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N-heterocyclic carbene (NHC) has been employed as an efficient catalyst for cyanation reaction of car-
bonyl compounds. Under catalysis of 1 mol % NHCs, various aldehydes and 2,2,2-trifluoroacetophenone
coupled with ethyl cyanoformate in THF to provide cyanohydrins ethyl carbonates in excellent yields.
While in the presence of 10 mol % catalyst, different types of aldehydes and 2,2,2-trifluoroacetophenone
reacted with acetyl cyanide in dichloroethane to give acylated cyanohydrins in moderate to high yields.

� 2011 Elsevier Ltd. All rights reserved.
The past decade has witnessed a dramatic growth in organoca-
talysis chemistry of N-heterocyclic carbenes (NHCs).1 As one class
of versatile nucleophilic organocatalyst, NHCs have been utilized
broadly in a variety of important transformations, such as benzoin
reaction,2 Stetter reaction,3 ring-opening reaction,4 homoenolate
transformations5 and other reactions.6 Recently, NHCs were found
to be efficient catalysts for cyanosilylation of carbonyl compounds
and aldimines, using trimethylsilyl cyanide as a cyanation
reagent.7

Cyanohydrins serve as essential building blocks in biologically
active compounds,8 and tremendous efforts have been devoted to
synthesizing this type of important compounds.9 Hydrogen cya-
nide and trimethylsilyl cyanide are most commonly used as the
sources of cyanide ions. However, the intrinsic high toxicity and
the instability of O-trimethylsilyl cyanohydrins restrain their po-
tential application sometimes. To overcome the unavoidable weak-
ness of hydrogen cyanide and trimethylsilyl cyanide, alkyl
cyanoformates and acyl cyanide have been applied as alternative
cyanide sources, and different catalytic systems for these types of
cyanations have been developed successfully in the recent years.10

In contrast to the extensive exploration of chiral ligand-metal
catalysis, the reactions promoted by organocatalysts were far less
examined.11 In line with our continue interest of NHCs chemis-
try,12 we found that NHCs can be used as efficient catalysts for
the cyanation of aldehydes with ethyl cyanoformate and acetyl
ll rights reserved.
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cyanide, respectively. Herein, we would like to discourse our preli-
minary results on this topic.

Initially, the cyanoethoxycarbonylation reaction of benzalde-
hyde and ethyl cyanoformate was tested under catalysis of differ-
ent kinds of NHCs. To our delight, we found that the reaction
proceeded very smoothly in the presence of 10 mol % 1,3-bis(2,6-
diisopropylphenyl)imidazole-2-ylidene (IPr, a stable NHC),13

affording cyanohydrin ethyl carbonate 8a in a moderate yield after
12 h (Table 1, entry 1). Interestingly, when we increased the
amount of ethyl cyanoformate to 2.0 equiv, the reaction could be
converted quantitatively within 30 min (Table 1, entry 2). Similar
results were obtained with NHCs generated in situ from precursors
2 and 3 (Table 1, entries 3, 4), whereas NHCs derived from thiazo-
lium and triazolium salts showed low catalytic activities (Table 1,
entries 5–7). A brief survey of solvents revealed that dichlorometh-
ane, ether and toluene were all suitable reaction media (Table 1,
entries 8–10). Surprisingly, lowered catalyst loading to 1 mol %,
the excellent reaction yield can still be maintained (Table 1, entry
11). Even after decreasing catalyst loading to 0.5 mol %, the reac-
tion finished in slightly lower yield within 2 h (Table 1, entry
12). Further reduced catalyst loading to 0.1 mol % led to a dramatic
decrease of the yield (Table 1, entries 13, 14).

With the optimal reaction conditions in hand, a series of alde-
hydes were evaluated for the reaction and the results were sum-
marized in Table 2.14 It was found that both aromatic and
aliphatic aldehydes were suitable electrophiles. Aromatic alde-
hydes with either electro-donating or withdrawing groups worked
well, and the substituted groups showed a slight influence on the
reaction yield (Table 2, entries 1–7). Additionally, the position of
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Table 2
NHCs catalyzed cyanation of aldehydes with ethyl cyanoformatea

NC OEt

O

6

IPr (1 mol%)
R CN

O

O

OEt

RCHO

7 8THF, r.t.

Entry Aldehyde Time (h) Product Yieldb (%)

1
CHO

1 8a 98

2
CHO

24 8b 90

3
MeO

CHO
24 8c 73

4
O

O

CHO
36 8d 83

5
CHOMeO

2 8e 99

6

CHO

F
12 8f 96

7

CHO

Cl
4 8g 94

8
CHOBr

12 8h 94

9

CHO

Cl
24 8i 90

10
CHO

4 8j 97

11

CHO

OMe
4 8k 98

12

CHO

OEt
24 8l 97

13

CHO

OCH2Ph
4 8m 85

14

CHO

CF3

4 8n 94

15

CHO

ClCl
8 8o 91

16
CHO

2 8p 99

17
CHO

36 8q 70

18
CHO

12 8r 82

19 CF3

O

12 8s 64

a Reaction conditions: 6 (2.0 equiv), 7 (1.0 equiv), IPr (1 mol %), THF 2.0 mL, r.t.
b Isolated yields.

Table 1
NHCs catalyzed cyanation of benzaldehyde with ethyl cyanoformatea

NC OEt

O
NHC (10 mol%)

CHO

CN

O

O

OEt

N N ArAr

1

Ar=2,6-(i-Pr)2C6H3

N N ArAr

2

Ar=1,3,5-Me3C6H2

Cl-
N N ArAr

3
Ar=2,6-(i-Pr)2C6H3

Cl-

S N R

4a: R = Bn, X = Cl

X-

OH N
N

N
Ph

Cl

5

7a 8a

+

4b: R = Me, X = I

solvent

6

Entry NHC Solvent Time (h) Yieldb (%)

1c 1, (10 mol %) THF 12 63
2 1, (10 mol %) THF 0.5 99
3 2, KOt-Bu (10 mol %) THF 1.5 91
4 3, KOt-Bu(10 mol %) THF 2 90
5 4a, KOt-Bu(10 mol %) THF 24 11
6 4b, KOt-Bu(10 mol %) THF 24 18
7 5, KOt-Bu(10 mol %) THF 24 14
8 1, (10 mol %) DCM 1 95
9 1, (10 mol %) Et2O 1 96

10 1, (10 mol %) Toluene 1 85
11 1, (1 mol %) THF 1 98
12 1, (0.5 mol %) THF 2 89
13 1, (0.1 mol %) THF 12 22
14 1, (0.01 mol %) THF 12 —

a 6 (2.0 equiv), 7a (1.0 equiv), solvent: 2.0 mL, r.t.
b Isolated yields.
c 6 (1.0 equiv).
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substituents had little effects on the reactions (Table 2, entries 8–
15). On the other hand, aliphatic aldehydes such as cyclohexane-
carboxaldehyde and 3-phenylpropionaldehyde were also good
substrates for the additions (Table 2, entries 17, 18). Interestingly,
2,2,2-trifluoroacetophenone was also proved to be an excellent
candidate, giving 8s in a 64% yield (Table 2, entry 19).

In the view of the high reactivity of ethyl cyanoformate ob-
served, acetyl cyanide 9 was also tested.15 This time, the solvent
switched to DCE, and increasing the loading of IPr to 10 mol %
proved to be optimal.16 High yields were obtained for the most
tested aromatic as well as the aliphatic aldehydes, although rela-
tively long time was needed, presumably because of the stronger
bond between the acetyl and cyanide groups in 9. As expected,
the reaction of aromatic aldehydes with electron-donating groups
proceeded slowly and provided the desired products in moderate
yields (Table 3, entries 1–17). Also, 2,2,2-trifluoroacetophenone
was investigated, giving 10r in low yield (Table 3, entry 18).

Based on the previous work of NHCs promoted cyanosilylation
reaction of carbonyl compounds, two plausible mechanisms were
illustrated in Scheme 1. Initially, the addition of NHC to aldehyde
may initiate the following cyanation reaction (pathway I). Alterna-
tively the addition was triggered through the activation of cyana-
tion reagent by NHCs (pathway II).‘

In summary, we have demonstrated a new method for NHCs-
catalyzed cyanation of aldehydes and 2,2,2-trifluoroacetophenone
with ethyl cyanoformate or acetyl cyanide. The low catalyst
loading and mild conditions provide a valuable approach for the
synthesis of O-protected cyanohydrins. Further studies toward
the expansion of the scope, and using this method to other electro-
philes are ongoing in our laboratory.



Table 3
NHCs catalyzed cyanation of aldehydes with acetyl cyanidea

NC CH3

O

9

IPr (10 mol%)
R CN

O

O

CH3

RCHO

7 10ClCH2CH2Cl, r.t.

Entry Aldehyde Time (h) Product Yieldb (%)

1
CHO

24 10a 83

2
CHO

36 10b 65

3
MeO

CHO
36 10c 62

4
CHOMeO

36 10d 81

5

CHO

F
24 10e 78

6

CHO

Cl
12 10f 82

7
CHOBr

18 10g 76

8

CHO

Cl
12 10h 78

9

CHO

Me
48 10i 82

10

CHO

OMe
48 10j 73

11

CHO

OEt
48 10k 71

12

CHO

OCH2Ph
48 10l 70

13

CHO

CF3

36 10m 84

14

CHO

ClCl
8 10n 89

15
CHO

24 10o 82

16
CHO

36 10p 90

17
CHO

12 10q 71

18 CF3

O

36 10r 30

a Reaction conditions: 9 (2.0 equiv), 7 (1.0 equiv), IPr (10 mol %), solvent 2.0 mL,
r.t.

b Isolated yields.
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Scheme 1. Proposed mechanisms.
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