyrrole-2,5-dione (68 
mg, 0.39 mmol). After adding toluene (4 mL), the test tube 
was placed into a preheated 80 °C oil bath until complete 
consumption of starting materials (as observed by TLC). The 
solution was directly purified via silica gel column 
chromatography (50% EtOAc–hexanes) to afford the title 
compound 13 (87.4 mg, 54%). 1H NMR (300 MHz, CDCl3): 
d = 7.89–7.85 (m, 2 H), 7.54–7.30 (m, 7 H), 7.06–7.03 (m, 2 
H), 6.70 (q, J = 7.6 Hz, 1 H), 6.19–6.11 (m, 1 H), 3.58 (dd, 
J = 8.3, 4.3 Hz, 1 H), 3.40 (t, J = 8.3 Hz, 1 H), 3.26–3.22 (m, 
1 H), 2.92 (dd, J = 7.5 and 1.0 Hz, 1 H), 2.57–2.47 (m, 1 H), 
2.30 (d, J = 7.6 Hz, 3 H), 1.74 (s, 3 H). 13C NMR (75 MHz, 
CD2Cl2): d = 204.1, 178.7, 177.5, 167.3, 140.5, 137.1, 135.1, 
132.3, 131.9, 131.1, 129.3, 128.9, 128.6, 127.4, 126.9, 
116.8, 63.3, 46.4, 43.6, 41.7, 27.0, 25.9, 15.1. IR (thin film): 
n = 3425, 2975, 1773, 1708, 1654, 1522 cm–1. MS: m/z 
(%) = 441 (100) [M+ + 1], 308 (38). HRMS (EI): m/z calcd 
for C27H25N2O4 [M

+]: 441.1814; found: 441.1812.
(21) Davies, H. M. L.; Walji, A. M. Rhodium(II)-Stabilized 

Carbenoids Containing Both Donor and Acceptor 
Substituents, In Modern Rhodium Catalyzed Organic 
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005, 
301.

(22) Preparation of Adduct 15
To a refluxing solution of (5Z)-2,2-diethyl-5-ethylidene-4-
vinylcyclopent-3-enone (12e, 28 mg, 0.15 mmol) and 
Rh(OAc)2 (3.3 mg, 0.0075 mmol) in CH2Cl2 (1.5 mL) was 
added a CH2Cl2 (1 mL) solution of diethyl 4-diazo-2-
pentenedioate (48 mg, 0.23 mmol) over 10 min under argon. 
After 30 min, TLC showed complete consumption of 12e. 
The solvent was removed and the crude mixture was purified 
via silica gel flash chromatography (10% EtOAc–hexanes) 
to give 14 (26 mg, 47%) together with the trans-
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divinylcyclopropane (cis/trans = 7:1). A test tube was 
charged with 14 (19 mg, 0.051 mmol) and maleic anhydride 
(7.5 mg, 0.077 mmol) and purged with N2 for 5 min. Toluene 
(0.8 mL) was added and the test tube was placed into a 
preheated oil bath (80 °C). After 3 h, the reaction mixture 
was cooled to r.t. and directly applied to silica gel flash 
chromatography (35% EtOAc–hexanes) to give 15 (14 mg, 
60%) as a single diastereomer. 1H NMR (300 MHz, CDCl3): 
d = 7.04 (dd, J = 7.2, 2.1 Hz, 1 H), 4.30–4.22 (m, 2 H), 4.12–
4.00 (m, 2 H), 3.81 (dd, J = 7.1, 2.8 Hz, 1 H), 3.60–3.57 (m, 
1 H), 3.51 (q, J = 7.3 Hz, 1 H), 3.29–3.25 (m, 2 H), 3.12 (t, 

J = 2.7 Hz, 1 H), 2.94–2.88 (m, 1 H), 1.69–1.62 (m, 2 H), 
1.54–1.52 (m, 1 H), 1.48 (q, J = 7.4 Hz, 4 H), 1.39–1.27 (m, 
2 H), 1.34 (t, J = 7.1 Hz, 3 H), 1.01 (t, J = 7.4 Hz, 3 H), 0.91–
0.84 (m, 2 H), 0.73 (t, J = 7.4 Hz, 3 H). 13C NMR (75 MHz, 
CDCl3): d = 208.1, 171.0, 170.8, 170.6, 170.2, 167.4, 137.5, 
136.6, 134.9, 61.9, 53.3, 49.8, 46.9, 46.3, 45.2, 36.7, 31.8, 
29.6, 27.7, 27.4, 22.9, 21.8, 14.7, 14.5, 14.1, 8.8, 8.6. IR (thin 
film): n = 2969, 2937, 1781, 1699, 1461 cm–1. MS: m/z 
(%) = 472 (100) [M+], 426 (71), 398 (84). HRMS (EI): m/z 
calcd for C26H32O8 [M

+]: 472.2097; found: 472.2101.
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