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Indium-mediated annulation of 2-azidoaryl
aldehydes with propargyl bromides to [1,2,3]
triazolo[1,5-a]quinolines†
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Rong Zeng *a,c

An efficient indium-mediated cascade annulation reaction of 2-azidoaryl aldehydes with propargyl bro-

mides is reported. The aromatic 5/6/6-fused heterocycles, [1,2,3]triazolo[1,5-a]quinoline derivatives,

could be constructed in one pot in moderate yields with a broad substrate scope. Mechanistic studies

indicated that the reaction proceeded through allenol formation, azide–allene [3 + 2] cycloaddition, and

dehydration. The synthetic potential of the products including the denitrogenative functionalization and

the Pd-catalyzed coupling reactions has also been explored.

Introduction

[1,2,3]Triazolo[1,5-a]quinoline is an important aromatic het-
erocycle with a 5/6/6-fused ring system. The existing core skel-
eton, which contains both the [1,2,3]triazolo[1,5-a]pyridine1

and quinoline scaffolds,2 is an essential building block and is
extremely attractive for materials science and pharmaceutical
chemistry (Fig. 1).3 For example, while Diquat was able to
interact with DNA,3a the 3-hydroxy-2-[4-(trifluoromethyl)
phenyl][1,2,3]triazolo[1,5-a]quinolinium inner salt AZ1 was
found to be a new aryl hydrocarbon receptor (AhR) agonist
with exceptional potency.3e Moreover, the ring-chain isomeri-
zation of the cyclic triazole framework of [1,2,3]triazolo[1,5-a]
quinolines offers new tools for the construction of functiona-
lized quinoline derivatives via efficient denitrogenative ring-
opening, providing potential in synthetic chemistry.4 The
development of new, efficient, and general synthetic methods
for the preparation of [1,2,3]triazolo[1,5-a]quinolines is
required and has drawn significant attention from chemists.

Typically, [1,2,3]triazolo[1,5-a]quinolines can be divided
into a, b, and c rings, and efforts have been made to construct
these rings by developing efficient methods. While the tran-
sition metal-catalyzed coupling reactions of 1-phenyl-1H-1,2,3-
triazole derivatives provided general approaches for building
the middle b ring (path a, Scheme 1),5 the c ring could be con-
structed by the oxidative N–N bond formation of (quinolin-2-
yl)methylene hydrazine derivatives directly under oxidative
conditions (path b).6 In 2017, the Nachtsheim group reported
the one-pot construction of the b and c rings of [1,2,3]triazolo
[1,5-a]quinolines through tandem Sandmeyer azide formation
and subsequent intramolecular azide–alkyne cycloaddition of
enynes, while the complex starting materials were prepared
using iridium catalysis via C–H functionalization (path c).7

Alternatively, the annulation reaction of 2-azidoaryl aldehyde/
nitrile/ester with 1,3-dicarbonyl compounds offered an
efficient tool for building the b and c rings of [1,2,3]triazolo
[1,5-a]quinolines in a single step by using a strong base, typi-
cally DBU, t-BuOK, and NaH (path d).8a–8d Given that low-
valent metals can mediate the allenylation reaction of propar-
gyl bromides and aldehydes,9,10 we proposed that the reaction
of 2-azidoaryl aldehydes with propargyl bromides would
proceed through metal-mediated allenylation of propargyl bro-

Fig. 1 Bioactive molecules with the [1,2,3]triazolo[1,5-a]quinoline
moiety.
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mides,11 [3 + 2] azide–allene cycloaddition,12 and subsequent
dehydration to afford the [1,2,3]triazolo[1,5-a]quinoline deriva-
tives. Herein, we report such a tandem one-pot reaction of
2-azidoaryl aldehydes with propargyl bromides. This reaction
could be mediated by indium powder and the reductive con-
dition was mild, providing a reliable and novel strategy for the
synthesis of [1,2,3]triazolo[1,5-a]quinolines.

Results and discussion

To verify the feasibility of the design, the reaction of 2-azido-
benzaldehyde (1a) and 1-bromohept-2-yne (2a) was first con-
ducted in the presence of 1.5 equiv. of indium and 2.0 equiv.
of LiI in DME at room temperature (rt) under a N2 atmosphere.
The reaction proceeded smoothly and the desired product 3aa
was obtained in 71% yield based on isolation (entry 1). The
reaction conditions were then optimized (Table 1). First, the
indium powder was proven to be important for the transform-
ation.11 Other related metals, such as Mn and Zn, did not
promote the reaction, while Fe powder only led to a low yield
(entries 2–4). The solvent effect was also surveyed. Other ether
solvents, such as THF, MTBE, and 1,4-dioxane, gave relatively
lower yields (66%, 53%, and 32%, respectively) (entries 5–7),
while chlorinated solvents, such as DCE and DCM, afforded
the desired products in only 25–33% yields (entries 8 and 9).
The reaction in DMA gave a result similar to that with DME
(entry 10). Other polar solvents, such as DMSO, DMF, and
MeCN, afforded the product only in 15–52% yields (entries
11–13). Interestingly, the reaction could be conducted in a
protic solvent (MeOH) with a lower yield (entry 14). Moreover,
when the reaction temperature was increased to 60 or 100 °C,
the yields decreased significantly (entries 15 and 16).

With the optimized conditions in hand, the scope of the
reaction was first tested using various propargyl bromides
(Table 2). 3-Alkyl, alkenyl, or aryl substituted propargyl bro-
mides were tolerated under the standard reaction conditions
and the corresponding 4-substituted [1,2,3]triazolo[1,5-a]qui-
nolines were obtained in moderate yields. Electron-donating

groups, such as t-Bu (3ae) and OMe (3af ), or electron-with-
drawing groups, such as CF3 (3ag) and COOMe (3ah), on the
phenyl group were tolerated well and the products were iso-

Scheme 1 Strategies for the synthesis of [1,2,3]triazole[1,5-a]quinolines.

Table 1 Optimization of the reaction conditionsa

Entry Metal Solvent Temperature Yieldb (%)

1 In DME rt 71 (68)c

2 Mn DME rt 0
3 Zn DME rt 0
4 Fe DME rt 9
5 In THF rt 66
6 In MTBE rt 53
7 In 1,4-Dioxane rt 32
8 In DCE rt 25
9 In DCM rt 33
10 In DMA rt 69
11 In DMSO rt 32
12 In DMF rt 52
13 In MeCN rt 15
14 In MeOH rt 50
15 In DME 60 °C 58
16 In DME 100 °C 36

a The reactions were conducted with 1a (0.2 mmol), 2a (0.26 mmol),
metal (0.3 mmol), and LiI (0.4 mmol) under N2 for 24 h. b All yields are
based on isolation. c The yield in parentheses is based on isolation of
the reaction product at the 0.5 mmol scale.

Table 2 Scope of propargyl bromidesa,b

a The reactions were conducted with 1a (0.5 mmol), 2 (0.65 mmol), In
(0.75 mmol), and LiI (1.0 mmol) in DME (5 mL) at room temperature
under N2 for 24 h. b All yields are based on isolation. c The reaction
temperature was 60 °C.
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lated in 40–60% yields. While the electron-donating or elec-
tron-withdrawing groups did not affect the reaction signifi-
cantly, the variation in the yield of these transformations is
probably dependent on the stability of substrate 2 under these
conditions. The reaction of 1a with 3-(2-naphthyl)-propargyl
bromide occurred smoothly and provided the corresponding
product in 68% yield (3aj). Intriguingly, when propargyl bro-
mides containing heteroaryl groups, such as thiophen-2-yl and
quinolin-6-yl groups, were treated with 1a, the corresponding
cyclization products were obtained successfully with only
slightly lower yields (3ak and 3al). While the ether group was
tolerated in the reaction (3an and 3ao), the simple propargyl
bromide afforded the corresponding product 3ap in only 22%
yield. The structure of 3ab was further confirmed by single
crystal X-ray diffraction (Fig. 2).13

The scope of the functionalized 2-azidoaryl aldehydes 1 was
next investigated with 2a under the standard reaction con-
ditions (Table 3). When substrates 1 bearing a methyl group
were used, the reaction proceeded well to afford the corres-
ponding product (3ba). The highly strained cyclopropane ring
was unreactive under the standard conditions and remained
intact during the transformation (3ca). The carbon–halogen
bonds (3da and 3ea) were also tolerated well although a higher
reaction temperature (60 °C) was required to facilitate higher
yields. All the reactions proceeded smoothly to afford the
corresponding products when substituted phenyl groups with
either an electron-donating group, such as OMe (3ga), or an
electron-withdrawing group, such as CF3 (3ha) or CN (3ia),
were used. Moreover, heteroaryl groups, such as pyridin-2-yl
(3ja), furan-2-yl (3ka), or thiophen-2-yl (3la), were also toler-
ated. While the simple ester groups were able to remain (3ma
and 3na), interestingly, substrates bearing complex scaffolds,
such as (L)-menthol, dehydroepiandrosterone, and cholesterol
derivatives, also gave moderate yields (3oa, 3pa, and 3qa).
Notably, when 1-(2-azidophenyl)propan-1-one 1r was prepared
and subjected to the reaction with 2a under the standard con-
ditions, the desired product 3ra was not detected but only the
reduction product of the starting material was obtained.

ð1Þ

ð2Þ

ð3Þ

For understanding the reaction process, a series of experi-
ments were conducted. First, while the reaction of azidoben-
zene 1s with 2a under the standard conditions failed to afford
the triazole product (eqn (1)), the reaction of 2-nitrobenzalde-
hyde 1t with 2a produced allenol 4a in 52% yield (eqn (2)).
These results indicated that the reaction between aldehyde
and propargyl bromide at the beginning is crucial for the
transformation. Second, when 2-aminophenyl allenol 4b was
prepared and subjected to the Sandmeyer azidation, the
desired product 2-azidophenyl allenol 4c was not isolated but
only the cyclization product 3aa was obtained in 20% yield
(eqn (3)), indicating that the azide–allene cycloaddition and
the subsequent dehydration are highly driven to produce the
[1,2,3]triazolo[1,5-a]quinoline product even in the absence of
indium.

Based on the mechanistic studies, a plausible mechanism
was proposed (Scheme 2). First, the reaction of propargyl
bromide 2a in the presence of indium formed intermediate
Int 1, which underwent 1,2-addition with 2-azidobenzaldehyde
1a to afford allenol 4c. The fast intramolecular azide–allene

Fig. 2 The crystal structure of compound 3ab. Atoms are presented as
thermal ellipsoids at 50% probability level.

Table 3 Scope of 2-azidoaryl aldehydesa,b

a The reactions were conducted with 1 (0.5 mmol), 2a (0.65 mmol), In
(0.75 mmol), and LiI (1.0 mmol) in DME at room temperature under
N2 for 24 h. b All yields are based on isolation. c The reaction tempera-
ture was 60 °C. d 1-Bromo-2-butyne 2b was used. e 1-(2-Azidophenyl)
propan-1-one was used.
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[3 + 2] cycloaddition and subsequent dehydration led to the
final product 3aa.

Finally, the synthetic potential of the prepared [1,2,3]tria-
zolo[1,5-a]quinoline was examined (Scheme 3). First, the
product 3aa served as the quinolin-2-yl carbene precursor to
react with an excess amount of HOAc or 3.0 equiv. of
TsOH·H2O under reflux for 8 hours to afford (quinolin-2-yl)
methyl acetate 5a or (quinolin-2-yl)methyl 4-methyl-
benzenesulfonate 5b (route a).14a The Brønsted acid-promoted
dinitrogen liberation of the triazole moiety was followed by
addition of acetic acid or TsOH·H2O, leading to the final
product in 93% or 94% yield, respectively. In addition, the
[5 − 2 + 2] cycloaddition product substrate 6 was obtained by
treating product 3aa with 3-methylbenzonitrile in the presence
of 25 mol% of BF3·Et2O in DCB and DCE at 140 °C for
12 hours (route b). The denitrogenation provided the strong
driving force for the transformation.6c The C–H arylation
product 7a was obtained by treating 3aa with iodobenzene in
the presence of 10 mol% of Pd(OAc)2 and 2 equiv. of Ag2CO3

under air for 17 hours (route c).14b Moreover, the coupling
reaction of compound 3ea with 4-methyl-N’-(1-(p-tolyl)ethyli-
dene)benzenesulfonohydrazide in the presence of 1 mol% of
Pd(OAc)2, 2 mol% of dppp, and 4 equiv. of t-BuOLi occurred

smoothly to afford the alkenylation product 7b in 49% yield
(route d).14c The Sonogashira coupling reaction of substrate
3ea with phenylacetylene proceeded smoothly to generate the
internal alkyne 7c in 59% yield (route e).14d Substrate 3ea
underwent the Suzuki coupling reaction with phenylboronic
acid in the presence of Pd(OAc)2 and LBphos to produce the
corresponding product 7d in a moderate yield (route f).14e–14g

Conclusions

In summary, we have developed a one-pot synthesis of [1,2,3]
triazolo[1,5-a]quinolines by an annulation reaction of 2-azi-
doaryl aldehydes and propargyl bromides in moderate yields.
A stoichiometric amount of indium powder promoted the
transformation, which was proposed to proceed by a tandem
procedure involving allenol formation, azide–allene [3 + 2]
cycloaddition, and subsequent dehydration. The reaction
scope was broad when functional groups, such as esters,
alkenes, and ethers, were well tolerated. In addition, the syn-
thetic potential, including Suzuki coupling, Sonogashira coup-
ling, directed C–H arylation, and the denitrogenative ring-
opening of the corresponding products, was studied.
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