FULL PAPER

Synthesis and Reactivity of Alkynyl-Linked Phosphonium Borates

Xiaoxi Zhao, Alan J. Lough, and Douglas W. Stephan^{*[a]}

 $[(C_6F_5)_2BC\equiv CP(H)Mes_2]$ (12). Reac-

product

zwitterionic

 $(C_6F_5)_2(H)BC(H)=C[P(H)Mes_2]$ -

the

Abstract: The phosphine $tBu_2PC \equiv CH$ (1) was reacted with $B(C_6F_5)$ to give the zwitterionic species $tBu_2P(H)C \equiv$ $CB(C_6F_5)_3$ **(2)**. The analogous species $tBu_2P(Me)C \equiv CB(C_6F_5)_3$ (3), $tBu_2P(H)C \equiv CB(Cl)(C_6F_5)_2$ (4), $tBu_2P(H)C \equiv CB(H)(C_6F_5)_2$ (5), and $tBu_2P(Me)C \equiv CB(H)(C_6F_5)_2$ (6) were also prepared. The salt $[tBu_2P(H)C \equiv$ $CB(C_6F_5)_2(THF)][B(C_6F_5)_4]$ (7) was prepared through abstraction of hydride by $[Ph_3C][B(C_6F_5)_4]$. Species 5 reacted with the imine tBuN=CHPh to give the borane–amine adduct $tBu_2PC\equiv$ $CB[tBuN(H)CH_2Ph](C_6F_5)_2$ (8). The related phosphine Mes₂PC=CH (9; $Mes = C_6H_2Me_3$) was used to prepare $[tBu_3PH][Mes_2PC \equiv CB(C_6F_5)_3]$ (10) and $Mes_2PC \equiv CB(C_6F_5)_2$. generate The adduct $Mes_2PC \equiv CB(NCMe)(C_6F_5)_2$ isolated. Reaction of (11) was $Mes_2PC \equiv CB(C_6F_5)_2$ with H_2 gave

tion of $tBu_2PC \equiv CB(C_6F_5)_2$, a phosphine-borane generated in situ from **5**, with 1-hexene gave the species $[tBu_2PC \equiv CB(C_6F_5)_2](CH_2CHnBu)$ - $[tBu_2PC \equiv CB(C_6F_5)_2](13)$ and subsequent reaction with methanol or hexene resulted in the formation of $[tBu_2P(H)C \equiv CB(C_6F_5)_2]$ - $(CH_2CHnBu)[tBu_2PC \equiv CB(C_6F_5)_2]$ - $(CH_2CHnBu)[tBu_2PC \equiv CB(C_6F_5)_2]$ -(OMe) (14) or the macrocycle $\{[tBu_2PC \equiv CB(C_6F_5)_2](CH_2CH_2nBu)\}_2$ (15), respectively. In a related fashion, the reaction of 13 with THF afforded the macrocycle $[tBu_2PC \equiv CB(C_6F_5)_2]$ -

Keywords: boranes • borates • frustrated Lewis pairs • phosphanes • phosphonium borates • zwitterions $(CH_2CHnBu)[tBu_2PC\equiv CB(C_6F_5)_2][O (CH_2)_4$ (16), although treatment of $tBu_2PC \equiv CB(C_6F_5)_2$ with THF lead to the formation of $\{[tBu_2PC \equiv CB(C_6F_5)_2]\}$ $[O(CH_2)_4]_2$ (17). In a related example, the reaction of $Mes_2PC \equiv CB(C_6F_5)_2$ with PhC=CH gave {[Mes2PC=CB- $(C_6F_5)_2$ (CH=CPh) $_2$ (18). Compound 5 reacted with AlX_3 (X=Cl, Br) to give addition to the alkynyl unit, affording $(C_6F_5)_2BC(H)=C[P(H)tBu_2](AlX_3)$ (X = Cl 19, Br 20). In a similar fashion, 5 reacted with $[Zn(C_6F_5)_2] \cdot C_7H_8$, [Al- $(C_6F_5)_3]$ ·C₇H₈, or HB(C₆F₅)₂ to give $(C_6F_5)_3BC(H)=C[P(H)tBu_2][Zn(C_6F_5)]$ $(C_6F_5)_3BC(H)=C[P(H)tBu_2][Al-$ (21), $(C_6F_5)_2$] (22), or $[(C_6F_5)_2B]_2HC=$ $CH[P(H)tBu_2]$ (23), respectively. The implications of this reactivity are discussed.

Introduction

Interest in the chemistry of zwitterionic phosphonium borates garnered particular attention in 2006 with the finding species $Mes_2P(H)C_6F_4B(H)(C_6F_5)_2$ (Mes =that the C₆H₂Me₃) reversibly liberates and takes up H₂.^[1] This unprecedented heterolytic cleavage of H₂ by a metal-free maingroup system was attributed to the cooperative action of unquenched Lewis acidity and basicity on H₂. The inability of these systems to form conventional Lewis acid-base adducts results from steric congestion. Based on this observation, subsequent findings have led to the development of effective metal-free catalysts for the hydrogenation of imines,^[2-8] aziridines, and protected nitriles.^[2,3] Related alkyl-linked zwitterions, such as $Mes_2P(H)C_2H_4B(H)(C_6F_5)_2$, have also been discovered and shown to catalyze the hydrogenation of enamines,^[4,9] silvlenol ethers,^[6] and selected N heterocycles.^[10] In addition, new synthetic routes to such zwitterionic derivatives have been developed from the reactions of sterically encumbered 'frustrated Lewis pairs' (FLPs) with a variety of small molecules including olefins,^[11-14] alkynes,^[15-19] CO_2 ,^[20-22] and N₂O.^[23,24] In the case of the reactions of FLPs with alkynes, we have shown that a variety of Lewis bases, including phosphines,^[15,17] polyphosphines,^[16] amines, thioethers,^[18] and pyrroles,^[19] will effect addition reactions to give alkenyl-linked zwitterionic products.

In general, alkynyl-linked zwitterions have drawn less attention, although Uhl and co-workers have recently shown that alkynylphosphines react with alanes to give unusual cyclic phosphonium aluminates.^[25] To explore the reactivity of alkynyl-linked zwitterionic phosphonium borates, we have recently begun an investigation of the chemistry of the alkynyl zwitterion $tBu_2P(H)C \equiv CB(H)(C_6F_5)_2$. Interestingly, this species reacts with a Ni⁰ source with loss of H₂ to generate a Ni-alkyne complex in which B bends towards the Ni, giving rise to an unusual Ni-B interaction (Scheme 1).^[26] We have also shown that a related zwitterion undergoes thermal rearrangement to give a unique cumulene derivative, $(tBu_2P)C_6F_4B(F)(C_6F_5)C_4(C_6F_5)_2B(CH_2CHnBu)(PtBu_2)$ (Scheme 1).^[27] Herein, we describe an exploration of the generation and reactions of $R_2PC \equiv CB(C_6F_5)_2$ compounds. These "push-pull" alkynyl-linked phosphine boranes are

Chem. Eur. J. 2011, 17, 6731-6743

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WILEY CONLINE LIBRARY

- 6731

 [[]a] X. Zhao, Dr. A. J. Lough, Prof. Dr. D. W. Stephan Department of Chemistry, University of Toronto 80 St. George St., Toronto, Ontario, M5S 3H6 (Canada) Fax: (+1)416-978-7551 E-mail: dstephan@chem.utoronto.ca

Scheme 1. Reactions of alkynylphosphonium borates. COD = 1,5-cyclooctadiene.

shown to behave as FLPs, affording unique routes to macrocyclic dizwitterions. In addition, $tBu_2P(H)C \equiv CB(H)(C_6F_5)_2$ gives interesting Lewis acid addition products. The nature of the products is described and the implications are discussed.

Results and Discussion

Synthesis of alkynylphosphonium borates: The phosphine $tBu_2PC \equiv CH$ (1) was prepared by using a modified literature method^[28] and was then reacted with $B(C_6F_5)_3$ in toluene. The workup gave off-white product 2 in 88% yield. The ¹H and ³¹P{¹H} NMR spectral data for 2 revealed a resonance attributable to a PH fragment and the P chemical shift was consistent with a phosphonium cation. The ${}^{11}B{}^{1}H$ NMR chemical shift of 2 at -21.4 ppm was consistent with the presence of a borate fragment. The ¹⁹F NMR spectrum of 2 showed resonances consistent with the C₆F₅ rings. These data, together with mass spectrometry data and elemental analyses, support the formula of 2 being the zwitterionic species tBu₂P(H)C=CB(C₆F₅)₃ (Scheme 2). An X-ray crystallographic study of 2 confirmed this formulation (Figure 1 a) with a central C–C bond of 1.217(4) Å and PC=C and C=CB angles of 171.2(2) and 174.9(3)°, respectively. Subsequent reaction of 2 with MeLi, followed by treatment with MeI gave **3** in 58% yield. The ${}^{31}P{}^{1}H$ NMR chemical shift at 32.8 ppm and the ¹H NMR doublet for PCH₃ at 1.71 ppm are consistent with the structure of 3 being $tBu_2P(Me)C \equiv CB(C_6F_5)_3$. This was also confirmed crystallographically (Figure 1b).

In an analogous fashion, the reaction of **1** with $ClB(C_6F_5)_2$ proceeds easily at -35 °C to give the new off-white product **4** in 72% isolated yield. Similar to **2**, compound **4** exhibits a ¹H NMR doublet resonance at 5.80 ppm, with a P–H coupling constant of 469 Hz, which is indicative of the presence of a PH phosphonium fragment. Compound **4** also exhibits

Scheme 2. Synthesis of 1-8.

Figure 1. POV-ray depictions of a) 2 and b) 3.

a ¹¹B{¹H} NMR signal at -12.8 ppm, consistent with the presence of a borate unit. The ³¹P{¹H} NMR spectrum also gives a signal at 25.5 ppm, shifted downfield from the resonance of the alkynylphosphine (Scheme 2). Collectively these data infer that the formula of **4** is $tBu_2P(H)C\equiv CB(Cl)-(C_6F_5)_2$. This formula was subsequently confirmed by X-ray crystallography, following isolation of suitable crystals from CH₂Cl₂/pentane (Figure 2a). The metric parameters of **4** were similar to those in **2** and **3**, with a B–Cl bond length of 1.911(4) Å.

Figure 2. POV-ray depictions of a) 4 and b) 5.

Treatment of 4 with excess Me₂SiHCl results in exchange of the B-bound chloride for hydride, generating a B-H unit and Me₂SiCl₂. The resulting off-white product 5 was isolated in 79% yield (Scheme 2). The NMR data confirm the replacement of chloride by hydride, as shown by the observation of a 1:1:1:1 quartet at 3.25 ppm with a B-H coupling constant of 91 Hz, and the ¹¹B{¹H} NMR resonance shifts to -29.2 ppm. One of the acetylenic carbon atoms is observed in the ¹³C NMR spectrum at 64.4 ppm with a ${}^{1}J_{CP}$ of 158 Hz. The resonance for the B-bound acetylenic carbon was not observed, presumably due to quadrupolar broadening arising from the adjacent B center. Nonetheless, infrared data revealed an absorption at 2125 cm⁻¹, in accord with the presence of the acetylenic unit. The proposed connectivity for 5, $tBu_2P(H)C \equiv CB(H)(C_6F_5)_2$, was confirmed through X-ray crystallography (Figure 2b), which showed the metric parameters and geometry to be unexceptional. Interestingly, viewing the molecule along the PC=CB vector in the solid state, it is noted that the substituents on B and P are eclipsed, with the BH and PH groups occupying the same plane.

In a procedure similar to that used to prepare **3**, deprotonation of **5** with MeLi and subsequent treatment with MeI afforded $tBu_2P(Me)C\equiv CB(H)(C_6F_5)_2$ (**6**) in 84% yield. This formulation is consistent with the ¹H NMR resonances at 1.72 ppm and 3.20 ppm, arising from the P-bound methyl group and the preserved B–H fragment, respectively. In a related reaction of **5**, treatment with [Ph₃C][B(C₆F₅)₂] (BC(C₆F₅)₄], which was not stable enough to be isolated in pure form. Instead, it was isolated as THF adduct **7** in 77% yield. The

FULL PAPER

two ¹¹B{¹H} NMR signals at -3.2 and -16.6 ppm correspond to B bound to THF and the $[B(C_6F_5)_4]$ anion, respectively, inferring abstraction of hydride to form the alkynylphosphonium borate cation. These data, together with other NMR spectra, are consistent with **7** being $[tBu_2P(H)C\equiv CB(C_6F_5)_2-(THF)][B(C_6F_5)_4]$ (Scheme 2).

Species **5** also reacts with the imine *t*BuN=CHPh in 2 h at 25 °C to give colorless crystals of **8** in 57% yield. The ¹H NMR data infer the loss of the signals arising from both the PH and BH groups and the generation of new resonances at 5.10 and 3.75 ppm, attributable to the NH and CH₂ groups in the amine *t*BuN(H)CH₂Ph. The ³¹P{¹H} NMR resonance at 18.6 ppm suggests a phosphine fragment and the ¹¹B{¹H} NMR spectrum shows a broad signal at -9.6 ppm. Together with the ¹⁹F NMR spectrum, these data infer the formation of the borane–amine adduct *t*Bu₂PC=CB-[*t*BuN(H)CH₂Ph](C₆F₅)₂ (**8**; Scheme 2). This was subsequently confirmed by an X-ray crystal structure (Figure 3).

Figure 3. POV-ray depiction of 8.

The formation of **8** results from proton and hydride transfer to the imine. Although imine reductions have previously been shown to be catalytic with aryl- and alkyl-linked phosphonium borates,^[2,29] efforts to utilize **5** as a catalyst to effect the hydrogenation of the imine *t*BuN=CHPh under an H₂ atmosphere at 80 °C were unsuccessful. This was attributed to the inherent reactivity of the polarized alkyne unit in **5**, as these reactions afforded a complex mixture of unidentified degradation products. It is noteworthy that alkynylboranes with strongly electron-withdrawing substituents on B have been reported to be unstable at room temperature and/or in the solid state.^[30,31]

To probe the impact of substituent variation, the phosphine Mes₂PC=CH (9) was prepared by employing a procedure analogous to that used to synthesize 1. Phosphine 9 was isolated as colorless crystals in 45 % yield. The acetylenic proton gave rise to a ¹H NMR resonance at 2.65 ppm and the ³¹P{¹H} NMR resonance was observed at -54.5 ppm. Compound 9 was also characterized crystallographically (see the Supporting Information), confirming the incorporation of the alkynyl fragment. The reaction of 9 with B(C₆F₅)₃ and PtBu₃ gave crystalline product 10 in 87 % yield. This species gave rise to ³¹P{¹H} NMR resonances at 61.4 and -52.9 ppm, with a ¹¹B{¹H} NMR signal at -20.9 ppm, consistent with the presence of a borate unit and supporting the structure of

10 being the salt $[tBu_3PH][Mes_2PC \equiv CB(C_6F_5)_3]$. This was unambiguously confirmed crystallographically (Scheme 3, Figure 4). It is noteworthy that the use of $B(C_6F_5)_3$ and the sterically hindered, yet basic, phosphine $PtBu_3$ to effect deprotonation of the alkyne, affording alkynylborate salts, has been previously shown to be one of the general reactions of FLPs with terminal alkynes.^[15]

Scheme 3. Synthesis of 10-12.

Figure 4. POV-ray depiction of the anion of **10**.

Efforts to form the analogous salt $[tBu_3PH][Mes_2PC \equiv$ $CBCl(C_6F_5)_2$] by employing $ClB(C_6F_5)_2$ instead of $B(C_6F_5)_3$ resulted in loss of Cl. This is due to the greater Lewis acidity of $ClB(C_6F_5)_2$ in comparison with $Mes_2PC \equiv CB(C_6F_5)_2$. Thus, two equivalents of $ClB(C_6F_5)_2$ were added to a mixture of 9 and $PtBu_3$ to generate $Mes_2PC \equiv CB(C_6F_5)_2$ and $[tBu_3PH]$ - $[Cl_2B(C_6F_5)_2]$. Subsequent precipitation of the salt byproduct left the alkynylphosphine borane as a red-orange solution. NMR spectra of the solution in $[D_8]$ toluene revealed 19 F resonances at -128.9, -147.5, and -162.0 ppm, indicating the presence of a 3-coordinate B centre, as well as giving a ${}^{31}P{}^{1}H$ signal at -53.4 ppm, attributable to the formation of $Mes_2PC \equiv CB(C_6F_5)_2$. However, all efforts to isolate $Mes_2PC \equiv CB(C_6F_5)_2$ were unsuccessful due to the high reactivity of its polarized alkynyl fragment. Nonetheless, addition of acetonitrile allowed the isolation of the yellow adduct $Mes_2PC \equiv CB(NCMe)(C_6F_5)_2$ (11) in 53% yield (Scheme 3). The ¹¹B{¹H} NMR signal observed at -12.6 ppm and the ¹⁹F NMR signals at -133.9, -157.9, and -164.5 ppm are consistent with the quaternized B center and the ³¹P{¹H} NMR resonance at -53.0 ppm is consistent with a phosphine fragment. Crystallographic data confirmed this structure (Figure 5) and revealed a B–N bond length of 1.596(2) Å.

Figure 5. POV-ray depiction of 11.

Exposure of a solution of the phosphine-borane $Mes_2PC \equiv$ $CB(C_6F_5)_2$, generated in situ from 9, to H₂ resulted in the isolation of **12** in 37% yield. The ¹H and ¹⁹F NMR spectra of 12, obtained at room temperature, contained substantially broadened signals, presumably due to high degrees of rotational inhibition of the bulky substituents. The ¹⁹F NMR spectrum measured at 100°C revealed resonances indicative of two distinct $B(C_6F_5)_2$ groups. Similarly, the ¹¹B{¹H} NMR data showed signals at -16.9 (a doublet with coupling to P) and -20.3 ppm (broad singlet). Meanwhile, the ¹H NMR spectrum obtained at 100 °C showed the presence of an olefinic H coupled to P, two distinct Mes₂PH groups, and a BH signal. The ³¹P{¹H} NMR resonances also indicated two environments, with signals at -23.3 and -48.7 ppm. The precise nature of 12 was unambiguously determined by crystallography to be $(C_6F_5)_2(H)BC(H)=C[P(H)Mes_2][(C_6F_5)_2BC=$ CP(H)Mes₂] (Scheme 3, Figure 6). These data reveal that the phosphine-borane activates H₂, although the mechanism for the formation of 12 is unclear. Presumably, the transiently formed H₂ activation species Mes₂P(H)C=CB(H)(C₆F₅)₂ reacts with the starting material $Mes_2PC \equiv CB(C_6F_5)_2$ to effect Lewis acid mediated hydride migration from B to the adjacent acetylenic carbon (examples shown later), followed

Figure 6. POV-ray depiction of 12.

by addition of another H_2 molecule to generate dissymmetric dizwitterion **12**. This reactivity stands in stark contrast to the reversible H_2 activation that allows the facile interconversion of $Mes_2PC_6F_4B(C_6F_5)_2$ and $Mes_2P(H)C_6F_4B(H)-(C_6F_5)_2$. Indeed, despite the fact that our alkynyl-linked system demonstrates reactivity typical of an FLP, this reactivity precludes its use as a hydrogenation catalyst.

The corresponding neutral phosphine-borane, $tBu_2PC \equiv$ $CB(C_6F_5)_2$, was generated in situ through reaction of 5 with tBu_3P and $B(C_6F_5)_3$, generating the known salt [tBu_3PH] $[HB(C_6F_5)_3]$ as a byproduct (Scheme 2). This reaction results from the greater basicity and acidity of tBu_3P and $B(C_6F_5)_3$, respectively. Although attempts to isolate the neutral species resulted in unidentified decomposition products, the formation of the phosphine-borane was confirmed by ¹¹B, ¹⁹F, and ³¹P NMR analysis of the reaction mixture. This phosphineborane generated in situ has previously been found to react with 1-hexene in a ratio of 1:1 to give the species $[tBu_2PC \equiv$ $CB(C_6F_5)_2[(nBuCH_2CH)][tBu_2PC \equiv CB(C_6F_5)_2]$ (13), which subsequently undergoes thermolysis to give the dissym- $(tBu_2P)C_6F_4B(F)(C_6F_5)C_4(C_6F_5)_2B_$ metric cumulene $(nBuCH_2CH)(PtBu_2)$.^[27] Although 13 could not be structurally characterized, simple treatment of 13 with methanol resulted in the protonation of its free phosphine center with methoxide binding to B, affording $[tBu_2P(H)C \equiv CB(C_6F_5)_2]$ - $(nBuCH_2CH)[tBu_2PC \equiv CB(C_6F_5)_2](OMe)$ (14) in 74% yield (Scheme 4). This species was crystallized and the structural data confirmed this formulation (Figure 7).

Macrocyclic zwitterionic alkynylphosphonium borates: In probing the reactivity of the above species, we sought to exploit these compounds to form macrocyclic products through FLP reactivity. To that end, an excess of 1-hexene was combined with 13 and heated to 80°C to form a new species, 15. Although the formation of the previously reported cumulene derivative was a competing reaction, compound 15 was isolated in 28% yield due to its lower solubility. The ${}^{11}B{}^{1}H$ NMR spectrum of 15 shows a broad peak at -18.1 ppm and the ³¹P{¹H} NMR signals at 43.0 and 41.3 ppm are consistent with the formation of a mixture of diastereomers arising from P/B addition to a second equivalent of olefin. ¹H and ¹⁹F NMR data were also in agreement with the generation of two diastereomers. It was speculated that these data are consistent with the dimeric formula ${[tBu_2PC \equiv CB(C_6F_5)_2](nBuCH_2CH_2)}_2$ (Scheme 4), a proposition that was confirmed crystallographically (Figure 8). Interestingly, the P/B alkynyl fragment adopts a quasi-parallel geometry. The macrocyclic nature of 15 results in intramolecular P-P and B-B distances of 5.82 and 5.40 Å, respectively.

In other work, we have demonstrated that FLPs are capable of effecting ring-opening reactions of THF,^[32] as well as dioxane and thioxane.^[33] Herein, we exploit this reactivity to prepare a dissymmetric macrocyclic species through reaction of **13** with THF. This reaction affords the new macrocycle $[tBu_2PC \equiv CB(C_6F_5)_2](nBuCH_2CH)[tBu_2PC \equiv CB(C_6F_5)_2][O-$

 $(CH_2)_4$] (16) in 81% yield (Scheme 4). The dissymmetry in macrocycle 16 (Figure 9) results in PC=CB vectors being

FULL PAPER

Scheme 4. Synthesis of 14-18.

Figure 7. POV-ray depiction of 14.

oriented at an angle of 23.3° with respect to each other. An expanded macrocycle is also accessible through treatment of $tBu_2PC\equiv CB(C_6F_5)_2$, generated in situ from **5**, with THF alone. This leads to ring opening of THF and the formation of { $[tBu_2PC\equiv CB(C_6F_5)_2][O(CH_2)_4]$ } (**17**) in 39% isolated yield. Although the spectroscopic data are as expected, the crystallography data (Figure 10) reveals that the symmetry of macrocycle **17** again orients the PC=CB fragments in an approximately parallel orientation with a dihedral angle of 40.3°, although the intramolecular P–P and B–B distances have lengthened to 6.67 and 7.96 Å, respectively.

Figure 8. POV-ray depiction of 15.

Figure 9. POV-ray depiction of 16.

Figure 10. POV-ray depiction of 17.

In a final example of the use of FLP reactivity to generate macrocycles, the phosphine–borane $Mes_2PC\equiv CB(C_6F_5)_2$ was reacted with PhC=CH. We have previously shown that FLPs that include less basic donors will effect donor and acceptor addition to the alkyne. In the present case, this results in the formation of the macrocyclic product { $[Mes_2PC\equiv CB(C_6F_5)_2]$ -(CH=CPh)}_2 (18; Scheme 4, Figure 11). This species is reminiscent of the previously reported macrocyclic species { $[Mes_2PC_6F_4B(C_6F_5)_2]$ -(CH=CPh)}_2.^[18] In 18 the rigidity of the linkages enforces an approximately planar [PC=CBC=C]_2 core, with a maximum deviation from the mean-square plane of 0.181 Å.

Figure 11. POV-ray depiction of 18.

Reactions of alkynylphosphonium borates with Lewis acids: In exploring a final aspect of the reactivity of alkynylphosphonium borates, the reactivity with several Lewis acids was probed. Phosphonium borate 5 was reacted with AlCl₃ in toluene. After stirring overnight at 25°C and subsequent workup, a new white solid 19 was isolated in 74% yield. The ³¹P{¹H} NMR spectrum of **19** showed a broad signal at 76.9 ppm and an ²⁷Al resonance was seen at 103.8 ppm. The ¹¹B{¹H} NMR signal at 12.6 ppm and the ¹⁹F NMR resonances at -130.1, -155.3, and -163.9 ppm were all broad, suggesting some fluxional behavior. ¹H NMR data were consistent with the retention of the P-H fragment, as a doublet was observed at 5.42 ppm with a ${}^{1}J_{HP}$ of 429 Hz. In addition, a doublet at 8.23 with P-H coupling of 45.9 Hz suggested the reduction of the alkynyl fragment and formation of a =CH fragment. This view was supported by the observation of a ¹³C¹H NMR signal at 186.9 ppm. In a similar fashion, the corresponding reaction with AlBr₃ led to the formation and isolation of 20 in 48% yield. The NMR data for 20 were similar to those seen for 19. Both products were structurally characterized by X-ray crystallography to be $(C_6F_5)_2BC(H)=C[P(H)tBu_2](AlX_3)$ (X = Cl (19), Br (20); Scheme 5, Figure 12). The two products are similar pseudofive-membered rings in which the alkynyl fragment is formally reduced to an alkenyl group. Hydride has migrated from boron to the adjacent carbon atom and AlX₃ binds to the carbon atom adjacent to the phosphonium fragment with a halide atom bridge to boron. The Al-C distances in **19** and **20** are 1.958(3) and 1.965(3) Å, respectively, although the resulting C=C bond lengths are identical (1.344(4) Å). The corresponding B-halide distances were found to be 2.198(3) and 2.343(4) Å, respectively. These comparatively large separations are consistent with the fluxional behavior of 19 and 20 in solution. Examination of the dynamic behavior of 19 and 20 by low temperature NMR proved difficult due to their low solubilities.

In a similar fashion, the reaction of **5** with the Lewis acid $[Zn(C_6F_5)_2]\cdot C_7H_8$ afforded a new white solid **21** in 70% yield. This new species exhibited a ³¹P NMR resonance at 73.6 ppm with P–H coupling of 425 Hz shown in the ¹H NMR spectrum and ¹⁹F NMR signals at -130.4, -158.8, and -163.6 ppm. These resonances, together with the

FULL PAPER

Scheme 5. Synthesis of 19–23.

Figure 12. POV-ray depiction of a) 19 and b) 20.

¹¹B signal at -12.9 ppm are consistent with the presence of a borate fragment derived from B(C₆F₅)₃. Additionally, integration of the ¹⁹F NMR signals at -117.5, -151.7, and -160.5 ppm are consistent with the presence of an additional C₆F₅ ring, presumably on Zn. Compound **21** also gives rise to ¹H signals at 8.92 and 5.28 ppm, attributable to olefinic CH and PH fragments, respectively. These data are consistent with **21** being derived from the combination of the reactants although determining the exact nature of **21** required a crystallographic study. These data unambiguously confirmed the formula of **21** to be (C₆F₅)₃BC(H)= C[P(H)*t*Bu₂][Zn(C₆F₅)] (Scheme 5, Figure 13), a vinylborate

Figure 13. POV-ray depiction of 21.

derivative. The metric parameters within the borate and phosphonium fragments are as expected. Zn is bound to the olefinic fragment, adopting a linear two-coordinate geometry with a C-Zn-C angle of $172.66(7)^{\circ}$ and Zn–C distances to the olefinic and fluoroaryl fragments of 1.928(2) and 1.935(2) Å, respectively.

The analogous reaction of **5** with $[Al(C_6F_5)_3]\cdot C_7H_8$ proceeded in a similarly smooth fashion to give **22** in 61% yield. The ¹⁹F NMR spectrum reveals broad signals that can be attributed to two types of C_6F_5 group which integrate to a 3:2 ratio whereas the sharp ¹¹B resonance at -13.8 ppm is consistent with a 4-coordinate B center. The solid-state structure of **22** was unambiguously confirmed by X-ray crystallography to be $(C_6F_5)_3BC(H)=C[P(H)tBu_2][Al(C_6F_5)_2]$ (**22**; Scheme 5, Figure 14). In this species the Al has added

Figure 14. POV-ray depiction of 22.

to the C attached to the phosphonium center and the hydride from B has added to the adjacent C atom, resulting in a central olefinic fragment. Interestingly, a C_6F_5 group has migrated to B, affording an anionic $B(C_6F_5)_3$ borate unit. One of the *ortho*-fluorine atoms on the aryl rings on B coordinates to the formally unsaturated Al center with an Al···F of 1.926 Å. A number of reports have described such Al–F interactions.^[35,36] It is interesting to note that transfer of a C_6F_5 group normally proceeds from B to Al.^[34] However, in **22**, the presence of the phosphonium cation presumably elevates the Lewis acidity of B, as well as the steric congestion around Al.

CHEMISTRY

Compound 5 also reacts with the Lewis acid $HB(C_6F_5)_2$, yielding a new species 23 in 68% isolated yield. The ³¹P{¹H} NMR spectrum of **23** shows a resonance at 55.6 ppm and, along with the ¹H NMR doublet resonance at 4.61 ppm with P-H coupling of 433 Hz, is consistent with retention of the phosphonium fragment. The ¹¹B{¹H} NMR spectrum of 23 shows two signals, one broad peak at 60.5 ppm and a sharp signal at -15.9 ppm. These peaks infer the presence of three-coordinate borane and four-coordinate borate fragments. The corresponding ¹⁹F NMR spectrum showed 18 resonances, suggesting that steric congestion in 23 restricts rotation about the B-C bonds. The ¹H NMR signals at 3.39 and 2.44 ppm can be attributed to methine protons, suggesting full reduction of the alkynyl fragment. The nature of 23 was unambiguously confirmed by X-ray crystallography to be $[(C_6F_5)_2B]_2HC=CH[P(H)tBu_2]$ (Scheme 5, Figure 15).

Figure 15. POV-ray depiction of 23.

This species contains a central boratirane ring, with phosphonium and borane substituents on the C atoms. Within the BC₂ ring, the B_{cyclic} -C(P) and B_{cyclic} -C(B) bonds are 1.609(2) and 1.712(2) Å, respectively, whereas the C-C bond is 1.525(2) Å (average values of the two crystallographically independent molecules in each asymmetric unit). The exocyclic phosphonium and planar borane substituents give rise to P-C and B-C bond lengths to the boratirane ring of 1.774(1) and 1.483(2) Å, respectively. In addition, the B_{cvclic}-C-P and B_{cvclic}-C-B angles are 123.25(11) and 112.18(12)°, respectively. These metric parameters, the large B_{cvclic}-C(B) separation, short exocyclic B-C bond length, and small B_{cyclic}-C-B angle suggest some degree of hyperconjugation in the B_{cyclic}-C-B moiety,^[37] which stabilizes the structure of 23. This reaction is believed to proceed through initial hydroboration of 5 with $HB(C_6F_5)_2$, followed by intramolecular hydride transfer from B to its adjacent C atom, the net effect of which gives the complete reduction of the alkynyl group in 5.

Conclusion

The results presented herein demonstrate synthetic routes to a variety of alkynylphosphonium borate derivatives. Alkynyl-linked phosphine-boranes react as FLPs in reactions such as the stoichiometric reduction of imines, the addition to olefins and alkynes, and the ring opening of THF. Exploiting this reactivity, synthetic routes to novel macrocyclic products have been developed. In addition alkynylphosphonium borates were shown to react with a variety of Lewis acids, prompting hydride transfer from the borohydride fragment to the alkyne unit, affording reduction to the corresponding olefin. The unique reactivity of related zwitterionic species and the application of FLP reactivity in the synthesis of new materials is still an active area of research in our laboratories.

Experimental Section

General remarks: All manipulations were carried out under an atmosphere of dry, O2-free N2 by employing an MBraun glove box and a Schlenk vacuum line. Solvents were purified with a Grubbs-type column system manufactured by Innovative Technology and dispensed into thickwalled Schlenk glass bombs equipped with Young-type Teflon-valve stopcocks (hexanes, pentane, toluene, CH2Cl2, THF), or were dried over the appropriate agents and distilled into the same kind of Young bomb (C₆H₅Br, methanol). All solvents were thoroughly degassed after purification (repeated freeze-pump-thaw cycles). Deuterated solvents were dried over the appropriate agents, vacuum-transferred into Young bombs and degassed accordingly (C6D5Br, CD2Cl2, C6D6, [D8]toluene). NMR spectra were recorded at 25 °C on Varian 300 and 400 MHz and Bruker 400 MHz spectrometers unless otherwise stated. Chemical shifts are given relative to SiMe4 and referenced to the residual solvent signal (1H, ¹³C) or relative to an external standard (¹¹B: (Et₂O)BF₃; ¹⁹F: CFCl₃; ³¹P: 85% H₃PO₄). In some instances, signal and/or coupling assignment was derived from two-dimensional NMR experiments. Chemical shifts are reported in ppm and coupling constants as scalar values in Hz. Combustion analyses were performed in house by employing a Perkin-Elmer CHN Analyzer. $Mes_2PCl_{,}^{[38]} ClB(C_6F_5)_{2,}^{[39]} [Zn(C_6F_5)_2] \cdot C_7H_8$,^[40] and [Al- $(C_6F_5)_3]$ · $C_7H_8^{[34]}$ were synthesized according to literature preparations. $[tBu_2PC \equiv CB(C_6F_5)_2](nBuCH_2CH)[tBu_2PC \equiv CB(C_6F_5)_2]$ (14) was prepared as previously reported.[27]

Synthesis of $tBu_2PC=CH$ (1): This compound was prepared by using a modification of the literature method.

Method 1: A solution of nBuLi in hexane (1.6 M, 10.0 mL, 16.0 mmol) was added to a solution of HC=CSiMe3 (1.567 g, 15.95 mmol) in THF (20 mL) at 0°C. After stirring at 0°C for 30 min, ClPtBu₂ (3.00 mL, 15.79 mmol) in THF (15 mL) was added to the reaction mixture at -78°C and stirred at that temperature for 30 min. The reaction was then warmed to room temperature and stirred overnight. THF was evaporated off completely while the flask was kept in an ice bath. The product mixture was redissolved in pentane (15 mL) and filtered through Celite. The solvent was evaporated under vacuum with the flask kept in an ice bath to give tBu2PC=CSiMe3. This product was stirred with potassium carbonate (4.42 g. 32.0 mmol) in methanol (17 mL) overnight followed by filtration through Celite. Pentane (10 mL) was then added to the filtrate and the mixture was separated by using a separation funnel under a N2 atmosphere. The methanol layer was washed twice with pentane (10 mL). The combined pentane phase was passed through a plug of neutral alumina to remove any dissolved methanol. Pentane was evaporated off while the flask was kept in an ice bath. The lightly colored liquid product (1.915 g, 71%) was used in subsequent reactions without further purification. The compound was stored at -35 °C to avoid decomposition.

Method 2: The same procedure as above was used for the generation of $tBu_2PC=CSiMe_3$. This product was then stirred with potassium carbonate in methanol (8 mL) overnight followed by filtration through Celite and washing with pentane (20 mL). The filtrate was then passed through a column of neutral alumina and washed with pentane. Pentane was

pumped off while the flask was kept in an ice bath to give the product (1.602 g, 56 %). ¹H NMR (C₆D₆): δ =2.55 (s, 1H; C=C*H*), 1.21 ppm (d, 18 H, ³J_{HP}=12.3 Hz; *t*Bu); ¹³C[¹H] NMR (C₆D₆): δ =95.5 (d, ²J_{CP}=5.0 Hz; PC=C), 84.9 (d, ¹J_{CP}=27.9 Hz; PC=C), 33.3 (d, ¹J_{CP}=17.4 Hz; quaternary *t*Bu), 30.6 ppm (d, ²J_{CP}=14.7 Hz; *t*Bu); ³¹P[¹H] NMR (C₆D₆): δ = 12.5 ppm (s); MS (EI): *m*/*z* calcd: 170.1224; found: 170.1222 [HC=CP*t*Bu₂]⁺.

Synthesis of $tBu_2P(H)C \equiv CB(C_6F_5)_3$ (2): A solution of 1 (50 mg, 0.29 mmol) in toluene (3 mL) was added to a solution of $B(C_6F_5)_3$ (150 mg, 0.29 mmol) in toluene (2 mL) at -35 °C. The reaction was stirred at room temperature for 1 h, and toluene was evaporated off. Pentane (10 mL) was then added, and the mixture was filtered and washed with pentane to isolate an off-white product. The product was further dried in vacuo (175 mg, 88%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a solution of the product in CH₂Cl₂ at 25 °C. ¹H NMR (CD₂Cl₂): $\delta = 5.71$ (d, 1 H, ¹J_{HP} = 466 Hz; PH), 1.45 ppm (d, 18H, ${}^{3}J_{HP} = 18.8 \text{ Hz}; tBu$); ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂): $\delta =$ $-21.4 \text{ ppm (s)}; {}^{13}C{}^{1}H} \text{NMR (CD}_{2}Cl_{2}): \delta = 148.7 \text{ (dm, } {}^{1}J_{CF} = 242 \text{ Hz}; o C_6F_5$), 139.7 (dm, ${}^{1}J_{CF} = 234 \text{ Hz}$; $p-C_6F_5$), 137.3 (dm, ${}^{1}J_{CF} = 240 \text{ Hz}$; m- C_6F_5), 120.5 (brs; *i*- C_6F_5), 65.8 (d, ${}^{1}J_{CP} = 173$ Hz; C=CP), 35.3 (d, ${}^{1}J_{CP} =$ 43 Hz; quaternary tBu), 27.0 ppm (d, ${}^{2}J_{CP}=2.6$ Hz; tBu), the acetylenic carbon bound to boron was not observed; ¹⁹F NMR (CD₂Cl₂): $\delta = -133.1$ (d, 6F, ${}^{3}J_{FF} = 23$ Hz; o-C₆F₅), -161.5 (t, 3F, ${}^{3}J_{FF} = 20$ Hz; p-C₆F₅), $-166.6 \text{ ppm} (m, 6F; m-C_6F_5); {}^{31}P{}^{1}H} \text{NMR} (CD_2Cl_2): \delta = 24.5 \text{ ppm} (s);$ MS (EI, CH₂Cl₂): m/z: 682.1 [$tBu_2P(H)C \equiv CB(C_6F_5)_3$]⁺; elemental analysis calcd (%) for $C_{28}H_{19}BF_{15}P$: C 49.30, H 2.81; found: C 49.36, H 3.02. Synthesis of *t*Bu₂P(Me)C=CB(C₆F₅)₃ (3): CH₃Li (150 μL, 1.6 м in ether) was added to 2 (163 mL) in toluene (7 mL). The reaction was stirred overnight. The solvents were completely evaporated off and the white solid was washed with pentane. The dry product was redissolved in CH_2Cl_2 (3 mL) and CH_3I (0.5 mL) was then added to the solution. The reaction was stirred overnight and all volatiles were evaporated off. The solid was washed with pentane and recrystallized by layering a CH_2Cl_2 solution of the compound with pentane to give the pure product (96 mg, 58%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with pentane at 25°C. ¹H NMR (CD₂Cl₂): $\delta = 1.71$ (d, 3H, ${}^{3}J_{HP} = 12.1$ Hz; PCH₃), 1.39 ppm (d, 18H, ${}^{3}J_{\rm HP} = 16.9 \text{ Hz}; tBu); {}^{11}B{}^{1}H} \text{ NMR} (CD_2Cl_2): \delta = -21.5 \text{ ppm} (s);$ ¹³C{¹H} NMR (CD₂Cl₂): $\delta = 148.7$ (dm, ¹*J*_{CF} = 237 Hz; *o*-C₆F₅), 139.6 (dm, ${}^{1}J_{CF} = 247 \text{ Hz}; p-C_{6}F_{5}), 137.3 \text{ (dm, } {}^{1}J_{CF} = 228 \text{ Hz}; m-C_{6}F_{5}), 121.1 \text{ (brs; qua$ ternary C₆F₅), 70.5 (d, ${}^{1}J_{CP}$ =145 Hz; C=CP), 35.4 (d, ${}^{1}J_{CP}$ =47 Hz; quaternary tBu), 26.7 (d, ${}^{2}J_{CP} = 1.5 \text{ Hz}$; tBu), 4.4 ppm (d, ${}^{1}J_{CP} = 57 \text{ Hz}$; PCH₃), the C=CB carbon was not observed; ¹⁹F NMR (CD₂Cl₂): $\delta = -132.8$ (m, 4F; $o-C_6F_5$), -161.3 (t, 2F, ${}^{3}J_{FF} = 21$ Hz; $p-C_6F_5$), -166.3 ppm (m, 4F; m- C_6F_5 ; ³¹P{¹H} NMR (CD₂Cl₂): $\delta = 32.8$ ppm (s); elemental analysis calcd (%) for C₂₉H₂₁BF₁₅P: C 50.03, H 3.04; found: C 49.49, H 3.08.

Synthesis of $tBu_2P(H)C \equiv CB(Cl)(C_6F_5)_2$ (4): A solution of 1 (328 mg, 1.93 mmol) in toluene (8 mL) was added to a solution of $ClB(C_6F_5)_2$ (733 mg, 1.93 mmol) in toluene (2 mL) at -35 °C. The reaction was stirred for 1 h, during which time the solution became yellow. After the solvent was completely evaporated off, pentane (12 mL) was added and the mixture was stirred until an off-white solid formed. The supernatant liquid was decanted and the solid product was washed with pentane. Drying in vacuo afforded an off-white powder (761 mg, 72 %). This product was used in the subsequent reactions without further purification. Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with pentane at 25°C. ¹H NMR $(CD_2Cl_2): \delta = 5.80$ (d, 1 H, ${}^{1}J_{HP} = 469$ Hz; PH), 1.51 ppm (d, 18 H, ${}^{3}J_{HP} =$ 18.8 Hz; *t*Bu); ${}^{11}B{}^{1}H$ NMR (CD₂Cl₂): $\delta = -12.8$ ppm (s); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂): $\delta = 148.3$ (dm, ${}^{1}J_{CF} = 243$ Hz; o-C₆F₅), 140.1 (dm, ${}^{1}J_{CF} = 251$ Hz; $p-C_6F_5$), 137.6 (dm, ${}^1J_{CF}=248$ Hz; $m-C_6F_5$), 119.8 (brs; quaternary C_6F_5), 67.4 (d, ${}^{1}J_{CP} = 155 \text{ Hz}$; C=CP), 35.4 (d, ${}^{1}J_{CP} = 42 \text{ Hz}$; quaternary tBu), 27.0 ppm (d, ${}^{2}J_{CP}=2.5$ Hz; tBu), the C=CB carbon was not observed; ¹⁹F NMR (CD₂Cl₂): $\delta = -133.1$ (m, 4F; o-C₆F₅), -160.5 (t, 2F, ³J_{FF} = 20 Hz; p-C₆F₅), -166.1 ppm (m, 4F; m-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂): $\delta = 25.5$ ppm (s); elemental analysis calcd (%) for C₂₂H₁₉BClF₁₀P: C 47.99, H 3.48; found: C 47.87, H 3.80.

FULL PAPER

Synthesis of $tBu_2P(H)C \equiv CB(H)(C_6F_5)_2$ (5): Compound 4 (368 mg, 0.668 mmol) was stirred with Me₂SiHCl (1.0 g, 5.83 mmol) overnight in CH₂Cl₂ (8 mL). After confirming full conversion to the product by NMR spectroscopy of the reaction mixture, all volatiles were completely removed. The residue was dissolved in toluene (10 mL) and passed through neutral alumina to eliminate high molecular weight impurities. The filtrate was dried and the product was recrystallized by layering a solution of the product in CH2Cl2 with pentane at 25°C overnight. The colorless crystals of product were separated from the supernatant, from which more product was recrystallized by layering a CH2Cl2 solution of the compound with pentane. The combined product was dried in vacuo (273 mg, 79%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with pentane at 25°C. ¹H NMR (CD₂Cl₂): $\delta = 5.70$ (dd, 1 H, ¹ $J_{HP} = 464$ Hz, ⁵ $J_{HH} = 2.0$ Hz; PH), 3.25 (q, 1H, ${}^{1}J_{HB}=91$ Hz; BH), 1.48 ppm (d, 18H, ${}^{3}J_{HP}=18.8$ Hz; tBu); ¹¹B{¹H} NMR: $\delta = -29.2$ ppm (s); ¹³C{¹H} NMR (CD₂Cl₂): $\delta = 148.0$ (dm, ${}^{1}J_{CF} = 235 \text{ Hz}; o-C_{6}F_{5}), 138.8 \text{ (dm, } {}^{1}J_{CF} = 245 \text{ Hz}; p-C_{6}F_{5}), 136.9 \text{ (dm, }$ ${}^{1}J_{CF} = 261 \text{ Hz}; m - C_{6}F_{5}), 120.9 \text{ (brs; quaternary } C_{6}F_{5}), 64.4 \text{ (d, } {}^{1}J_{CF} =$ 158 Hz; C=CP), 34.7 (d, ${}^{1}J_{CP} = 44$ Hz; quaternary *t*Bu), 26.7 ppm (d, ${}^{2}J_{CP} = 2.6 \text{ Hz}; tBu$), the C=CB carbon was not observed; ${}^{19}\text{F} \text{ NMR}$ (CD₂Cl₂): $\delta = -133.2$ (dm, 4F, ${}^{3}J_{FF} = 21$ Hz; o-C₆F₅), -162.8 (t, 2F, ${}^{3}J_{FF} =$ 20 Hz; p-C₆F₅), -166.7 ppm (m, 4F; m-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂): $\delta = 24.2 \text{ ppm}$ (s); IR (CH₂Cl₂): $\tilde{\nu} = 2125 \text{ cm}^{-1}$ (C=C); elemental analysis calcd (%) for $C_{22}H_{20}BF_{10}P$: C 51.19, H 3.91; found: C 51.35, H 4.02.

Synthesis of *t***Bu**₂**P**(**Me**)**C**≡**CB**(**H**)(**C**₆*F*₅)₂ (6): This compound (43 mg, 84%) was prepared in a fashion analogous to **3**. Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with pentane at 25 °C. ¹H NMR (CD₂Cl₂): δ =3.20 (q, 1H, ¹*J*_{HB}= 91 Hz; BH), 1.72 (d, 3H, ²*J*_{HP}=12.1 Hz; PCH₃), 1.42 ppm (d, 18H, ³*J*_{HP}= 16.9 Hz; *t*Bu); ¹¹B[¹H] NMR (CD₂Cl₂): δ =-29.2 ppm (s); ¹³C[¹H] NMR (CD₂Cl₂): δ =148.4 (dm, ¹*J*_{CF}=238 Hz; *o*-C₆F₅), 139.1 (dm, ¹*J*_{CF}=239 Hz; *p*-C₆F₅), 137.3 (dm, ¹*J*_{CF}=246 Hz; *m*-C₆F₅), 139.1 (dm, ¹*J*_{CF}=239 Hz; *p*-C₆F₅), 137.3 (dm, ¹*J*_{CF}=246 Hz; *m*-C₆F₅), 121.7 (brs, quaternary C₆F₅), 69.4 (d, ¹*J*_{CP}=165 Hz; C≡CP), 35.3 (d, ¹*J*_{CP}=48 Hz; quaternary *t*Bu), 26.8 (d, ²*J*_{CP}=1.3 Hz; *t*Bu), 4.7 ppm (d, ¹*J*_{CP}=57 Hz; *CH*₃), the C≡CB carbon was not observed; ¹⁹F NMR (CD₂Cl₂): δ =-132.9 (d, 4F, ³*J*_{FF}=20 Hz; *o*-C₆F₅), -162.7 (t, 2F, ³*J*_{FF}=20 Hz; *p*-C₆F₅), -166.4 ppm (m, 4F; *m*-C₆F₅); ³¹P[¹H] NMR (CD₂Cl₂): 31.9 ppm (s); elemental analysis calcd (%) for C₂₃H₂₂BF₁₀P: C 52.10, H 4.18; found: C 51.74, H 3.97.

Synthesis of [tBu₂P(H)C≡CB(C₆F₅)₂(THF)][B(C₆F₅)₄] (7): A solution of 5 (50 mg, 0.097 mmol) in CH₂Cl₂ (1 mL) was added dropwise to a stirring solution of [CPh₃][B(C₆F₅)₄] (66 mg, 0.072 mmol) in CH₂Cl₂ (1 mL) until the intense yellow color of $[CPh_3][B(C_6F_5)_4]$ faded (not all of the solution of 5 was used). The reaction mixture was stirred for a further 5 min, followed by addition of THF (30 µL, 0.37 mmol) and stirring for another 5 min. The colorless solution was evaporated down to ≈ 0.5 mL. Addition of pentane (5 mL) precipitated a sticky solid product, which was left to stir for 3 h. The mother liquor was removed and the sticky solid dried in vacuo. The product was further recrystallized by layering a CH₂Cl₂ solution of the compound with pentane at RT (70 mg, 77%). ¹H NMR (CD₂Cl₂): $\delta = 5.83$ (d, 1 H, ${}^{1}J_{HP} = 475$ Hz; PH), 4.37 (m, 4 H; O- $(CH_2CH_2)_2$, 2.30 (m, 4H; O $(CH_2CH_2)_2$), 1.51 ppm (d, 18H, ${}^{3}J_{HP} =$ 19.2 Hz; tBu); ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂): $\delta = -3.2$ (brs; B(THF)), -16.6 ppm (s; $B(C_6F_5)_4$); ¹³C[¹H] NMR (CD₂Cl₂): $\delta = 150.3-135.5$ (overlapping broad signals for o-, p-, and m-C₆F₅), 124.6 (brs; i-C₆F₅, B- $(C_6F_5)_4$, 113.2 (brs, *i*- C_6F_5 , B $(C_6F_5)_2$), 78.1 (s; O $(CH_2CH_2)_2$), 73.7 (d, ${}^{1}J_{CP} = 143 \text{ Hz}; C \equiv CP$), 35.7 (d, ${}^{1}J_{CP} = 39 \text{ Hz};$ quaternary *t*Bu), 27.0 (d, ${}^{2}J_{CP} = 3.0 \text{ Hz}; tBu)$, 25.7 ppm (s; O(CH₂CH₂)₂), the C=CB was not observed; ${}^{13}C{}^{19}F{}$ NMR (CD₂Cl₂): $\delta = 147.2$ (s; $o - C_6F_5$, B(C₆F₅)₄), 146.7 (s; o-C₆F₅, B(C₆F₅)₂), 140.5 (s; p-C₆F₅, B(C₆F₅)₂), 137.4 (s; p-C₆F₅, B(C₆F₅)₄), 136.9 (s; $m-C_6F_5$, B(C₆F₅)₂), 135.5 (q, ${}^{3}J_{CB} = 3.0$ Hz; $m-C_6F_5$, B(C₆F₅)₄), 123.4 ppm (q, ${}^{1}J_{CB} = 51 \text{ Hz}$; *i*-C₆F₅, B(C₆F₅)₄); ${}^{19}\text{F}$ NMR (CD₂Cl₂): $\delta =$ -133.5 (m, 8F; $o-C_6F_5$, B(C₆F₅)₄), -133.8 (m, 4F; $o-C_6F_5$, B(C₆F₅)₂), -153.9 (t, 2F, ${}^{3}J_{FF} = 20$ Hz; $p-C_{6}F_{5}$, B($C_{6}F_{5}$)₂), -162.4 (m, 4F; $m-C_{6}F_{5}$, B- $(C_6F_5)_2$, -164.1 (t, 4F, ${}^{3}J_{FF}=20$ Hz; p-C₆F₅, B(C₆F₅)₄), -168.0 ppm (m, 8F; m-C₆F₅, B(C₆F₅)₄); ³¹P{¹H} NMR (CD₂Cl₂): 26.8 ppm (s); elemental analysis calcd (%) for C₅₀H₂₇B₂F₃₀OP: C 47.43, H 2.15; found: C 47.83, H 2.58

Chem. Eur. J. 2011, 17, 6731-6743

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

A EUROPEAN JOURNAL

Synthesis of tBu₂PC=CB[tBuN(H)CH₂Ph](C₆F₅)₂ (8): Compound 5 (32 mg, 0.06 mmol) and tBuN=CHPh (10 mg, 0.06 mmol) were stirred in CH₂Cl₂ (1-2 mL) for 2 h at RT. Colorless crystals formed from the concentrate at -35 °C over 2 d. The supernatant liquid was quickly decanted and the crystals were washed with cold pentane and dried. More crystalline product was obtained from the combined and concentrated washings at -35°C (24 mg, 57%). The crystalline product was suitable for X-ray diffraction. ¹H NMR (C_6D_6): $\delta = 6.82$ (m, 3H; Ph), 6.52 (brs, 2H; Ph), 5.10 (brs, 1H; NH), 3.75 (brs, 2H; CH₂), 1.41 (brs, 18H; PtBu₂), 1.26 ppm (s, 9H; NtBu); ${}^{11}B{}^{1}H$ NMR (C₆D₆): $\delta = -9.6$ ppm (brs); ¹³C[¹H] NMR (C₆D₆): $\delta = 148.6$ (dm, ¹J_{CF} = 243 Hz; *o*-C₆F₅), 140.8 (dm, ${}^{1}J_{CF} = 243 \text{ Hz}; p-C_{6}F_{5}), 138.0 \text{ (dm, } {}^{1}J_{CF} = 249 \text{ Hz}; m-C_{6}F_{5}), 135.9 \text{ (s; quater$ nary Ph), 129.2 (s; Ph), 126.1 (s; Ph), 119.7 (brs; quaternary C₆F₅), 65.3 (brs; C=CP), 53.7 (s; quaternary NtBu), 53.3 (s; CH₂), 33.5 (d, ${}^{1}J_{CP}$ = 17 Hz; quaternary PtBu₂), 30.5 (d, ${}^{2}J_{CP} = 14$ Hz; PtBu₂), 28.4 ppm (s; NtBu), the C=CB carbon was not observed; ¹⁹F NMR (C_6D_6): $\delta = -128.5$ (brs, 2F; o-C₆F₅), -128.9 (brs, 2F; o-C₆F₅), -156.9 (brs, 2F; p-C₆F₅), -163.9 (brs, 2F; *m*-C₆F₅), -164.2 ppm (brs, 2F; *m*-C₆F₅); ³¹P{¹H} NMR (C₆D₆): $\delta = 18.6$ ppm (s); elemental analysis calcd (%) for C₃₃H₃₅BF₁₀NP: C 58.43, H 5.20, N 2.21; found: C 58.05, H 5.60, N 2.30.

Synthesis of Mes,PC≡CH (9): The procedure for the synthesis of 1 was followed in general except for the work up. Me₃SiC=CPMes₂ was synthesized by using Me₃SiC≡CH (1.2 g, 12.2 mmol), nBuLi (1.6м hexane solution, 6.7 mL, 10.7 mmol), and Mes₂PCl (3.00 g, 9.84 mmol). After Mes₂PC=CH was formed in methanol with potassium carbonate (3.0 g, 22 mmol), the methanol was completely evaporated from the reaction mixture. The product was extracted with pentane, filtered through Celite, passed through a plug of neutral alumina, and recrystallized from pentane to yield colorless crystals that were further dried in vacuo (1.293 g, 45%). This crystalline product was suitable for X-ray diffraction. ¹H NMR (C₆D₆): $\delta = 6.66$ (d, 4H, ⁴J_{HP} = 2.8 Hz; Ar-H), 2.65 (s, 1H; C= CH), 2.48 (s, 12H; o-CH₃), 2.04 ppm (s, 6H; p-CH₃); ¹³C{¹H} NMR $(C_6D_6): \delta = 142.0 \text{ (d, } {}^2J_{CP} = 16.1 \text{ Hz}; 2,6-C_6H_2), 138.3 \text{ (s; } 4-C_6H_2), 130.2 \text{ (d, } 32.2 \text{ (d, } 32.$ ${}^{3}J_{CP} = 3.9 \text{ Hz}; 3,5-C_{6}H_{2}), 129.7 \text{ (d, } {}^{1}J_{CP} = 11.6 \text{ Hz}; \text{ PC}_{\text{mes}}), 96.2 \text{ (d, } {}^{2}J_{CP} =$ 6.3 Hz; PC=C), 83.3 (d, ${}^{1}J_{CP}$ =13.1 Hz; PC=C), 23.1 (d, ${}^{2}J_{CP}$ =14.1 Hz; o-CH₃), 20.7 ppm (s; *p*-CH₃); ${}^{31}P{}^{1}H{}(C_6D_6): \delta = -54.5$ ppm (s); elemental analysis calcd (%) for C₂₀H₂₃P: C 81.60, H 7.87; found: C 81.57, H 7.82. Synthesis of [HPtBu₃][Mes₂PC≡CB(C₆F₅)₃] (10): A solution of 9 (48 mg, 1.6 mmol) in toluene (3 mL) was added to a solution of $B(C_6F_5)_3$ (83 mg, 1.6 mmol) and PtBu₃ (33 mg, 1.6 mmol) in toluene (3 mL) at -35 °C. After 3 h of stirring, the solvent was completely evaporated off. Pentane (6 mL) was then added and the mixture was stirred overnight. A white solid precipitated. The supernatant liquid was removed, and the product was further washed with pentane and dried. The product was recrystallized by layering a benzene solution of the compound with heptane at RT (142 mg, 87%). The crystalline product was suitable for X-ray diffraction. ¹H NMR (CD₂Cl₂): $\delta = 6.70$ (s, 4H; Ar-H), 5.04 (d, 1H, ¹J_{HP}= 428 Hz; HP), 2.26 (s, 12 H; o-CH₃), 2.19 (s, 6H; p-CH₃), 1.61 ppm (d, 27 H, ${}^{3}J_{HP} = 15.6 \text{ Hz}; t\text{Bu}; {}^{11}\text{B}{}^{1}\text{H} \text{NMR} (CD_2\text{Cl}_2): \delta = -20.9 \text{ ppm} (s);$ ¹³C{¹H} NMR (CD₂Cl₂): 148.6 (dm, ${}^{1}J_{CF} = 240$ Hz; *o*-C₆F₅), 142.3 (d, ${}^{2}J_{CP} = 240$ Hz; *o*-C₆F₅), 142.3 (d, {}^{2}J_{CP} = 240 Hz; *o*-C₆F₅), 142.3 (d, {}^{2}J_{CP} = 240 Hz; *o*-C₆F₅), 142.3 (d, {}^{2} 15 Hz; $o-C_6H_2$), 138.8 (dm, ${}^1J_{CF}=246$ Hz; $p-C_6F_5$), 137.9 (s; $p-C_6H_2$), 137.1 (dm, ${}^{1}J_{CF} = 245 \text{ Hz}$; $m - C_{6}F_{5}$), 132.4 (d, ${}^{1}J_{CP} = 12 \text{ Hz}$; $i - C_{6}H_{2}$), 129.9 (d, ${}^{3}J_{CP} = 4$ Hz; m-C₆H₂), 38.2 (d, ${}^{1}J_{CP} = 26$ Hz; quaternary tBu), 30.5 (s; *t*Bu), 22.7 (d, ${}^{3}J_{CP} = 14$ Hz; *o*-CH₃, Mes), 21.1 ppm (s; *p*-CH₃, Mes), C= CP, C=CB and quaternary C_6F_5 carbon atoms were not observed; ¹⁹F NMR (CD₂Cl₂): $\delta = -132.3$ (dm, 6F, ${}^{3}J_{FF} = 23$ Hz; $o - C_{6}F_{5}$), -164.0 (t, 3F, ${}^{3}J_{FF} = 20$ Hz; $p - C_{6}F_{5}$), -167.5 ppm (tm, 6F, ${}^{3}J_{FF} = 20$ Hz; $o - C_{6}F_{5}$); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂): $\delta = 61.4$ (s; HPtBu₃), -52.9 ppm (s; PMes₂); elemental analysis calcd (%) for C50H50BF15P2: C 59.54, H 5.00; found: C 59.27, H 5.02.

Synthesis of Mes₂PC=CB(NCMe)(C₆F₅)₂ (11): Compound 9 (37 mg, 0.13 mmol) and PtBu₃ (25 mg, 0.12 mmol) were dissolved in toluene (1 mL) and precooled to -35 °C. The phosphine mixture was then added to a precooled solution of ClB(C₆F₅)₂ (95 mg, 0.25 mmol) in toluene (1 mL) at -35 °C to give a red solution. After the reaction was stirred for 1 h, it was evaporated to ≈ 0.5 mL. Hexanes (6 mL) were added to precipitate a yellow solid ([HPtBu₃][Cl₂B(C₆F₅)₂), and the mixture was kept at -35 °C for 2 h. This was filtered through Celite to give a red-orange

solution of Mes₂PC=CB(C_6F_5)₂. After acetonitrile (20 µL) was added, the solution was kept at -35°C to afford yellowish crystals of the product (43 mg, 53%). The product crystals were suitable for X-ray diffraction. ¹¹H NMR (CD₂Cl₂): $\delta = 6.77$ (d, 4H, ⁴J_{HP}=3.0 Hz; Ar-*H*), 2.45 (s, 3H; CH₃, NCMe), 2.29 (s, 12H; o-CH₃), 2.22 ppm (s, 6H; p-CH₃); ¹¹B{¹H} NMR (CD₂Cl₂): $\delta = -12.6$ ppm (brs); ¹³C{¹H} NMR (CD₂Cl₂): $\delta = 148.2$ (dm, ${}^{1}J_{CF} = 243$ Hz; o-C₆F₅), 142.5 (d, ${}^{2}J_{CP} = 15$ Hz; o-C₆H₂), 140.7 (dm, ${}^{1}J_{CF} = 255$ Hz; p-C₆F₅), 138.8 (s; p-C₆H₂), 137.1 (dm, ${}^{1}J_{CF} =$ 248 Hz; m-C₆F₅), 130.4 (d, ${}^{1}J_{CP} = 10$ Hz; i-C₆H₂), 130.2 (d, ${}^{3}J_{CP} = 4$ Hz; m- C_6H_2), 115.0 (s, C=N), 22.9 (d, ${}^{3}J_{CP} = 14 \text{ Hz}$; o-CH₃, Mes), 21.1 (s; p-CH₃, Mes), 3.5 ppm (s; CH₃, NCMe), the quaternary B(C₆F₅)₂ and acetylenic carbon atoms were not observed. ¹⁹F NMR (CD₂Cl₂): $\delta = -133.9$ (m, 4F; $o-C_6F_5$), -157.9 (t, 2F, ${}^{3}J_{FF}$ =20 Hz; $p-C_6F_5$), -164.5 ppm (m, 4F; m- C_6F_5 ; ³¹P{¹H} NMR (CD₂Cl₂): $\delta = -53.0$ pm (s); elemental analysis calcd (%) for $C_{34}H_{25}BF_{10}NP$: C 60.11, H 3.71, N 2.06; found: C 59.43, H 3.74, N 2.11.

Synthesis of $(C_6F_5)_2B(H)HC=C[P(H)Mes_2][(C_6F_5)_2BC\equiv CP(H)Mes_2]$ (12): The procedure described in the synthesis of 11 was followed to generate $Mes_2PC \equiv CB(C_6F_5)_2$ in situ from compound 9 (75 mg, 0.25 mmol), ClB(C₆F₅)₂ (190 mg, 0.50 mmol), and PtBu₃ (50 mg, 0.25 mmol) in a toluene/hexanes (1:12, 6.5 mL) mixture. The red-orange solution was transferred to a Schlenk bomb (50 mL) that was subsequently charged with H₂ (ca. 4 atm) through three freeze-pump-thaw cycles. The reaction was kept under H₂ pressure for 2 d, during which time a light yellow precipitate formed. The contents of the bomb was transferred to a vial and the vellow solid was isolated and washed with hexanes. The product was further recrystallized by layering a CH₂Cl₂ solution of the compound with pentane at -35 °C and extensively washed with pentane to yield a white powder (59 mg, 37%). ¹H NMR (C₆D₅Br, 373 K): $\delta = 8.90$ (brd, 1H, ${}^{3}J_{\rm HP} = 78.1 \text{ Hz}; = CH), 8.14 \text{ (d, 1 H, } {}^{1}J_{\rm HP} = 511 \text{ Hz}; \text{ PH}, \equiv \text{CPH}), 7.72 \text{ (br d,}$ 1 H, ${}^{1}J_{HP}$ = 457 Hz; PH, =CPH), 6.73 (d, 4 H, ${}^{4}J_{HP}$ = 5.2 Hz; Ar-H, = CPHMes₂), 6.54 (brs, 4H; Ar-H, =CPHMes₂), 3.45 (brs, 1H; BH), 2.27 (s, 12H; o-CH₃, \equiv CPHMes₂), 2.25 (brs, 12H; o-CH₃, =CPHMes₂), 2.09 (s, 6H; *p*-CH₃), 2.05 ppm (s, 6H; *p*-CH₃); ¹¹B{¹H} NMR (C₆D₅Br, 373 K): $\delta = -16.9$ (d, ${}^{2}J_{BP} = 17$ Hz; $B(C_{6}F_{5})_{2}$), -20.3 ppm (brs; $BH(C_{6}F_{5})_{2}$); ¹³C{¹H} NMR (C₆D₅Br, 273 K): $\delta = 147.7$ (dm, ¹J_{CF} = 240 Hz; overlapping signals of o-C₆F₅), 145.2, 142.8, 142.3, 142.2, 142.1, 141.9, 140.8, 136.3 (dm, ${}^{1}J_{CF}=248$ Hz; overlapping signals of $m-C_{6}F_{5}$), 111.8 (brs; Ar_{Mes}), 21.5 (brs; CH₃), 20.7, 20.6, 20.5, 20.4, 20.1, a number of carbon signals were hidden underneath the solvent peaks or could not be unambiguously assigned for a spectrum taken at 25 °C; ¹⁹F NMR (C₆D₅Br, 373 K): $\delta =$ -127.0 (brs, 4F; *o*-C₆F₅, B(C₆F₅)₂), -130.5 (brs, 4F; *o*-C₆F₅, BH(C₆F₅)₂), -159.4 (brs, 2F; *p*-C₆F₅, B(C₆F₅)₂), -163.8 (brs, 2F; *p*-C₆F₅, BH(C₆F₅)₂), -164.2 (brs, 4 F; *m*-C₆F₅, B (C₆F₅)₂), -166.3 ppm (brs, 4 F; *m*-C₆F₅, BH-(C₆F₅)₂); ³¹P{¹H} NMR (C₆D₅Br, 373 K): $\delta = -23.3$ (brs; =CP), -48.7 ppm (s; \equiv CP); elemental analysis calcd (%) for C₆₄H₄₈B₂F₂₀P₂: C 60.03, H 3.78; found: C 59.99, H 3.66.

Synthesis of [*t*Bu₂P(H)C=CB(C₆F₅)₂](*n*BuCH₂CH)[*t*Bu₂PC=CB(C₆F₅)₂]-(OMe) (14): Predried CH₃OH (250 µL) was added to a solution of compound 13 (55 mg, 0.049 mmol) in CH₂Cl₂ (8 mL) in a well-dried Schlenk flask. After stirring at RT for 2d, all volatiles were removed in vacuo. The remaining mixture was redissolved in CH_2Cl_2 (5 mL), the solvent evaporated, and the crude product precipitated by addition of pentane (12 mL). Recrystallization by layering a toluene solution of the compound with pentane gave a colorless crystalline product (42 mg, 74%). The product crystals were suitable for X-ray diffraction. ¹H NMR (CD₂Cl₂): $\delta = 5.71$ (d, 1 H, ¹*J*_{HP}=465 Hz; P*H*), 3.26 (s, 3 H; OCH₃), 2.42 (m, 1H; PCH), 1.95 (m, 1H; PCHCH₂), 1.82 (m, 2H; BCH₂), 1.59 (d, 9H, ${}^{3}J_{\rm HP}$ =15.6 Hz; tBu), 1.50 (d, 9H, ${}^{3}J_{\rm HP}$ =18.8 Hz; tBu), 1.46 (d, 9H, ${}^{3}J_{\rm HP} = 18.7 \text{ Hz}; tBu$), 1.45 (d, 9H, ${}^{3}J_{\rm HP} = 15.1 \text{ Hz}; tBu$), 1.43 (m, 1H; PCHCH₂), 1.41 (m, 1H; PCHCH₂CH₂), 1.04 (m, 1H; PCHCH₂CH₂), 0.82 (m, 1H; PCHCH₂CH₂CH₂), 0.65 (m, 1H; PCHCH₂CH₂CH₂), 0.63 ppm (m, 3H; PCHCH₂CH₂CH₂CH₃); ¹¹B NMR (CD₂Cl₂): $\delta = -6.9$ (s; BOCH₃), -18.6 ppm (brs; BCH₂CHP); ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): $\delta = 148.4$ (dm, ${}^{1}J_{CF}=245$ Hz; overlapping signals of $o-C_{6}F_{5}$), 139.3 (dm, ${}^{1}J_{CF}=$ 253 Hz; overlapping signals of p-C₆F₅), 137.5 (dm, ${}^{1}J_{CF}$ =248 Hz; overlapping signals of m-C₆F₅), 123.3 (brs; overlapping signals of i-C₆F₅), 53.0 (s; OCH₃), 39.1 (d, ${}^{1}J_{CP}$ = 38.3 Hz; quaternary *t*Bu), 37.6 (d, ${}^{1}J_{CP}$ = 40.1 Hz; quaternary *t*Bu), 37.3 (d, ${}^{1}J_{CP}$ =34.7 Hz; PCH), 35.6 (d, ${}^{1}J_{CP}$ =42.5 Hz; quaternary *t*Bu), 35.5 (d, ${}^{1}J_{CP}$ =42.5 Hz; quaternary *t*Bu), 34.7 (d, ${}^{3}J_{CP}$ = 3.8 Hz; PCHCH₂CH₂), 33.3 (d, ${}^{2}J_{CP}$ =1.9 Hz; PCHCH₂), 29.0 (s; *t*Bu), 28.4 (s; *t*Bu), 27.1 (d, ${}^{2}J_{CP}$ =1.4 Hz; *t*Bu), 27.1 (d, ${}^{2}J_{CP}$ =1.7 Hz; *t*Bu), 23.9 (brs; BCH₂), 23.2 (s; PCHCH₂CH₂CH₂), 13.9 ppm (s; PCHCH₂CH₂CH₂CH₂), 23.2 (s; PCHCH₂CH₂CH₂), 13.9 ppm (s; PCHCH₂CH₂CH₂CH₂); δ = -131.9 (m, 2F; *o*-C₆F₅), -132.2 (m, 2F; *o*-C₆F₅), -134.2 (m, 4F; *o*-C₆F₅), -160.4 (t, 1F, ${}^{3}J_{FF}$ =20 Hz; *p*-C₆F₅), -160.9 (t, 1F, ${}^{3}J_{FF}$ =20 Hz; *p*-C₆F₅), -165.1 (t, 1F, ${}^{3}J_{FF}$ =20 Hz; *p*-C₆F₅), -162.1 (t, 1F, ${}^{3}J_{FF}$ =20 Hz; *p*-C₆F₅), -162.1 (t, 1F, ${}^{3}J_{FF}$ =20 Hz; *p*-C₆F₅), -165.1 (m, 4F; *m*-C₆F₅), -166.4 ppm (m, 4F; *m*-C₆F₅), ${}^{31}P_{1}^{1}H_{1}$ NMR (CD₂Cl₂): δ = 39.3 (brs; *P*CHCH₂B), 24.4 ppm (s; *P*H); elemental analysis calcd (%) for C₅₁H₅₁B₂F₂₀OP₂: C 53.57, H 4.50; found: C 53.83, H 5.00.

Synthesis of {[*t*Bu₂PC≡CB(C₆F₅)₂](*n*BuCH₂CH₂)}₂ (15): A Schlenk bomb (50 mL) was charged with compound 13 (23 mg, 0.021 mmol) in toluene (1.5 mL). 1-Hexene (1.5 mL, 12.0 mmol) was added by syringe to the bomb, which was then tightly closed and heated at 80 °C for 24 h. The light yellow solution was poured into a vial and hexanes (8 mL) was added to the solution. After standing in a freezer at -35 °C for 3 d, colorless crystals had precipitated. These were isolated, washed with hexanes and dried in vacuo to give the white product as a mixture of two diastereomers (7 mg, 28%). The crystalline product was suitable for X-ray diffraction studies. Mixture of two diastereomers: ¹H NMR (CD₂Cl₂): $\delta =$ 2.59 (m), 2.42 (m), 2.09 (m), 1.81 (m), 1.57 (d, 18H, ${}^{3}J_{HP} = 14.9$ Hz; tBu), 1.51 (d, 18H, ${}^{3}J_{HP} = 15.3$ Hz; tBu), 1.46 (d, 18H, ${}^{3}J_{HP} = 15.4$ Hz; tBu), 1.41 (m), 1.24 (m), 1.21 (d, 18 H, ${}^{3}J_{HP} = 15.0 \text{ Hz}$; tBu), 0.99 (m), 0.88 (t, ${}^{3}J_{HH} =$ 7.2 Hz), 0.73 (t, ${}^{3}J_{\rm HH}$ = 7.2 Hz), 0.67 ppm (m); ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂): δ = -18.1 ppm (br); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂; partial): $\delta = 40.3$ (d, ${}^{1}J_{CP} =$ 37.6 Hz; quaternary tBu), 39.2 (d, ${}^{1}J_{CP} = 38.2$ Hz; quaternary tBu), 38.5 (d, ${}^{1}J_{CP} = 40.0 \text{ Hz}$; quaternary *t*Bu), 37.4 (d, ${}^{1}J_{CP} = 39.1 \text{ Hz}$; quaternary *t*Bu), 34.7, 34.4, 33.1 (s), 32.8 (d, $J_{CP} = 9.9$ Hz), 31.6 (d, $J_{CP} = 13.2$ Hz), 29.7 (s; tBu), 29.6 (s; tBu), 29.4 (s; tBu), 28.2 (s; tBu), 23.7, 23.5 (s), 22.9 (s), 14.4 (s; CH₃), 14.0 (s; CH₃), 13.9 ppm (s; CH₃); ¹³C{¹⁹F} NMR (CD₂Cl₂): $\delta = 148.5$ (s; $o - C_6F_5$), 148.4 (s; $o - C_6F_5$), 148.1 (s; $o - C_6F_5$), 139.1 (s; $p - C_6F_5$), 137.5 (s; m-C₆F₅), 137.4 ppm (s; m-C₆F₅); ¹⁹F NMR (CD₂Cl₂): $\delta = -129.3$ (dm, 4F, ${}^{3}J_{FF}=20$ Hz; \hat{o} -C₆F₅), -131.2 (dm, 4F, ${}^{3}J_{FF}=20$ Hz; \hat{o} -C₆F₅), -132.3 (m, 4F; o-C₆F₅), -132.7 (dm, 4F, ${}^{3}J_{FF} = 20$ Hz; o-C₆F₅), -161.7 (t, 2 F, ${}^{3}J_{FF}$ = 20 Hz; *p*-C₆F₅), -162.0 (t, 2F, ${}^{3}J_{FF}$ = 20 Hz; *p*-C₆F₅), -162.2 (t, 2F, ${}^{3}J_{FF} = 20$ Hz; $p-C_{6}F_{5}$), -162.5 (t, 2F, ${}^{3}J_{FF} = 20$ Hz; $p-C_{6}F_{5}$), -165.8 (m, 8F; *m*-C₆F₅), -166.2 ppm (m, 8F; *m*-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂): $\delta =$ 43.0 (m), 41.3 ppm (s); elemental analysis calcd (%) for $C_{56}H_{60}B_2F_{20}P_2$: C 56.21, H 5.05; found: C 55.68, H 5.25.

Synthesis of $[tBu_2PC \equiv CB(C_6F_5)_2](nBuCH_2CH)[tBu_2PC \equiv CB(C_6F_5)_2][O-$ (CH₂)₄] (16): Compound 14 (30 mg) was dissolved in CH₂Cl₂ (10 mL) and THF (0.5 mL). The resulting mixture was left to stand at 25 °C without stirring for 1 d. The solvent was completely evaporated off. Following the addition of a small amount of pentane, the solid product was further dried in vacuo. Recrystallization by layering a CH2Cl2 solution of the compound with pentane was performed when further purification was necessary (26 mg, 81%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH2Cl2 with pentane at 25°C. ¹H NMR (CD₂Cl₂): $\delta = 3.48$ (m, 2H; OCH₂), 2.83 (m, 1H; PCH), 2.20 (m; BCH₂), 1.97 (m, 4H; PCHCH₂CH₂, PCH₂), 1.66 (m, 2H; OCH₂CH₂), 1.58 (d, 9H, ${}^{3}J_{HP} = 15.5$ Hz; tBu), 1.52 (d, 9H, ${}^{3}J_{HP} = 15.3$ Hz; *t*Bu), 1.48 (d, 9H, ${}^{3}J_{\rm HP} = 16.5$ Hz; *t*Bu), 1.41 (d, 9H, ${}^{3}J_{\rm HP} = 16.5$ Hz; *t*Bu), 1.14 (m, 2H; PCH₂CH₂), 0.82 (m, 2H; PCHCH₂CH₂), 0.71 (t, 3H, ${}^{3}J_{HH} =$ 7.0 Hz; CH₃), 0.50 ppm (m; CH₂CH₃); ¹¹B{¹H} NMR (CD₂Cl₂): $\delta = -7.1$ (s), -18.3 ppm (brs); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂): $\delta = 148.4$ (dm, ${}^{1}J_{CF} =$ 236 Hz; o-C₆F₅), 139.3 (dm, ${}^{1}J_{CF}$ =249 Hz; p-C₆F₅), 137.4 (dm, ${}^{1}J_{CF}$ = 254 Hz; *m*-C₆F₅), 123.5 (brs; quaternary C₆F₅), 73.3 (dm, ${}^{1}J_{CP} = 144$ Hz; C=CP), 71.4 (dm, ${}^{1}J_{CP}$ =146 Hz; C=CP), 64.2 (s; OCH₂), 41.2 (m; PCH), 39.1 (d, ${}^{1}J_{CP} = 38$ Hz; quaternary *t*Bu), 38.4 (d, ${}^{1}J_{CP} = 38$ Hz; quaternary *t*Bu), 37.1 (d, ${}^{1}J_{CP} = 44$ Hz; quaternary *t*Bu), 36.4 (d, ${}^{1}J_{CP} = 45$ Hz; quaternary tBu), 34.3 (s; OCH₂CH₂), 34.2 (d, ²J_{CP}=10 Hz; PCH₂CH₂), 31.7 (s; PCHCH2CH2), 29.7 (s; tBu), 29.3 (s; tBu), 27.2 (s; tBu), 26.9 (s; tBu), 24.7 (d, ${}^{2}J_{CP} = 6$ Hz; BCH₂), 23.6 (s; CH₂CH₂CH₃), 18.5 (d, ${}^{1}J_{CP} = 49$ Hz; PCH₂), 13.8 ppm (s; CH₃); 19 F NMR (CD₂Cl₂): $\delta = -131.6$ (m, 2F; o- C_6F_5), -132.1 (d, 2F, ${}^{3}J_{FF}=21$ Hz; o- C_6F_5), -134.2 (d, 4F, ${}^{3}J_{FF}=22$ Hz; o- C_6F_5), -161.6 (t, 2F, ${}^{3}J_{FF}=21$ Hz; p- C_6F_5), -161.9 (t, 1F, ${}^{3}J_{FF}=20$ Hz; p- C_6F_5), -162.1 (t, 1F, ${}^{3}J_{FF}=21$ Hz; p- C_6F_5), -165.5 (m, 2F; m- C_6F_5), −165.8 (m, 2F; *m*-C₆F₅), −166.5 (m, 2F; *m*-C₆F₅), −166.7 ppm (m, 2F; *m*-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂): 40.6 (brs), 38.2 ppm (s); IR (thin film from CH₂Cl₂): $\tilde{\nu}$ =2126 (C≡C); elemental analysis calcd (%) for C₅₄H₅₆B₂F₂₀OP₂: C 54.75, H 4.76; found: C 54.69, H 4.92.

Synthesis of {[*t*Bu₂PC≡CB(C₆F₅)₂][O(CH₂)₄]}₂ (17): A mixture of B-(C₆F₅)₃ (18 mg, 0.035 mmol) and PtBu₃ (7 mg, 0.035 mmol) dissolved in toluene (1.0 mL) was added to a solution of 5 (18 mg, 0.035 mmol) in toluene (1.0 mL). The reaction mixture immediately turned orange-yellow and became cloudy after stirring for 10 min. Hexanes were added and the reaction was left to stand at -35 °C for 30 min. The mixture was then filtered through Celite and washed with cold hexanes. More hexanes were added to the combined filtrate to a total amount of 18 mL (approximately 2 mM of the (C₆F₅)₂BC≡CPtBu₂ species). Upon addition of THF (40 µL), the solution immediately turned colorless. The reaction was kept at 25°C without stirring until a colorless crystalline material precipitated out (typically 2 d). The product was washed with pentane and dried in vacuo (8 mg, 39%). Single crystals suitable for X-ray diffraction were obtained from the reaction mixture. ¹H NMR (CD₂Cl₂): δ =3.55 (t, 4H, ${}^{3}J_{\rm HH} = 5.93 \text{ Hz}; CH_2OB), 2.22 (m, 4H; PCH_2), 1.96 (m, 4H;$ $PCH_2CH_2CH_2$), 1.75 (m, 4H; PCH_2CH_2), 1.38 ppm (d, 36H, ${}^{3}J_{HP}$ = 16.4 Hz; *t*Bu); ¹¹B{¹H} NMR (CD₂Cl₂): $\delta = -7.3$ ppm (s); ¹³C{¹H} NMR (CD_2Cl_2) : 148.4 (dm, ${}^{1}J_{CF} = 240 \text{ Hz}$; o-C₆F₅), 139.4 (dm, ${}^{1}J_{CF} = 246 \text{ Hz}$; p- C_6F_5), 137.3 (dm, ${}^{1}J_{CF} = 245$ Hz; m- C_6F_5), 69.9 (d, ${}^{1}J_{CP} = 149$ Hz; C=CP), 65.5 (s; BOCH₂), 36.4 (d, ${}^{1}J_{CP}$ =44.7 Hz; quaternary *t*Bu), 33.6 (d, ${}^{3}J_{CP}$ = 13.7 Hz; PCH₂CH₂CH₂), 27.0 (s; tBu), 25.1 (d, ${}^{2}J_{CP} = 6.4$ Hz; PCH₂CH₂), 18.2 ppm (d, ${}^{1}J_{CP} = 48.7 \text{ Hz}$; PCH₂), the *i*-C₆F₅ and C=CB carbon atoms were not observed; ¹⁹F NMR (CD₂Cl₂): $\delta = -134.0$ (dm, 16F, ³J_{FF}= 24 Hz; o-C₆F₅), -161.6 (t, 8F, ${}^{3}J_{FF}$ =20 Hz; p-C₆F₅), -166.2 ppm (m, 16F; m-C₆F₅); ³¹P{¹H} NMR (CD₂Cl₂): 38.1 ppm (s); elemental analysis calcd (%) for $C_{52}H_{52}B_2F_{20}O_2P_2$: C 53.27, H 4.47; found: C 53.36, H 3.95.

Synthesis of {[Mes₂PC=CB(C₆F₅)₂](CH=CPh)}₂ (18): The procedure described in the synthesis of 11 was followed to generate Mes₂PC=CB- $(C_6F_5)_2$ in situ from compound 9 (26 mg, 0.088 mmol), $ClB(C_6F_5)_2$ (68 mg, 0.18 mmol), and PtBu3 (18 mg, 0.089 mmol) in a toluene/hexanes (1:12, 6.5 mL) mixture. Phenylacetylene (100 µL, 0.91 mmol) was syringed into the reaction in one portion. After stirring at RT for 30 min, the solvent was evaporated off, and pentane was added to precipitate the product. The yellow product was further recrystallized by layering a CH2Cl2 solution of the compound with pentane at RT (18 mg, 28%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with pentane at 25 °C. ¹H NMR (CD₂Cl₂): $\delta = 9.07$ (d, 2H, ${}^{3}J_{HP} = 40.3$ Hz; CH), 6.83 (m, 18H; Ph, Mes), 2.35 (s, 24H; o-CH₃), 2.27 ppm (s, 12 H; *p*-CH₃); ¹¹B{¹H} NMR (CD₂Cl₂): $\delta = -19.4$ ppm (s); ¹³C{¹H} NMR (CD₂Cl₂; partial): $\delta = 144.0$ (d, ${}^{4}J_{CP} = 2.8$ Hz; p-C₆H₂), 143.1 (d, ${}^{2}J_{CP} = 10.3 \text{ Hz}$; o-C₆H₂), 132.0 (d, ${}^{3}J_{CP} = 11.5 \text{ Hz}$; m-C₆H₂), 130.3 (d, $J_{\rm CP}$ = 5.3 Hz; Ph), 128.0 (d, $J_{\rm CP}$ = 2.9 Hz; Ph), 127.2 (d, $J_{\rm CP}$ = 1.5 Hz; Ph), 120.5 (d, ${}^{1}J_{CP} = 91$ Hz; *i*-C₆H₂), 23.8 (d, ${}^{3}J_{CP} = 6.2$ Hz; *o*-CH₃, Mes), 21.3 ppm (s; *p*-CH₃, Mes); ${}^{13}C{}^{19}F{}$ NMR (CD₂Cl₂): $\delta = 147.7$ (s; *o*-C₆F₅), 139.0 (s; $p-C_6F_5$), 136.9 ppm (s; $m-C_6F_5$), a cross-peak for = CHB carbon was observed in an HSQC experiment at 177.5 ppm; ¹⁹F NMR (CD₂Cl₂): $\delta = -132.5$ (dm, 8F, ${}^{3}J_{FF} = 20$ Hz; $o - C_{6}F_{5}$), -162.3 (t, 4F, ${}^{3}J_{FF} = 20$ Hz; $p - C_{6}F_{5}$) C_6F_5), -166.5 ppm (m, 8F; m- C_6F_5); ³¹P{¹H} NMR (CD₂Cl₂): $\delta =$ -4.7 ppm (s); elemental analysis calcd (%) for $C_{80}H_{56}B_2F_{20}P_2$: C 64.89, H 3.81: found: C 62.85. H 4.08.

Synthesis of (C_6F_5)₂BC(H)=C[P(H)*t*Bu₂](AlCl₃) (19): A solution of 5 (75 mg, 0.15 mmol) in toluene (4 mL) was added to a stirring suspension of AlCl₃ (19 mg, 0.14 mmol) in toluene (4 mL). The reaction was stirred overnight at RT. After passing the reaction mixture through a plug of Celite, the solvent was evaporated from the filtrate. Recrystallization by layering a toluene solution of the compound with hexanes gave a white solid that was further washed with hexanes and dried in vacuo (67 mg, 74%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with hexanes at 25 °C. ¹H NMR (CD₂Cl₂, 298 K): δ =8.23 (d, 1H, ³J_{HP}=45.9 Hz; =CH), 5.42 (d, 1H, ¹J_{HP}=429 Hz; PH), 1.51 ppm (d, 18H, ³J_{HP}=16.5 Hz; *t*Bu₂); ¹¹B[¹H] NMR (CD₂Cl₂, 298 K): δ =12.6 ppm (brs); ¹³C[¹H] NMR (CD₂Cl₂, 298 K; partial): δ =186.9 (brs; =CH), 148.4 (dm, ¹J_{CF}=250 Hz; *m*-C₆F₅), 131.8 (dm, ¹J_{CF}=250 Hz; *m*-

Chem. Eur. J. 2011, 17, 6731-6743

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

6741

C₆F₅), 34.7 (d, ¹J_{CP} = 35 Hz; quaternary *t*Bu), 28.5 (s; *t*Bu), the *i*-C₆F₅ and C≡CAl carbon resonances were not observed; ¹⁹F NMR (CD₂Cl₂, 193 K): $\delta = -130.1$ (dm, 4F, ³J_{FF}=20 Hz; *o*-C₆F₅), -155.3 (t, 2F, ³J_{FF}=20 Hz; *p*-C₆F₅), -163.9 ppm (m, 4F; *m*-C₆F₅); ²⁷Al NMR (CD₂Cl₂, 298 K): $\delta = 103.8$ ppm (s); ³¹P{¹H} NMR (CD₂Cl₂, 298 K): $\delta = 76.9$ ppm (brs); elemental analysis calcd (%) for C₂₂H₂₀AlBCl₃F₁₀P: C 41.37, H 3.16; found: C 41.05, H 3.74.

Synthesis of $(C_6F_5)_2BC(H)=C[P(H)tBu_2](AlBr_3)$ (20): AlBr₃ (30 mg, 0.11 mmol) in toluene (1.0 mL) was added to compound 5 (58 mg, 0.11 mmol) dissolved in toluene (2.0 mL) at -35 °C, and the mixture was stirred at that temperature for 5 min. The reaction was warmed up to RT and stirred for a further 30 min. The precipitated product was separated on a filter frit and washed with toluene followed by pentane. The product was then dried in vacuo (42 mg, 48%). Single crystals suitable for X-ray diffraction were grown from a solution of the compound in bromobenzene at 25°C. ¹H NMR (C₆D₅Br): $\delta = 7.87$ (d, 1H, ³J_{HP}=45.0 Hz; =CH), 4.94 (d, 1 H, ${}^{1}J_{HP} = 432$ Hz; PH), 1.12 ppm (d, 18 H, ${}^{3}J_{HP} = 16.2$ Hz; tBu₂); ¹¹B NMR (C₆D₅Br): no signal observed; ¹³C{¹H} NMR (C₆D₅Br): $\delta =$ 147.4 (dm, ${}^{1}J_{CF} = 248$ Hz; o-C₆F₅), 140.8 (dm, ${}^{1}J_{CF} = 260$ Hz; p-C₆F₅), 136.7 (dm, ${}^{1}J_{CF} = 247$ Hz; *m*-C₆F₅), 114.2 (brs; *i*-C₆F₅), 33.6 (d, ${}^{1}J_{CP} = 33$ Hz; quaternary tBu), 27.3 (s; tBu), the olefinic carbon resonances were not observed; ¹⁹F NMR (C₆D₅Br): $\delta = -127.7$ (dm, 4F, ³ $J_{FF} = 23$ Hz; *o*-C₆F₅), -152.5 (brs, 2F; $p-C_6F_5$), -162.1 ppm (m, 4F; $m-C_6F_5$); ²⁷Al NMR (C₆D₅Br): $\delta = 81.0$ ppm (s); ³¹P{¹H} NMR (C₆D₅Br): $\delta = 84.5$ (brs); elemental analysis calcd (%) for $C_{22}H_{20}AlBBr_3F_{10}P$: C 33.75, H 2.57; found: C 34.10, H 2.68.

Synthesis of (C₆F₅)₃BC(H)=C[P(H)tBu₂][Zn(C₆F₅)] (21): Compound 5 (29 mg, 0.056 mmol) and $[Zn(C_6F_5)_2] \cdot C_7H_8$ (28 mg, 0.056 mmol) were stirred together in CH2Cl2 (2 mL) overnight at RT. Evaporation of the solvent afforded a white solid product (36 mg, 70%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH2Cl2 with pentane at 25°C. ¹H NMR (CD2Cl2): δ = 8.92 (d, 1 H, ${}^{3}J_{HP} = 46$ Hz; C=CH), 5.28 (d, 1H, ${}^{1}J_{HP} = 425$ Hz; PH), 1.36 ppm (d, 18H, ${}^{3}J_{\rm HP} = 15.7 \text{ Hz}; t\text{Bu}); {}^{11}\text{B}{}^{1}\text{H} \text{NMR} (\text{CD}_{2}\text{Cl}_{2}): \delta = -12.9 \text{ ppm} (d, {}^{3}J_{\rm BP} =$ 20 Hz); ${}^{13}C[{}^{1}H]$ NMR (CD₂Cl₂; partial): $\delta = 149.2$ (dm, ${}^{1}J_{CF} = 234$ Hz; o- C_6F_5 , [Zn(C_6F_5)]), 148.8 (dm, ${}^{1}J_{CF} = 241$ Hz; o- C_6F_5 , B(C_6F_5)₃), 142.2 (dm, ${}^{1}J_{CF} = 260 \text{ Hz}; p-C_{6}F_{5}, [Zn(C_{6}F_{5})]), 140.4 \text{ (dm, } {}^{1}J_{CF} = 241 \text{ Hz}; p-C_{6}F_{5}, B (C_6F_5)_3)$, 138.1 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3)$, 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$), 137.5 (dm, ${}^{1}J_{CF} = 246$ Hz; $m - C_6F_5$, B $(C_6F_5)_3$ 254 Hz; m-C₆F₅, [Zn(C₆F₅)]), 33.7 (d, ${}^{1}J_{CP}$ =38 Hz, quaternary tBu), 28.0 ppm (s; tBu), the $i-C_6F_5$ and olefinic carbon atoms were not observed; ¹⁹F NMR (CD₂Cl₂): $\delta = -117.5$ (d, 2F, ³ $J_{FF} = 21$ Hz; o-C₆F₅, [Zn- (C_6F_5)]), -130.4 (d, 6F, ${}^{3}J_{FF}=21$ Hz; o-C₆F₅, B(C₆F₅)₃), -151.7 (t, 1F, ${}^{3}J_{FF} = 20 \text{ Hz}; p-C_{6}F_{5}, [Zn(C_{6}F_{5})]), -158.8 \text{ (t, 3F, } {}^{3}J_{FF} = 21 \text{ Hz}; p-C_{6}F_{5}, B-$ (C₆F₅)₃), -160.5 (m, 2F; m-C₆F₅, [Zn(C₆F₅)]), -163.6 ppm (m, 6F; m- C_6F_5 , B(C_6F_5)₃); ³¹P{¹H} (CD₂Cl₂): $\delta = 73.6$ ppm (brs); elemental analysis calcd (%) for C34H20BF20PZn: C 44.60, H 2.20; found: C 44.90, H 2.42.

Synthesis of (C₆F₅)₃BC(H)=C[P(H)*t***Bu₂][Al(C₆F₅)₂] (22): In a small vial,** compound 5 (30 mg, 0.058 mmol) was dissolved in bromobenzne (1.0 mL) and the solution was layered with a solution of [Al-(C₆F₅)₃]-toluene (36 mg, 0.068 mmol) in benzene (2.0 mL). After 4 d standing at RT without stirring, a microcrystalline solid product had precipitated. The mother liquor was pipetted off, and the product was washed with benzene and pentane, followed by drying in vacuo (37 mg, 61%). Single crystals suitable for X-ray diffraction were obtained from the reaction mixture. ¹H NMR (C₆D₅Br): $\delta = 9.43$ (brd, 1H, ³J_{HP}= 51.2 Hz; =CH), 4.75 (d, 1 H, ${}^{1}J_{HP}$ = 423 Hz; PH), 0.94 ppm (d, 18 H, ${}^{3}J_{HP}$ = 16.1 Hz; tBu_2); ¹¹B NMR (C₆D₅Br): $\delta = -13.8$ ppm (s); ¹³C{¹H} NMR (C₆D₅Br): $\delta = 27.1$ (brs; *t*Bu), all other carbon resonances were not observed due to low solubility of the compound in C₆D₅Br; more polar solvents were not suitable as they reacted with the compound; ¹⁹F NMR $(C_6D_5Br): \delta = -121.3 \text{ (br s, } 4F; o-C_6F_5), -131.0 \text{ (br s, } 6F; o-C_6F_5), -147.8$ (brs, 2F; p-C₆F₅), -156.9 (brs, 3F; p-C₆F₅), -158.3 (brs, 4F; m-C₆F₅), -161.8 ppm (brs, 6F; m-C₆F₅); ²⁷Al NMR (C₆D₅Br): no signal observed; ³¹P{¹H} NMR (C₆D₅Br): no signal observed; elemental analysis calcd (%) for C44H29AlBF25P: C 47.98, H 2.65; found: C 46.28, H 3.01.

Synthesis of $[(C_6F_5)_2B]_2HC \equiv CH[P(H)tBu_2]$ (23): Compound 5 (100 mg, 0.19 mmol) and HB(C_6F_5)₂ (67 mg, 0.19 mmol) were stirred in toluene (5 mL) at 25 °C overnight. The solvent was then completely evaporated

off, and the residue was stirred in hexanes (6 mL) overnight. The white solid product was isolated, washed with haxanes, and dried in vacuo (113 mg, 68%). Single crystals suitable for X-ray diffraction were grown by layering a solution of the product in CH₂Cl₂ with hexanes at 25°C. ¹H NMR (CD₂Cl₂, 298 K): $\delta = 4.61$ (dd, 1 H, ¹ $J_{HP} = 433$ Hz, ³ $J_{HH} = 12.7$ Hz; PH), 3.39 (dd, 1H, ${}^{3}J_{HP} = 16.5$ Hz, ${}^{3}J_{HH} = 11.7$ Hz; CH[B(C₆F₅)₂]₂), 2.44 (t, 1 H, ${}^{3}J_{HH} = 12.0$ Hz; CHPHtBu₂), 1.52 (d, 9 H, ${}^{3}J_{HP} = 15.9$ Hz; tBu), 1.43 ppm (d, 9H, ${}^{3}J_{HP} = 15.6 \text{ Hz}$; tBu); ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂, 298 K): $\delta =$ 60.5 (brs), -15.9 ppm (s); ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 298 K, partial): $\delta =$ 143.1 (m; o-, p-, m-C₆F₅), 41.6 (s; CHPHtBu₂), 36.2 (d, ${}^{1}J_{CP}$ = 35 Hz; quaternary *t*Bu), 33.9 (d, ${}^{1}J_{CP}$ = 35 Hz; quaternary *t*Bu), 28.7 (s; *t*Bu), 27.8 (s; *t*Bu), 13.3 ppm (brs; $CH[B(C_6F_5)_2]_2$) (the *i*- C_6F_5 carbon atoms were not observed; ¹⁹F NMR (CD₂Cl₂, 193 K): $\delta = -126.9$ (dm, 1 F, ³J_{FF} = 23 Hz; *o*- C_6F_5 , -128.9 (m, 1F; o- C_6F_5), -129.8 (m, 2F; o- C_6F_5), -130.2 (brs, 1F; o-C₆F₅), -132.3 (brs, 1F; o-C₆F₅), -132.9 (m, 1F; o-C₆F₅), -133.6 (dm, 1F, ${}^{3}J_{FF} = 23$ Hz; o-C₆F₅), -152.5 (t, 1F, ${}^{3}J_{FF} = 20$ Hz; p-C₆F₅), -152.8 (t, 1F, ${}^{3}J_{FF} = 20$ Hz; p-C₆F₅), -156.9 (t, 1F, ${}^{3}J_{FF} = 20$ Hz; p-C₆F₅), -159.3 (t, 1F, ${}^{3}J_{FF} = 20$ Hz; p-C₆F₅), -161.1 (brs, 1F; m-C₆F₅), -162.3 (brs, 1F; m-C₆F₅), -162.6 (m, 1F; m-C₆F₅), -163.0 (m, 2F; m-C₆F₅), -163.2 (m, 1F; m-C₆F₅), -164.1 (m, 1F; m-C₆F₅), -166.4 ppm (m, 1F; m-C₆F₅); $^{31}P{^{1}H} NMR (CD_2Cl_2, 298 \text{ K}): \delta = 55.6 \text{ ppm (s)}; \text{ elemental analysis calcd}$ (%) for C₃₄H₂₁B₂F₂₀P: C 47.37, H 2.46; found: C 46.77, H 2.36.

X-ray crystallography: Crystals were coated in paratone-N oil in the glovebox, mounted on a MiTegen Micromount and placed under an N2 stream, thus maintaining a dry, O2-free environment for each crystal. The data were collected on a Bruker Apex II diffractometer employing MoKa radiation ($\lambda = 0.71073$ Å). Data collection strategies were determined by using Bruker Apex software and optimized to provide >99.5% complete data to a 2θ value of at least 55°. The data were collected at $150(\pm 2)$ K for all crystals. The frames were integrated with the Bruker SAINT software package by using a narrow-frame algorithm. Data were corrected for absorption effects by using the empirical multiscan method (SADABS). Nonhydrogen atomic scattering factors were taken from the literature tabulations. The heavy-atom positions were determined by using direct methods employing the SHELXTL direct-methods routine. The remaining nonhydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on F, minimizing the function ω - $(F_{o}-F_{c})^{2}$ in which the weight ω is defined as $4F_{o}^{2}/2\sigma(F_{o}^{2})$ and F_{o} and F_{c} are the observed and calculated structure factor amplitudes, respectively, In the final cycles of each refinement, all nonhydrogen atoms were assigned anisotropic temperature factors in the absence of disorder or insufficient data. In the latter case atoms were treated isotropically. C-H atom positions were calculated and allowed to ride on the carbon to which they are bound assuming a C-H bond length of 0.95 Å. H-atom temperature factors were fixed at 1.20 times the isotropic temperature factor of the C atom to which they are bound. The H atom contributions were calculated, but not refined. The locations of the largest peaks in the final difference Fourier map calculation, as well as the magnitude of the residual electron densities in each case, were of no chemical significance. CCDC-768761 (10), 808763 (12), 808764 (11), 808765 (14), 808766 (15), 808767 (16), 808768 (17), 808769 (18), 808770 (2), 808771 (19), 808772 (21), 808773 (20), 808774 (23), 808775 (22), 808776 (3), 808777 (4), 808778 (8), and 808779 (9) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif..

Acknowledgements

Professor Stephan is grateful for the financial support of NSERC of Canada and the award of a Canada Research Chair and a Killam Research Fellowship. XZ is grateful for the award of an NSERC-CGS scholarship.

[1] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, *Science* 2006, 314, 1124–1126.

- [2] P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. 2007, 119, 8196–8199; Angew. Chem. Int. Ed. 2007, 46, 8050–8053.
- [3] P. A. Chase, T. Jurca, D. W. Stephan, Chem. Commun. 2008, 1701– 1703.
- [4] P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich, G. Erker, Angew. Chem. 2008, 120, 7654–7657; Angew. Chem. Int. Ed. 2008, 47, 7543–7546.
- [5] V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskela, T. Repo, P. Pyykko, B. Rieger, *J. Am. Chem. Soc.* 2008, *130*, 14117– 14119.
- [6] H. D. Wang, R. Fröhlich, G. Kehr, G. Erker, Chem. Commun. 2008, 5966–5968.
- [7] C. F. Jiang, O. Blacque, H. Berke, Chem. Commun. 2009, 5518– 5520.
- [8] V. Sumerin, F. Schulz, M. Nieger, M. Atsumi, C. Wang, M. Leskela, P. Pyykko, T. Repo, B. Rieger, J. Organomet. Chem. 2009, 694, 2654–2660.
- [9] S. Schwendemann, T. A. Tumay, K. V. Axenov, I. Peuser, G. Kehr, R. Fröhlich, G. Erker, *Organometallics* 2010, 29, 1067–1069.
- [10] S. J. Geier, P. A. Chase, D. W. Stephan, Chem. Commun. 2010, 46, 4884–4886.
- [11] J. S. J. McCahill, G. C. Welch, D. W. Stephan, Angew. Chem. 2007, 119, 5056–5059; Angew. Chem. Int. Ed. 2007, 46, 4968–4971.
- [12] C. M. Mömming, S. Fromel, G. Kehr, R. Fröhlich, S. Grimme, G. Erker, J. Am. Chem. Soc. 2009, 131, 12280–12289.
- [13] J. B. Sortais, T. Voss, G. Kehr, R. Fröhlich, G. Erker, Chem. Commun. 2009, 7417–7418.
- [14] T. Voss, C. Chen, G. Kehr, E. Nauha, G. Erker, D. W. Stephan, *Chem. Eur. J.* 2010, 16, 3005–3008.
- [15] M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 8396– 8397.
- [16] S. J. Geier, M. A. Dureen, E. Y. Ouyang, D. W. Stephan, *Chem. Eur. J.* 2010, 16, 988–993.
- [17] C. F. Jiang, O. Blacque, H. Berke, Organometallics 2010, 29, 125– 133.
- [18] M. A. Dureen, C. C. Brown, D. W. Stephan, Organometallics 2010, 29, 6594–6607.
- [19] M. A. Dureen, C. C. Brown, D. W. Stephan, Organometallics 2010, 29, 6422–6432.
- [20] C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, G. Erker, Angew. Chem. 2009, 121, 6770–6773; Angew. Chem. Int. Ed. 2009, 48, 6643–6646.

- [21] M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 13559– 13568.
- [22] G. Menard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796-1797.
- [23] R. C. Neu, E. Otten, D. W. Stephan, Angew. Chem. 2009, 121, 9889– 9892; Angew. Chem. Int. Ed. 2009, 48, 9709–9712.
- [24] E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918–9919.
- [25] H. Westenberg, J. C. Slootweg, A. Hepp, J. Kosters, S. Roters, A. W. Ehlers, K. Lammertsma, W. Uhl, *Organometallics* 2010, 29, 1323– 1330.
- [26] X. X. Zhao, E. Otten, D. T. Song, D. W. Stephan, Chem. Eur. J. 2010, 16, 2040–2044.
- [27] X. X. Zhao, T. M. Gilbert, D. W. Stephan, Chem. Eur. J. 2010, 16, 10304–10308.
- [28] A. Kondoh, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2007, 129, 4099–4104.
- [29] P. Spies, R. Fröhlich, G. Kehr, G. Erker, S. Grimme, *Chem. Eur. J.* 2008, 14, 779–779.
- [30] S.-W. Leung, D. A. Singleton, J. Org. Chem. 1997, 62, 1955-1960.
- [31] K. Köhler, W. E. Piers, A. P. Jarvis, Y. F. S. Xin, A. M. Bravakis, S. Collins, W. Clegg, G. P. A. Yap, T. B. Marder, *Organometallics* 1998, 17, 3557–3566.
- [32] G. C. Welch, J. D. Masuda, D. W. Stephan, *Inorg. Chem.* 2006, 45, 478–480.
- [33] B. Birkmann, T. Voss, S. J. Geier, M. Ullrich, G. Kehr, G. Erker, D. W. Stephan, *Organometallics* 2010, 29, 5310–5319.
- [34] G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett, A. Voigt, J. Am. Chem. Soc. 1999, 121, 4922–4923.
- [35] Z. Yang, X. Ma, R. B. Oswald, H. W. Roesky, H. Zhu, C. Schulzke, K. Starke, M. Baldus, H.-G. Schmidt, M. Noltemeyer, *Angew. Chem.* 2005, 117, 7234–7236; *Angew. Chem. Int. Ed.* 2005, 44, 7072–7074.
- [36] L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quinones, V. Brecht, I. Krossing, Angew. Chem. 2008, 120, 7772–7776; Angew. Chem. Int. Ed. 2008, 47, 7659–7663.
- [37] A. Hofner, B. Ziegler, W. Massa, A. Berndt, Angew. Chem. 1989, 101, 188–190; Angew. Chem. Int. Ed. 1989, 28, 186–187.
- [38] R. A. Bartlett, M. M. Olmstead, P. P. Power, G. A. Sigel, *Inorg. Chem.* 1987, 26, 1941–1946.
- [39] D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 17, 5492–5503.
- [40] D. A. Walker, T. J. Woodman, D. L. Hughes, M. Bochmann, Organometallics 2001, 20, 3772–3776.

Received: January 19, 2011 Published online: May 5, 2011

FULL PAPER