
Journal of Molecular Structure 1205 (2020) 127594

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

A rhodamine-based fluorescent sensor for selective detection of Cu²⁺ in aqueous media: Synthesis and spectroscopic properties

Department of Chemistry, Morgan State University, Baltimore, MD, 21251, USA

ARTICLE INFO

Article history: Received 6 August 2019 Received in revised form 18 November 2019 Accepted 14 December 2019 Available online 16 December 2019

Keywords: Microwave Fluorescence sensor Rhodamine Chromone Cu^2 CN⁻

ABSTRACT

Two new chemosensors, rhodamine B derivative bearing 3-formyl-6-nitrochromone (L1) and 3-formyl-6methylchromone (L_2) units were designed and synthesized using microwave irradiation for the selective detection of Cu^{2+} in aqueous media. Copper triggers the formation of highly fluorescent ring-open spirolactam. The fluorescence intensity was remarkably increased upon the addition of Cu^{2+} within a minute, while the other metal ions caused no significant effect. More importantly, the resulting complexes can be used as a reversible fluorescence sensor for CN⁻. The recognition ability of the sensors was investigated by fluorescence titration, Job's plot, ¹H NMR spectroscopy and density functional theory (DFT) calculations.

© 2019 Published by Elsevier B.V.

1. Introduction

Copper is the third in abundance among the essential heavy metals in human bodies and plays an important role in various physiological processes. It is essential for the activation of dioxygen, which is essential for the survival of all living organisms. Copper also has multiple functions, as iron absorption, hemopoiesis, diverse enzyme activities and in the redox processes [1,2]. Abnormal levels of copper ions can lead to vomiting, lethargy, increased blood pressure, acute haemolytic anemia, neurotoxicity, and neurodegenerative disease [3-6]. Accordingly, fluorescent and colorimetric sensors for the detection of Cu²⁺ have received increasing scientific attention [7-13]. So far, various Cu²⁺ sensors have been proposed; however, most of these show a turn-off response, because Cu²⁺ usually acts as a quencher via an energy or electron-transfer process [14]. Recently, "Turn-on" types have also been reported [14–18]. However, there are some probes designed based on rhodamines, which show a fluorescence off-on response with reversible behavior upon complexation [15,16].

Rhodamine dyes were used to construct fluorescent sensors because of their excellent spectroscopic properties, such as long

Corresponding author. E-mail address: Fasil.Abebe@morgan.edu (F. Abebe).

https://doi.org/10.1016/j.molstruc.2019.127594 0022-2860/© 2019 Published by Elsevier B.V.

absorption and emission wavelength, high fluorescent quantum vield, large extinction coefficient, and great photostability [19–23]. Rhodamine derivatives are non-fluorescent and colorless, but ringopening of the corresponding spirolactam produces strong fluorescence emission and a pink color [24]. This property provides an ideal model for constructing OFF-ON fluorescent sensors. The equilibrium between the two forms is highly sensitive to the pH of the medium, the ring-open form being predominant in acidic conditions. Metal ions can trigger the change in structure between the spirocyclic and ring-open form and therefore rhodamine-based compounds have been well established as sensors for metal ions [18-24].

Here, we report two new rhodamine derivatives, L1 and L2, with different substituent groups on chromone ring designed for rapid, selective, and colorimetric sensors for Cu²⁺, in which the spirolactam to ring-opened amide process was utilized for the detection of Cu²⁺ in aqueous media. Several studies have shown that the structure of the substituent group on the lactam ring has influence on the properties of rhodamine derivatives [25,26,28]. The presence of nitro (-NO₂) units can significantly increase the sensitivity and selectivity of chemical sensors for Cu²⁺ compared to methyl (-CH₃) groups. After comparison of optical properties, probe L_1 showed a good performance in Cu^{2+} recognition, which indicated that the different electronic distributions among the sensor's structures have an influence on their properties. For this reason, we

selected L_1 as a typical example to expound in the following discussion. In this work, we present an efficient, clean, and straightforward procedure to prepare rhodamine derivatives by microwave-assisted organic synthesis under minimum solvent conditions, using ethanol as a green solvent and short reaction times.

2. Experimental

2.1. Materials and instruments

All the reagents and solvents were purchased as analyticalgrade and used without further purification unless otherwise stated. Microwave-assisted organic synthesis reactions were carried out in a CEM microwave reactor. ¹H NMR and ¹³C NMR spectra were recorded using an Avance 400 MHz NMR spectrometer (Bruker Biospin, Billerica, MA, USA). The IR spectrum was obtained using Shimadzu IRAffinity-1S FTIR spectrometer (Shimadzu Scientific, Columbia, MD, USA). All UV/Vis spectroscopy experiments were recorded using Agilent Cary 60 UV–Vis spectrometer (Agilent, Walnut Creek, CA, USA). Fluorescence emission experiments were measured using Varian Cary Eclipse fluorescence spectrophotometer (Varian, Walnut Creek, CA, USA), with excitation and emission slit widths of 5 nm and excitation wavelength at 510 nm.

2.2. Spectroscopic studies

The stock solutions of metal ions were prepared from their nitrate and chloride salts and anion species from their tetrabuty-lammonium salts. Distilled deionized water was used throughout the experiments. All the spectroscopic studies were performed in aqueous acetonitrile solution in which the sensors formed a colorless solution that was stable for more than a week. Stock solutions of ligands **L**₁ and **L**₂ (1 × 10⁻³ M), selected salts of cations (1 × 10⁻³ M) and anions (1 × 10⁻⁴ M) were prepared in CH₃CN/H₂O. **L**₁-Cu²⁺ and **L**₂-Cu²⁺ solution for CN⁻ detection were prepared by addition of 1.0 equivalent of Cu²⁺ to the solution of both **L**₁ and **L**₂ (20 μ M) in Tris-HCl (10 mM, pH = 7.2) buffer containing CH₃CN/H₂O (7:3 v/v) solution. The resulting solution was shaken well before recording the spectra.

2.3. Fluorescence titration experiments

The fluorescence titration experiments of rhodamine derivatives (20 μ M) were carried out in acetonitrile solution. Each fluorescence titration was repeated at least three times until consistent values were obtained. Jobs continuous variation method was used for determining the binding stoichiometry of the complexation reaction. The association constant (K) was calculated from absorbance studies by linear Benesi-Hildebrand equation [27]. The detection limits (DLs) of sensor for Cu²⁺ were calculated using the equation (DL = $3\sigma/S$), where σ is the standard deviation of the blank measurements and S is the slope between the emission intensity vs the concentration of copper ion.

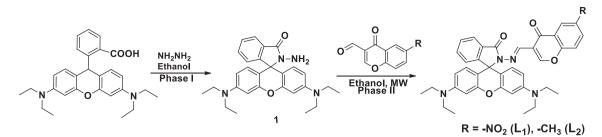
2.4. DFT studies

Time-density functional theory (TD-DFT) calculations were employed to elucidate the Cu²⁺ interactions with **L**₁ and **L**₂ systems. All computations were carried out using Spartan'18 software package. Geometry optimization of the ground state structures was carried out with TD-DFT at the B3LYP level of theory using 6-31G (d, p) basis set in the gas phase and in a simulated water medium.

2.5. Microwave-assisted synthesis of L_1 and L_2

Synthesis of compound L1: A mixture of 1 (100 mg, 0.219 mmol), 3-formyl-6-nitrochromone (48 mg, 0.219 mmol), and ethanol (2 mL) was placed in a 10 mL reaction vial. The resulting mixture was stirred to make it homogeneous and it was placed in the cavity of a CEM microwave reactor. The closed reaction vessel was run under pressure and irradiated according to the parameters described in Table S9. After cooling to room temperature, the resulting solid was filtered and washed three times with cold ethanol. After drying, the ligand L₁ was isolated to give in 83% yield. ¹H NMR (DMSO), δ (ppm): 8.65 (1H, s, N=C-H); 8.64 (1H, s), 8.51 (1H, d), 8.40 (1H, s), 7.71 (2H, m, H-Ar), 7.51 (2H, m, H-Ar), 7.09 (1H, d), 6.63 (2H, d), 6.44 (2H, d), 6.28 (2H, dd), 3.31 (8H, q, NCH₂CH₃), 1.14 (12H, t, NCH₂CH₃). ¹³C NMR (CDCl₃), δ (ppm): 165.12, 158.82, 153.75, 153.20, 151.97, 149.03 (N=C-H), 144.88, 137.81, 133.77, 128.69, 128.42, 127.93, 124.21, 123.98, 123.54, 122.72, 120.71, 120.04, 108.00, 105.32, 98.01, 66.01 (spiro carbon), 44.35 (NCH₂CH₃), 12.61 (NCH₂CH₃).

Synthesis of compound L₂: A mixture of 1 (100 mg, 0.219 mmol), 3-formyl-6-methylchromone (41 mg, 0.218 mmol), and ethanol (2 mL) was placed in a 10 mL reaction vial. The resulting mixture was stirred to make it homogeneous and it was placed in the cavity of a CEM microwave reactor. The closed reaction vessel was run under pressure and irradiated according to the parameters described in Table S10. After cooling to room temperature, the resulting solid was filtered and washed three times with cold ethanol. After drying, the ligand L₂ was isolated to give in 87% vield. ¹H NMR (CDCl₃), δ (ppm): 8.65 (1H, s, N=C-H); 8.40 (1H, s). 8.90 (1H, d), 8.81 (1H, s), 7.41 (2H, m, H–Ar), 7.30 (2H, m, H–Ar), 7.09 (1H, d), 6.44 (4H, H–Ar), 6.28 (2H, dd), 3.30 (8H, q, NCH₂CH₃), 2.32 (3H, s), 1.14 (12H, t, NCH₂CH₃). ¹³C NMR (CDCl₃), δ (ppm): 175.59, 165.01, 153.38, 153.81, 153.21, 152.94, 149.03, 149.88 (N=C-H), 140.46, 135.40, 134.83, 133.44, 128.93, 128.25, 127.88, 125.25, 123.81, 119.65, 117.95, 107.95, 105.71, 105.69, 98.10, 66.02 (spiro carbon), 44.32 (NCH₂CH₃), 20.93, 12.65 (NCH₂CH₃).


3. Results and discussion

3.1. Synthesis

The classical synthetic protocol to synthesize rhodamine compounds involves the reaction of rhodamine B with hydrazine hydrate (79%) in ethanol (phase I), followed by condensation of the resulting rhodamine B hydrazide **1** with chromone aldehydes also in ethanol (phase II), as is described in Scheme 1. The reaction conditions for the microwave-assisted synthesis of rhodamine compounds (L_1 and L_2) are summarized in Table S9 and Table S10, respectively. The work-up was easy and the products were obtained in excellent to moderate yields. Most significant are the substantially decreased reaction time, mild reaction conditions, no side reactions, and simplicity of the reaction procedure. Structural elucidation of synthesized compounds was carried out by means of FTIR and NMR spectroscopy.

3.2. Photophysical studies

The absorption spectra of L_1 and L_2 with Cu^{2+} were investigated by spectrophotometric titration in aqueous acetonitrile Tris-HCl buffer (10 mM, pH 7.2). The colorless solutions showed no absorption above 450 nm, properties which are characteristic of the predominant ring-closed spirolactam. This was further confirmed by the ¹³C NMR signal at δ 66.01 and δ 66.02 for compound L_1 and L_2 respectively. However, upon addition of Cu²⁺ ion, a new absorption band at 560 nm appeared with a shoulder at 520 nm, and

Scheme 1. Chemical structure and synthetic route of L₁ and L₂.

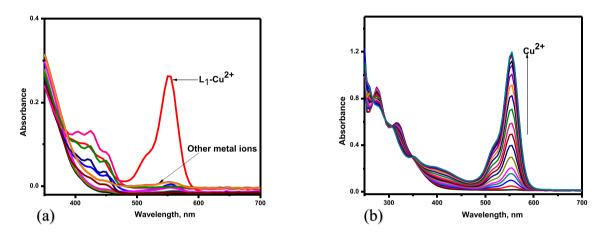


Fig. 1. (a) UV–Vis spectra of L₁ (10 µM) with metal ions in CH₃CN/H₂O (7:3 v/v) solution. (b) UV–Vis spectra of L₁ (10 µM) with Cu²⁺ (0–20 µM) in CH₃CN/H₂O (7:3 v/v) solution.

absorbance increased with increasing Cu²⁺ concentration, which can be ascribed to the formation of the ring-opened amide form of **L**₁ and **L**₂ upon Cu²⁺ ion binding (Fig. 1). Meanwhile, the titration solutions turned pink instantaneously because of the ring-open structure caused by Cu²⁺ binding, suggesting that both compounds can serve as a naked-eye indicator for Cu²⁺ ions. No significant change in the UV–Vis spectrum was observed upon the addition of a 5-equivalent excess of other metal ions of interest: Na⁺, K⁺, Mg²⁺, Ca²⁺, Ni²⁺, Zn²⁺, Co²⁺, Hg²⁺, Pb²⁺, Fe²⁺, Fe³⁺, Cr²⁺ and Cu²⁺ registered the highest absorption enhancement while little interference from Cr³⁺ and Ni²⁺ in the absorption spectra (Fig. S2). Therefore, both compounds exhibited high selectivity for Cu²⁺ over other metal ions.

The fluorescence responses of compound L_1 and L_2 to most metal ions were conducted by adding 5 equivalent of different metal ions respectively to the aqueous acetonitrile solutions. The fluorescence spectra were obtained by excitation at 510 nm, and both the excitation and emission slit were 5 nm. The sensors exhibited similar fluorescence spectroscopic properties upon binding with Cu^{2+} . The fluorescence emission wavelengths for L_1 and L_2 sensors appeared at 580 nm and 578 nm, respectively (Fig. 2a and Fig. S3). This remarkable fluorescence enhancement was reasonably attributed to the existing conjugated xanthene tautomer of the rhodamine moiety of compounds L_1 and L_2 [29]. There was a significant fluorescence emission intensity enhancement with 5 equivalents of Cu^{2+} which indicates that compound L_1 is an excellent turn-on sensor for Cu^{2+} . Under the same conditions,

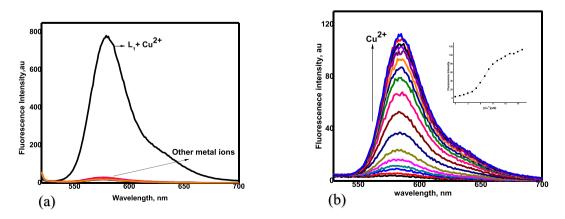


Fig. 2. (a) Fluorescence spectra of L_1 (20 μ M) with metal ions (20 μ M) in CH₃CN/H₂O (7:3 v/v) solution (λ ex = 510 nm). (b) Fluorescence spectral titration of L_1 (10 μ M) on the incremental addition of Cu²⁺ (0–5equiv) (λ ex = 510 nm).

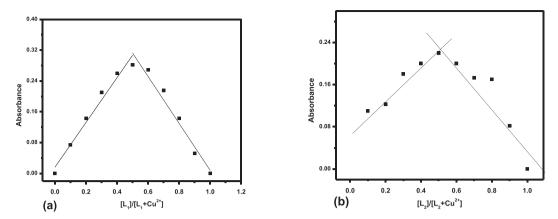
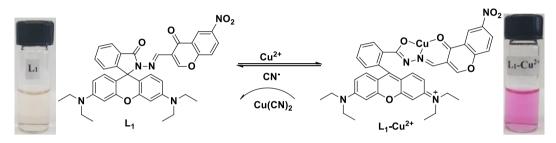



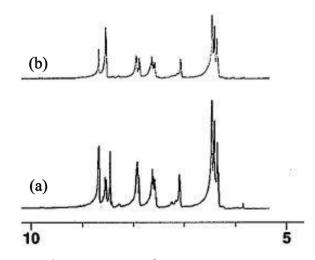
Fig. 3. (a) Job's plot for determination of L_1 - Cu^{2+} complex (50 μ M) in CH_3CN/H_2O (7:3 v/v) solution. (b) Job's plot for determination of L_2 - Cu^{2+} complex (50 μ M) in CH_3CN/H_2O (7:3 v/v) solution.

Scheme 2. A possible proposed binding mechanism of sensor L_1 towards Cu^{2+} in the presence and absence of cyanide ion.

we explored the sensitivity measurement of ion sensors. As shown in Fig. S4, rhodamine B derivative with nitro group exhibit excellent sensitivity towards copper ion. The fluorescence turn-on rates are observed to increase by a factor of six as the substituent is turned from methyl to nitro. Comparison of the fluorescence spectra of sensors L_1 - Cu^{2+} and L_2 - Cu^{2+} further confirmed the important role of substituents on the chromone ring. Therefore, we prefer to select electron-withdrawing substituent to detect metal ion that reveal high sensitivity. Thus, only L_1 was chosen for further discussion, and the optical spectra of L_2 are shown in the supporting information.

3.3. Fluorescence titration studies

The change in fluorescence emission spectrum was explored upon the addition of increasing concentrations of Cu²⁺. Upon addition of Cu²⁺, the fluorescence intensity increased in a Cu²⁺ concentration-dependent way as shown in Fig. 2b, accompanied with an obvious orange fluorescent enhancement. From the emission titration experiment, the association constant (k_a) of **L**₁ with Cu²⁺ was estimated to be 3.12×10^4 M⁻¹. Based on the fluorescence titration experiments, the limit of detection of **L**₁ for sensing Cu²⁺ was calculated and it was found to be 2.11 μ M.


3.4. Binding studies

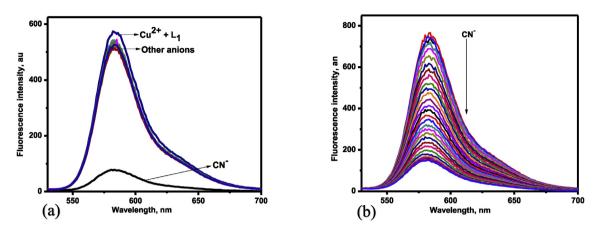
To confirm the stoichiometry between sensor and Cu^{2+} , the method of continuous variation (Job's plot) was used [30]. During this experimental process, the total concentration of sensor and Cu^{2+} was kept constant at 50 μ M, with a continuous variable molar fraction of guest [Cu^{2+}]/([sensor] + [Cu^{2+}]). As shown in Fig. 3, the plot of absorbance at 560 nm as a function of mole fraction of added Cu^{2+} ion reveals that both sensors bind to copper ion in 1:1

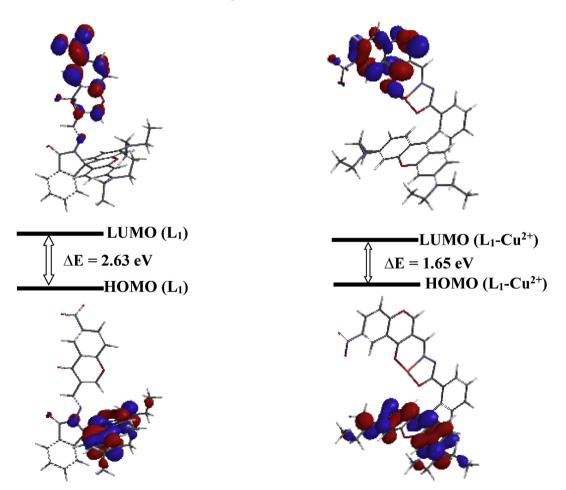
stoichiometry. The proposed binding mode of L_1 is shown in Scheme 2.

3.5. pH studies

The fluorescence response of sensors was investigated under various pH conditions. As the pH decreases, the fluorescence intensity of L_1 and L_2 increases which could be ascribed to the spirolactum ring opening of the sensors due to the strong protonation [31]. Figs. S5 and S6 showed that for free sensors at pH⁻⁵, due to protonation of the open-ring of spirolactam, an obvious color

Fig. 4. Partial ¹H NMR titration with Cu^{2+} ions in DMSO- d_{6-} [(a) L_1 and (b) L_1 : Cu^{2+} (1:1)].




Fig. 5. (a) Changes in the fluorescence spectra of L_1 -Cu²⁺ complex in presence of different anions. (b) Fluorescence spectra of L_1 (20 μ M) with copper ion upon addition of CN⁻ (0–5equiv) in CH₃CN/H₂O (7:3 v/v) solution.

change and fluorescence turn-on appeared. Thus, all the optical measurements were performed in buffer solution with a pH of 7 to keep the sensors in their ring closed form. These results indicated that, the sensors can be applied for environmental and biological samples.

3.6. NMR and IR studies

¹H NMR spectra of L_1 and L_1 in the presence of one equivalent of Cu^{2+} have been recorded in DMSO- d_6 . Various aromatic protons

appear in the range of 6–9 ppm. The partial ¹H NMR spectrum of **L**₁ shows the signal at 8.44 ppm corresponds to imine hydrogen which gets shifted up-filled with the addition of one equivalent of Cu²⁺ ions. Nevertheless, almost no spectral changes were observed in other proton signals with addition of Cu²⁺ (Fig. 4). The characteristic peak of the amide carbonyl $_{<}(C=0)$ shifted from 1652 cm⁻¹ to 1642 cm⁻¹ in the presence of Cu²⁺, indicating that carbonyl O atoms of the **L**₁ involved in the coordination of Cu²⁺ (Fig. S10). Band at 1595 cm⁻¹ is attributed to the presence of C=N moiety in free compound and that band is shifted to 1590 cm⁻¹ in Cu²⁺ complex

Fig. 6. Electronic distribution of HOMO and LUMO energy levels for L_1 and the L_1 -Cu²⁺ in gas phase.

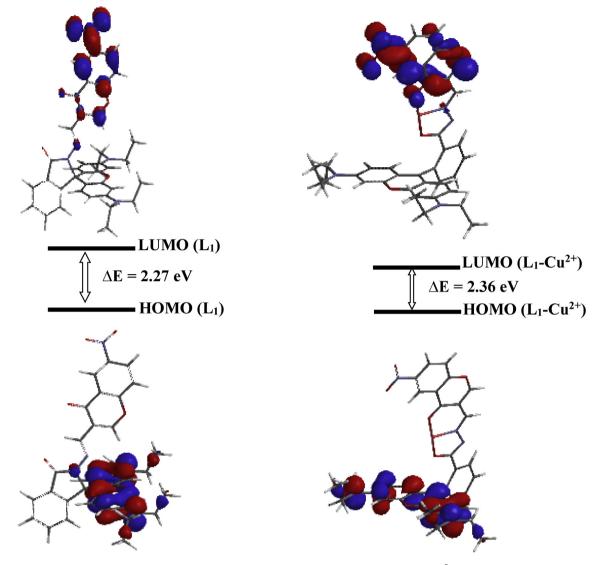


Fig. 7. Electronic distribution of HOMO and LUMO energy levels for L and the L_1 -Cu²⁺ in water.

indicating retention of the C=N bond in the complex. These results suggested that the imine N, rhodamine carbonyl O, and chromone carbonyl O atoms participated in the coordination with Cu^{2+} .

3.7. Detection of cyanide (CN⁻)

It was interesting to investigate the reversible binding nature of the sensor L_1 as shown in Fig. 5a and Scheme 2. It is very exciting and noteworthy that sensor L_1 could be regenerated only by adding CN⁻ to the solution containing L_1 -Cu²⁺. Common anions, such as Cl⁻, I⁻, F⁻, ClO₄, CH₃COO⁻, HSO₄, H₂SO₄⁻, PO₄³⁻, SCN⁻, S⁻², HS⁻, and OH⁻, did not generate the same results. Due to the high stability of Cu(CN)₂, the L_1 -Cu²⁺ complex could be serving as a possible means to detect CN⁻. The addition of CN⁻ to the L_1 -Cu²⁺ solution led to a change in color of the solution from pink to colorless, which was observed with the naked eye. The addition of CN⁻ to L_1 -Cu²⁺ solution resulted in the reversal of the Cu²⁺ induced changes in the emission band at 580 nm in the fluorescence emission spectra. Thus, results strongly support that L_1 -Cu²⁺ binds CN⁻ ions with higher selectivity and the process is reversible. Fig. 5b shows that the intensity of the fluorescence emission decreases with increasing concentration of cyanide anion. The

proposed binding mechanism of sensor L_1 with Cu^{2+} in the presence and absence of CN^- was shown in Scheme 2.

3.8. Computational studies

Time-dependent density functional theory (TD-DFT) calculations using the B3LYP functional and the 6-31G(d,p) basis set in the gas phase, and in a simulated water medium using a conductor like polarizable continuum (CPCM) model to obtain vertical UV–Vis electronic excitation data on sensors L_1 and L_2 and their respective Cu²⁺ complexes L_1 - Cu²⁺ and L_2 - Cu²⁺. Also, emission data for the respective Cu²⁺ complexes in simulated acetonitrile were obtained. Atomic coordinates of the optimized structures were obtained from Spartan '18 software and then used as input to obtain both Spartan '18 (TDA) and Gaussian '09 (TD) data on said complexes. Spartan and Gaussian calculations of Cu²⁺ complexes showed excellent agreement. Wavelengths and oscillator strengths(f) for prominent vertical electronic excitations, as well as emission data for sensors and Cu²⁺ complexes are highlighted below.

In the gas phase for L_1 , the most intense transition occurs at 408.19 nm with f = 0.1274, and the energy gap between the highest

occupied molecular orbital (HOMO = -5.11 eV) and the lowest unoccupied molecular orbital (LUMO = -2.48 eV) is 2.63 eV $(\lambda = 471.42 \text{ nm})$. In water, this gap is 2.27 eV ($\lambda = 546.19 \text{ nm}$), and HOMO is -5.04 eV and LUMO is -2.77 eV, and the most intense transition is 446.16 nm (f = 0.0050). For L_1 -Cu²⁺ in the gas phase, the most intense transition is 734.37 nm (f = 0.0050) and the frontier orbital gap is 1.65 eV (751.42 nm, HOMO = -9.74 eV and LUMO = -8.09 eV). In water, this gap is 2.36 eV (525.36 nm. HOMO = 5.55 eV, LUMO = 3.19 eV) compared to 1.65 eV in the gas phase. However, in water the dominant vertical excitation for L1- Cu^{2+} occurs at 587.88 nm (f = 0.0035). For L₁, in both the gas phase and in water, HOMO is delocalized primarily over the entire xanthene moiety and the nitrogen of the two amino substituents while LUMO is delocalized over the oxo-chromene moiety and the nitro group with some electron density found on the nitrogen of the imine group. In the case of L_1 - Cu^{2+} , similar electron density distribution is found for HOMO and LUMO in both gas and water (Figs. 6 and 7).

In the gas phase for L_2 , the most intense transition occurs at 320.21 nm (f = 0.5252), and in water at 322.19 nm (f = 0.6298). Also, in the gas phase, the frontier energy gap for L_2 is 3.62 eV $(\lambda = 342.50 \text{ nm}, \text{HOMO} = -5.03 \text{ eV} \text{ and } \text{LUMO} = -1.41 \text{ eV})$, and in water, this gap is 3.25 eV (381.49 nm, HOMO = -5.07 eV and LUMO = -1.82 eV). In the gas phase for L₂- Cu²⁺, the most intense transition occurs at 659.37 nm (f = 0.0070); the HOMO-LUMO energy gap is 2.11 eV (587.60 nm, HOMO = -9.67 eV and LUMO = -7.56 eV). In water, the dominant vertical excitation is 593.60 nm (f = 0.0040). The HOMO-LUMO energy gap is 2.81 eV (441.22 nm) with HOMO = -5.55 eV and LUMO is -2.74 eV. For L₂ in both gas and water, HOMO is found primarily on half of the xanthene moiety, and LUMO is found throughout the oxochromene moiety, imine group, the spirolactam ring and the connecting benzene ring. For L_2 -Cu²⁺ in gas, HOMO is delocalized over the entire xanthene moiety and the two amino substituents. LUMO is delocalized over the oxo-chromene moiety. For L_2 -Cu²⁺ in water, both the HOMO and the LUMO are found over the xanthene moiety, however, in the HOMO there is a separation at the xanthene oxygen and the carbon para to it, but no separation exists in the LUMO (Figs. S14–15).

In simulated acetonitrile for L_1 - Cu^{2+} , the most intense absorption transition occurs at 442.11 nm (f = 1.3137); the HOMO-LUMO energy gap is 2.35 eV (527.59 nm, HOMO = -5.61 eV and LUMO = -3.26 eV (Fig. S16). As in the case in both the gas phase and water, HOMO is delocalized primarily over the entire xanthene moiety and over the nitrogens of the two amino substituents while LUMO resembles more of the LUMO of L_1 -Cu²⁺ in water. Also, in simulated acetonitrile, the most intense emission peak in the fluorescent spectrum of L_1 -Cu²⁺ is at 707.76 nm (f = 0.0074). In the same medium, for L_2 -Cu²⁺, the most intense absorption transition occurs at 441.03 nm (f = 1.3953); the HOMO-LUMO energy gap is 2.82 eV (439.66 nm, HOMO = -5.60 eV and LUMO = -2.78 eV) (Fig. S17); and both frontier orbitals HOMO and LUMO of L_2 -Cu²⁺ in acetonitrile resemble their counterparts in water, respectively. The most intense emission peak for L_2 -Cu²⁺ is at 695.87 (f = 0.0078).

4. Conclusion

In conclusion, two rhodamine derivatives with different substituents groups have been synthesized for the detection of copper ions in aqueous acetonitrile solution. Sensor L_1 showed fast response, good selectivity and sensitivity toward Cu^{2+} in aqueous solution. Sensor L_1 could be used as a potential material for Cu^{2+} recognition in a low concentration. These studies show that compared with the methyl unit (-CH₃), the introduction of nitro (-NO₂) groups to chromone unit of compound L₁ can significantly improve sensitivity and selectivity to copper ion. The in situ prepared L_1 -Cu²⁺ complex was used to detect CN⁻ via the metaldisplacement approach which displayed an excellent selectivity and sensitivity towards CN⁻.

Author's contributions

F.A. conceived and designed the experiments: analyzed and confirmed the data analysis and wrote the paper. P.P. performed the microwave reaction experiments; R. S. performed computational studies; S. T. performed the job's plot experiment.

Declaration of competing interest

The authors declared that there is no conflict of interest.

Acknowledgements

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number SC2GM125512 and Morgan State University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.molstruc.2019.127594.

References

- [1] L. Malvankar, M. Shinde, Ion-pair extraction and determination of copper (II) and Zinc (II) in environmental and pharmaceutical samples, Analyst 116 (1991) 1081 - 1084.
- [2] C. Bull, R. Thomas, J. Rommens, R. Forbes, W. Cox, The Wilson disease gene is a putative copper transporting p-type ATPase similar to the menkes gene, Nat. Genet. 5 (1993) 327-337.
- [3] K. Vogt, J. Mellor, G. Tong, R. Nicoll, The action of synaptically released Zinc at hippocampal mossy fiber synapses, Neuron 26 (2000) 187-196.
- [4] K. Barnham, C. Masters, A. Bush, Neurodegenerative disease and oxidative stress, Nat. Rev. Drug Discov. 3 (2004) 205214.
- [5] D. Waggoner, T. Bartnikas, J. Gitlin, The role of copper in neurodegenerative disease, Neurobio 6 (1999) 221.
- [6] D. Brown, H. Kozlowski, Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans, 13 (2004) 1907.
- [7] Z. Liu, C. Zhang, X. Wang, W. He, Z. Guo, Design and synthesis of a ratiometric fluorescent chemosensor for Cu (II) with a fluorophore hybridization approach 14 (2012) 4378.
- [8] Z. Liu, Z. Yang, T. Li, B. Wang, Y. Li, D. Quin, M. Wang, M. Yan, An effective Cu(II) guenching fluorescence sensors in aqueous solutions and 1D chain coordination polymer framework, Dalton Trans. 40 (2011) 9370.
- [9] H. Sung, P. Kwm, J. Lee, J. Kim, C. Hong, J. Kim, S. yan, J. Lee, T. Joo, Coumarin-derived Cu²⁺-selective fluorescence sensor: synthesis, mechanism, and applications in living cells, J. Am. Chem. Soc. 132 (2009) 2008. [10] J. Liu, J. Yang, C. Chan, Z. Huang, A new fluorescent chemosensor for Fe³⁺ and
- based on Calix [4] arene, Tetrahedron Lett. 43 (2002) 9209. Cu^{2+}
- [11] A. Weerasinghe, F. Abebe, E. Sinn, Rhodamine based turn-on dual sensor for Fe³⁺ and Cu²⁺, Tetrahedron Lett. 52 (2011) 5648.
 [12] F.J. Hue, J. Su, Y.Q. Sun, C.X. Yin, H.B. Tong, Z.X. Nie, A rhodamine-based dual
- chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium, Dyes Pigments 86 (2010) 50.
- [13] F. Abebe, E. Sinn, Fluorescein-based fluorescent and colorimetric chemosensors for copper in aqueous media, Tetrahedron Lett. 52 (2011) 5234.
- [14] Z. Xuan, S. Yasuhiro, H. Takayuki, Cu(II)-selective green fluorescence of a rhodamine- diacetic acid conjugate, Org. Lett. 9 (2007) 5039-5042.
- [15] C. Xiaoqiang, J. Min, L. Hanyoung, K. Songzi, L. Jeesun, N. Seong-Won, P. Sungsu, K. Kwan-Mook, Y. Juyoung, New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu²⁺, Sens. Actuators B 137 (2009) 597–602.
- [16] D. Ming, M. Tian-Hua, Z. Ai-Jiang, D. Yu-Man, W. Ya-Wen, P. Yu, A series of highly sensitive and selective fluorescent and colorimetric 'off-on" chemosensors for Cu(II) based on rhodamine derivatives, Dyes Pigments 87 (2010) 164 - 172.
- [17] C. Xinqi, M. Huimin, A selective fluorescence-on reaction of spiro form fluorescein hydrazide with Cu(II), Anal. Chim. Acta 575 (2006) 217-222.
- [18] K. Manoj, K. Naresh, B. Vandana, S. Parduman, K. Tandeep, Highly selective fluorescence Turn-on chemodosimeter based on rhodamine for nanomolar

detection of copper ions 14 (2012) 406.

- [19] Z. Zhang, Y. Zhang, W. Hang, X. Yan, Y. Zhao, Sensitive and Selective Off-On Rhodamine Hydrazide Fluorescent Chemosensor for Hypochlorous Acid Detection and Bioimaging, vol. 85, 2011, p. 779.
- [20] A.J. Weerasinghe, F.A. Abebe, A. Venter, E. Sinn, Rhodamine based turn-on sensors for Cr³⁺ and Ni²⁺: detecting CN⁻ via the metal displacement approach of sensor-Cr³⁺ complex, J. Fluoresc. 26 (2016) 891.
- [21] J. Huang, Y. Xu, X. Qian, A rhodamine-based Hg²⁺ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor, J. Org. Chem. 74 (2009) 2167.
- [22] L. Li, Z. Fang, A novel "turn on" glucose-based rhodamine B fluorescent chemosensor for mercury ions recognition in aqueous solution, Spectrosc. Lett. 58 (2014) 578.
- [23] A. Leite, A.M. Silva, L. Cunha-Silva, B. De Castro, P. Gameiro, M. Rangel, Discrimination of fluorescence light-up effects induced by P^H and metal ion chelation on a spirocyclic derivative of rhodamine B, Dalton Trans. 42 (2013) 6110.
- [24] A.J. Weerasinghe, C. Schmiesing, E. Sinn, Highly sensitive and selective reversible sensor for the detection of Cr^{3+} , Tetrahedron Lett. 50 (2009) 6407–6410.
- [25] A.J. Weerasinghe, C. Schmiesing, E. Sinn, Synthesis, characterization, and

evaluation of rhodamine based sensors for nerve gas mimics, Tetrahedron 67 (2011) 2833–2838.

- [26] W. Du, Y. Cheng, W. Shu, B. Wu, Z. Kong, Z. Qi, The influence of different substituents on spectral properties of rhodamine B based chemosensors for mercury ion and application in EC 109 cells, Can. J. Chem. 95 (2017) 751–757.
- [27] F. Abebe, E. Sinn, E, Fluorescein-based fluorescent and colorimetric chemosensors for copper in aqueous media, Tetrahedron Lett. 52 (2011) 5234–5240.
- [28] Y. Xiang, A. Tong, Peiyuan Jin, Y. Ju, New fluorescent rhodamine hydrazine chemosensor for Cu(II) with high selectivity and sensitivity, Org. Lett. 8 (2006), 2863-2863.
- [29] X. Huang, Z. Lu, Z. Wang, C. Fan, W. Fan, X. Shi, H. Zhang, M. Pei, A colorimetric and turn-on fluorescent chemosensor for selectivity sensing Hg²⁺ and its resultant complex for fast detection of Γ and S⁻², Dyes Pigments 128 (2016) 33–40.
- [30] C. Li, Qin, B. Wang, L. Fan, J. Yan, Z. Yang, A chromone-derived Schiff-base ligand as Al³⁺ turn on fluorescent sensor: synthesis and spectroscopic properties, J. Fluoresc. 26 (2016) 345–353.
- [31] P. Cui, X. Jiang, J. Sun, Q. Zhang, F. Gao, A water-soluble rhodamine B-derived fluorescent for pH monitoring and imaging in acidic regions, Methods Appl. Fluoresc. 5 (2017), 024009.