Oxidative Deprotection of 1,3-Dithiane Group Using NaClO₂ and NaH₂PO₄ in Aqueous Methanol

Takahiro Ichige,^a Annu Miyake,^a Naoki Kanoh,^{a,b} Masaya Nakata*^a

^a Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Fax +81(45)5661551; E-mail: msynktxa@applc.keio.ac.jp

^b Antibiotics Laboratory, Discovery Research Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Received 17 May 2004

Abstract: The 1,3-dithiane group was oxidatively deprotected under the conditions of sodium chlorite, sodium dihydrogenphosphate, and 2-methyl-2-butene in 3:1 methanol–water at room temperature in good yield.

Key words: thioacetals, sodium chlorite, sodium dihydrogenphosphate, protecting groups, deprotection

1,3-Dithiane derivatives are versatile intermediates in organic synthesis. Since the introduction by Corey and Seebach in 1965,¹ the 2-metallo-1,3-dithiane derivatives have been used as excellent acyl anion equivalents for carboncarbon bond formation.^{2,3} Moreover, the 1,3-dithiane group is widely used as an important carbonyl protecting group because of its stability in both acidic and basic conditions.⁴ However, it is necessary to use special conditions for deprotection of the 1,3-dithiane group to generate the parent carbonyl group.^{4,5} Therefore, the development of new deprotection methods is still of continuous concern by synthetic organic chemists.⁶ During the course of our synthetic studies on biscembranoid marine natural products, we found that dithiane aldehyde $\mathbf{1}^7$ was converted to keto carboxylic acid 2 under normal oxidation conditions, i.e., NaClO₂, NaH₂PO₄, and 2-methyl-2-butene in 3:1 t-BuOH-H₂O at room temperature (Scheme 1).⁸ We considered that this oxidation method would be a new, facile, and mild alternative for the deprotection of the 1,3dithiane group. We describe in this letter the results of this research.

SYNLETT 2004, No. 10, pp 1686–1690 Advanced online publication: 15.07.2004 DOI: 10.1055/s-2004-829558; Art ID: U14304ST © Georg Thieme Verlag Stuttgart · New York We selected silvl ether **3a**, prepared from 1,3-propanediol via alcohol **3b** as shown in Scheme 2, as the model compound. First, solvent (0.2 M for **3a**) optimization was investigated (Table 1) using 6 molar amounts of NaClO₂,⁹ 2 molar amounts of NaH₂PO₄,¹⁰ and 10 molar amounts of 2-methyl-2-butene at room temperature for the indicated reaction time. As shown in Table 1, alcoholic solvents were suitable for this reaction (entries 7–10); among them, 3:1 MeOH–H₂O was the best choice (entry 10, 84% yield of **4a**).

Scheme 2 Preparation of 1,3-dithiane derivatives **3a**–e

Next, the substrate concentration was examined in 3:1 MeOH–H₂O. Data in Table 2 show that the lower the concentration for **3a**, the better the isolated yield of **4a**. From a synthetic point of view, the 0.1 M substrate concentration is suitable; therefore, the following experiments were conducted in the 0.1 M concentration.

Under these optimized conditions, several 1,3-dithiane derivatives, 3b-e (Scheme 2) and 3f-r (Figure 1; the preparation of 3f-r is shown in Scheme 3),¹¹ were subjected to the deprotection reactions. These results are compiled in Table 3.

The 2,2-dialkyl-1,3-dithiane derivatives, **3b–h**, afforded the corresponding parent carbonyl compounds, **4b–h**, in good yields (entries 1–7). No α -epimerization occurred in the case of **3f** (entry 5). 2,2-Diphenyl-1,3-dithiane (**3i**) and

TBDM	SO $\frac{S}{\sqrt{2}}$ $\frac{S}{\sqrt{4}}$ Me	NaClO ₂ (6 NaH ₂ PO ₄ (2-methyl-2- (10 mol am	mol amt), 2 mol amt), -butene Tl it),	
Entry	Solvent	solvent (0.2	2 M for 3a), r.t.	$\mathbf{V}_{iald}(0) \text{ of } 4\mathbf{a}^{a}$
Епиу	Solvent		Time (II)	1 leiu (%) 01 4a
1	3:1 EtOAc-H	I ₂ O	2	29
2	3:1 THF-H ₂	C	2	30
3	3:1 CH ₂ Cl ₂ -	H_2O	2.5	31
4	3:1 Acetone-	3:1 Acetone–H ₂ O		39
5	3:1 DMF-H ₂	0	2	42
6	3:1 MeCN-H	3:1 MeCN-H ₂ O		55
7	3:1 t-BuOH-	3:1 <i>t</i> -BuOH–H ₂ O		54
8	3:1 <i>i</i> -PrOH–	3:1 <i>i</i> -PrOH–H ₂ O		67
9	3:1 EtOH-H	3:1 EtOH–H ₂ O		77
10	3:1 MeOH-H	I ₂ O	2	84

Table 1 Solvent Optimization for Deprotection of 3a

^a Isolated yield after silica-gel column chromatography.

 Table 2
 Effect of Substrate Concentration for Deprotection of 3a

TBDMSO	NaClO ₂ (6 mol amt), NaH ₂ PO ₄ (2 mol amt), Z-methyl-2-butene (10 mol amt), 3:1 MeOH-H ₂ O, r.t., 2 h	DMSO H ₂ H ₄ Me 4a
Entry	Concentration (M) for 3a	Yield (%) of $4a^{a}$
1	0.2	84
2	0.1	92
3	0.05	97

^a Isolated yield after silica-gel column chromatography.

the 2-aryl-2-pentyl-1,3-dithiane derivatives, **3**j–**m**, also gave the corresponding parent carbonyl compounds, **4**i– **m**, in good yields. The electronic nature of the substituent on the phenyl ring had only a small influence on the yields of **4**i–**m** (entries 8–12). In contrast, in the case of the estersubstituted 1,3-dithiane derivative **3n**, ketone **4n** was isolated in less than 10% yield (entry 13). Only a complex mixture was obtained when the aliphatic aldehyde- and benzaldehyde-derived 1,3-dithiane derivatives, **3o** and **3p**, were subjected to our conditions (entries 14 and 15). Interestingly and expected, the aromatic aldehyde-derived 1,3-dithiane derivatives having the methoxy substituent, **3q** and **3r**, gave a mixture of the carboxylic acids and their methyl esters in good yields (entries 16 and 17).

Figure 1

A possible rationale for the substituent dependence on the success of the reaction is as follows (Scheme 4). When the first mono-oxidized intermediate **I** is opened to give the intermediate **II** (path a),¹² deprotection smoothly proceeds to afford the parent carbonyl compound. However, when the intermediate **I** is further oxidized to give the intermediate **III** (path b), deprotection does not proceed under the given reaction conditions.^{2b} The critical point is the electronic nature of the substituents at the C2 position of the 1,3-dithiane derivatives. Ketone-derived 1,3-dithiane derivatives prefer the path a route because the two substituents can stabilize the intermediate **II**. The electron-withdrawing ester substituent (**3n**) would prevent the path a route and only one alkyl or phenyl substituent (**3o** or **3p**) would be insufficient for the path a route.

It is noteworthy that the methyl esters were obtained in the case of **3q** and **3r** (Table 3, entries 16 and 17). With **3q**, an interesting disulfide **6** (Scheme 5) was also isolated in 12% yield. The structure of **6** was confirmed by ¹H NMR, ¹³C NMR, and MS spectra. In addition, the following results also support the structure; reduction of **6** with Bu₃P gave thiol **8** (6:1 CH₂Cl₂–H₂O, r.t., 0.5 h, quantitative yield, Scheme 6) and thiol **8** was oxidized to **6** by treatment with I₂ (MeOH, Et₃N, r.t., 10 min, 77%). We considered that this *S*-alkyl thioate **6** would be the precursor of methyl ester **5**. To rationalize this assumption, we conducted an experiment using a 1 molar amount of **3q** and 2 molar amounts of NaClO₂, giving a 57:12:19:12 mixture

Synlett 2004, No. 10, 1686-1690 © Thieme Stuttgart · New York

Scheme 3 Preparation of 1,3-dithiane derivatives 3f-r

Scheme 4

Synlett 2004, No. 10, 1686-1690 © Thieme Stuttgart · New York

Table 3 Deprotection of Several 1,3-Dithiane Derivatives 3b-r

NaClO₂ (6 mol amt), NaH₂PO₄ (2 mol amt), 2-methyl-2-butene (10 mol amt),

3b–3r			——≻ 4b–4r	
(1 mol amt)	3:1 MeOH-H ₂ O (0.1			
Entry	Substrate	Time (h)	Yield (%) of 4	
1	3b	2	61	
2	3c	2	80	
3	3d	2	85	
4	3e	2	88	
5	3f	1	87	
6	3g	3.5	85 ^b	
7	3h	2	75	
8	3i	2	96	
9	3ј	3	94	
10	3k	3	93	
11	31	4.5	97	
12	3m	4	89	
13	3n	3	<10	
14	30	4	_ ^c	
15	3p	2	_ ^c	
16	3q	2	83 ^d	
17	3r	2	94 ^e	

^a Isolated yield after silica gel column chromatography.

^b The reaction temperature was 0 °C.

^c Complex mixture was obtained.

^d Carboxylic acid (68%) and its methyl ester (15%) were obtained.

^e Carboxylic acid (68%) and its methyl ester (26%) were obtained.

of **3q**, **4q**, **6**, and **7** (Scheme 5).¹³ A possible mechanism for the formation of **6** is depicted in Scheme 6. The highly reactive sulfenic acid \mathbf{II}^{14} is attacked by **3q** to give the disulfide intermediate **IV** that is oxidized with NaClO₂, affording *S*-alkyl thioate **6** via the intermediate **V**. The isolated **6** was subjected to the deprotection conditions, quantitatively giving a 76:24 mixture of carboxylic acid

Scheme 6 Proposed mechanism for formation of 4q and 5

4q and methyl ester **5**. The probable intermediate in this case must be the acyl sulfoxide **VI**. Moreover, *p*-methoxybenzaldehyde (**7**) itself afforded carboxylic acid **4q** as the only oxidation product under the deprotection conditions, while **4q** itself did not afford methyl ester **5** under the deprotection conditions without NaClO₂. These facts indicate that *S*-alkyl thioate **6** must be the precursor of not only carboxylic acid **4q** but also methyl ester **5** in our deprotection reaction.

In summary, we developed new, facile, and mild deprotection conditions for 1,3-dithiane derivatives using 6 molar amounts of NaClO₂, 2 molar amounts of NaH₂PO₄, and 10 molar amounts of 2-methyl-2-butene in 3:1 MeOH– H₂O at room temperature. These conditions are suitable for the ketone-derived 1,3-dithiane derivatives and aromatic aldehyde-derived 1,3-dithiane derivatives. In the latter case, the products are a mixture of carboxylic acids and their methyl esters.¹⁵

Acknowledgment

This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' and partially supported by a Grant-in-Aid for the 21st Century COE program 'KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- (a) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1075. (b) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231.
- (2) For reviews, see: (a) Seebach, D. Synthesis 1969, 17.
 (b) Gröbel, B.-T.; Seebach, D. Synthesis 1977, 357.
 (c) Page, P. C. B.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643. (d) Kolb, M. In Encyclopedia of Reagents for Organic Synthesis, Vol. 5; Paquette, L. A., Ed.; John Wiley and Sons: Chichester, 1995, 2983–2989.
 (e) Yus, M.; Nájera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147.
- (3) Our recent examples, see: (a) Ide, M.; Yasuda, M.; Nakata, M. Synlett 1998, 936. (b) Ide, M.; Nakata, M. Bull. Chem. Soc. Jpn. 1999, 72, 2491. (c) Ide, M.; Tsunashima, K.; Nakata, M. Bull. Chem. Soc. Jpn. 1999, 72, 2501. (d) Ide, M.; Nakata, M. J. Synth. Org. Chem. Jpn. 2000, 58, 857. (e) See also: Smith, A. B. III; Pitram, S. M.; Boldi, A. M.; Gaunt, M. J.; Sfouggatakis, C.; Moser, W. H. J. Am. Chem. Soc. 2003, 125, 14435.
- (4) (a) Greene, T. W.; Wuts, P. G. M. *Protective Groups in* Organic Synthesis, 3rd ed.; John Wiley and Sons: New York, **1999**. (b) Kocienski, P. J. *Protecting Groups*, 3rd ed.; Thieme: Stuttgart, **2003**.
- (5) Most widely used procedures, see: (a) *N*-Halosuccinimide: Corey, E. J.; Erickson, B. W. *J. Org. Chem.* **1971**, *36*, 3553.
 (b) Hg(ClO₄)₂: Fujita, E.; Nagao, Y.; Kaneko, K. *Chem. Pharm. Bull.* **1978**, *26*, 3743. (c) PhI(CF₃CO₂)₂: Stork, G.; Zhao, K. *Tetrahedron Lett.* **1989**, *30*, 287.
- (6) For recent examples, see: (a) Cu(NO₃)₂·N₂O₄ or Fe(NO₃)₃·1.5N₂O₄: Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 2169. (b) Cray supported ammonium nitrate, microwave: Meshram, H. M.; Reddy, G. S.; Sumitra, G.; Yadav, J. S. *Synth. Commun.* **1999**, *29*, 1113. (c) VOCl₃, O₂: Kirihara, M.; Ochiai, Y.; Arai, N.; Takizawa, S.; Momose, T.; Nemoto, H.

Tetrahedron Lett. 1999, 40, 9055. (d) Natural kaolinitic clay, microwave: Bandgar, B. P.; Kasture, S. P. Green Chem. 2000, 2, 154. (e) FeCl₃·6H₂O: Kamal, A.; Laxman, E.; Reddy, P. S. M. M. Synlett 2000, 1476. (f) ZnBr₂: Vakalopoulos, A.; Hoffmann, H. M. R. Org. Lett. 2001, 3, 2185. (g) Silica chloride, DMSO: Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H.; Karimi, B. J. Org. Chem. 2002, 67, 2572. (h) Selectfluor: Liu, J.; Wong, C.-H. Tetrahedron Lett. 2002, 43, 4037. (i) CeCl₃·7H₂O, NaI: Yadav J. S., Reddy B. V. S., Raghavendra S., Satyanarayana M.; Tetrahedron Lett.; 2002, 43: 4679. (j) TBHP: Barhate, N. B.; Shinde, P. D.; Mahajan, V. A.; Wakharkar, R. D. Tetrahedron Lett. 2002, 43, 6031. (k) IBX, DMSO-H₂O: Wu Y., Shen X., Huang J.-H., Tang C.-J., Liu H.-H., Hu Q.; Tetrahedron Lett.; 2002, 43: 6443. (1) NaNO2, AcCl: Khan, A. T.; Mondal, E.; Sahu, P. R. Synlett 2003, 377. (m) Dess-Martin periodinane: Langille, N. F.; Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 575. (n) Bi(OTf)₃: Kamal, A.; Reddy, P. S. M. M.; Reddy, D. R. Tetrahedron Lett. 2003, 44, 2857. (o) Electrophilic halogens, DMSO: Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R. Tetrahedron Lett. 2003, 44, 4769. (p) IBX, β-CD: Krishnaveni N. S., Surendra K., Nageswar Y. V. D., Rama Rao K.; Synthesis; 2003, 2295. (q) IBX, DMSO-H₂O: Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew. Chem. Int. Ed. 2003, 42, 4077. (r) See also: Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004, 126, 5192. (s) Ammonium persulfate on Montmorillonite K-10, microwave: Ganguly, N. C.; Datta, M. Synlett 2004, 659.

- (7) Total synthesis of biscembranoid marine natural product, methyl sarcoate, and the synthesis of 1 will be reported elsewhere.
- (8) (a) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888. (b) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.

- (9) The starting material 3a remained when less than 6 molar amounts of NaClO₂ were used.
- (10) In the absence of NaH₂PO₄, no reaction occurred.
- (11) (a) **3f**: see ref.^{3b} (b) **3h**: Tietze, L. F.; Weigand, B.; Wulff, C. *Synthesis* **2000**, 69. (c) **3m**: Kulkarni, S. N.; Bhamare, N. K.; Kamath, H. V. *Ind. J. Chem., Sect. B* **1987**, *26*, 168. (d) **3n**: Yuan, W.; Berman, R. J.; Gelb, M. H. *J. Am. Chem. Soc.* **1987**, *109*, 8071. (e) **3o**: Keller, V. A.; Martinelli, J. R.; Strieter, E. R.; Burke, S. D. *Org. Lett.* **2002**, *4*, 467.
- (12) The sulfenic acid part in **II** is a transient structure because of its high reactivity. See ref.¹⁴
- (13) The ratio was based on ¹H NMR analysis of the crude product. Methyl ester 5 was obtained in only a trace amount.
- (14) Davis, F. A.; Rizvi, S. Q. A.; Ardecky, R.; Gosciniak, D. J.; Friedman, A. J.; Yocklovich, S. G. J. Org. Chem. 1980, 45, 1650.
- (15) Representative Experimental Procedure (Table 2, Entry 2):

To a mixture of **3a** (57.0 mg, 0.163 mmol) in MeOH (1.2 mL) and H₂O (0.400 mL) were added at r.t. 2-methyl-2butene (0.172 mL, 1.630 mmol) and NaH₂PO₄ (39.0 mg, 0.326 mmol). After cooling to 0 °C, 86% NaClO₂ (103.0 mg, 0.978 mmol) was added and the resulting suspension was stirred at r.t. for 2 h. Then H₂O (1.5 mL) was added and the mixture was extracted with EtOAc ($1.5 \text{ ml} \times 3$); the extracts were washed with sat. aq NaCl, dried with Na₂SO₄, and concentrated. The residue was chromatographed on silica gel with 3:1 hexane-EtOAc to afford 4a (38.7 mg, 92%) as a colorless oil. Compound 4a: ¹H NMR (300 MHz, CDCl₃, CHCl₃ = 7.26): δ = 0.04 (6 H, s), 0.87 (9 H, s), 0.88 (3 H, t, J = 7.0 Hz), 1.18–1.40 (4 H, m), 1.57 (2 H, quint, J = 7.5 Hz), 2.44 (2 H, t, J = 7.5 Hz), 2.59 (2 H, t, J = 7.0 Hz), 3.88 (2 H, t, *J* = 7.0 Hz). ¹³C NMR (75 MHz, CDCl₃ = 77.16): $\delta = -5.35, 14.04, 18.34, 22.59, 23.34, 25.98, 31.52, 43.99,$ 45.70, 59.07, 210.42. HRMS (EI): m/z calcd for C₁₀H₂₁O₂Si [M – *t*-Bu]⁺ 201.1311; found: 201.1318.