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New Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition

reactions of 1-ene-, 1-yne and 1-allene-vinylcyclopropanes have

been developed, affording an efficient and versatile synthesis of

cyclopentane- and cyclopentene-embedded bicyclic structures.

A five-membered carbocycle is an ubiquitous skeleton in organic

molecules. Due to this, developing methods to synthesize five-

membered carbocycles has been intensively pursued by the

synthetic community.1 To this end, many powerful synthetic

methodologies have been developed (e.g., the Pauson–Khand

reaction,2 the Nazarov cyclization,3 and various [3 + 2]

cycloadditions4). Nevertheless, even with these marvellous

reactions in hand, discovering new reactions for the construction

of five-membered carbocycles, especially five-membered-ring-

embedded polycyclic structures, is still highly in demand.

One straightforward but challenging way was to develop

new intramolecular [3 + 2] cycloadditions between unique

three-carbon and two-carbon components. Vinylcyclopropane

(VCP) was reported as a good intramolecular cycloaddition

participant.1c VCP substrates bearing an olefin or alkyne

functionality at the C(b)-position (named as b-ene/yne-VCP)
were employed in various transition-metal catalyzed [5 + x]

cycloadditions, where VCP moiety acts as a five-carbon

component (Scheme 1, pathways a and b).5 Recently, we

discovered that trans-2-ene-VCP could participate in the

intramolecular [3 + 2] cycloaddition, rendering the first

example that VCP serves as an unconventional three-carbon

component in Rh(I)-catalyzed cycloadditions (Scheme 1,

pathway c).6 However, this [3 + 2] cycloaddition suffers from

the limitations that only 5,5-bicyclic skeleton could be generated,

carbon-tethered substrates were not tolerated, the alkyne as

the 2p-component was not compatible and the quaternary

carbon center could not be established at the bridgehead.6

Based on the knowledge that these VCP-participating cyclo-

additions proceeded via a p-allyl rhodacyclohexene intermediate

(Scheme 1, intermediates in the boxes),7 we hypothesized to

derive a new type of substrate, 1-ene/yne-VCP, by tethering

the 2p component to the C(1)-position of VCP to achieve

the rhodacyclohexene intermediate with a new substitution

pattern. We envisioned that this new intermediate could lead

to a novel [3 + 2] cycloaddition mode (Scheme 1, pathway d)

and may overcome the limitations associated with the previous

[3 + 2] reaction. More attractive was that the designed

[3 + 2] cycloaddition could install an all-carbon quaternary

stereocenter at the bridgehead carbon of the cycloadduct.

Herein, we wish to report our endeavours towards the

development of this new Rh(I)-catalyzed intramolecular

[3 + 2] cycloaddition reaction.

Our test of the new design started with the tosylamide-

tethered 1-ene-VCP substrate 1. The first run was conducted

under the Wender [5 + 2] cycloaddition conditions

([Rh(CO)2Cl]2 as the catalyst, toluene as the solvent, a reaction

temperature of 110 1C).5b To our delight, the proposed bicyclic

[3 + 2] cycloadduct 2 was generated as a single diastereomer,

albeit accompanied by a minor amount of b-hydride elimination

byproduct 3 (Table 1, entry 1). This result indicates that our

designed process is operative and thus opens up a new reaction

type of VCP derivatives.

With the above encouraging results, we then concentrated

our efforts on finding the optimal reaction conditions that can

selectively produce the [3 + 2] cycloadduct 2. Several cationic

Rh(I) catalysts proved ineffective for promoting this [3 + 2]

process (Table 1, entries 2 to 4). We observed that cationic

Rh(I)-bidentate phosphine complexes8 could suppress the

undesired b-hydride elimination pathway (Table 1, entries 5–7).

Among them, [Rh(dppp)]SbF6 gave the best selectivity (40 : 1)

and the highest reaction yield (93%). Therefore, we chose this

optimal reaction condition (Table 1, entry 6) to further study

the scope of the [3 + 2] cycloaddition.

Various 1-ene/yne-VCP substrates were submitted to the

optimized reaction conditions (Table 2). It was found that the

Scheme 1 Reaction modes of ene/yne-VCPs under Rh(I)-catalysis

and a new reaction design.
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yields were generally moderate to excellent and no b-hydride
elimination byproduct was observed. Nitrogen-, oxygen-

and gem-diester-tethered substrates could be employed to

construct hetero- and carbo-bicyclic skeletons. In addition to

a tosyl group, this [3 + 2] reaction also tolerates a N-Boc

protecting group (entry 2). For 1-ene-VCPs, the formation of a

5,5-bicyclic skeleton favors a cis ring-fusion (entries 1–3);

while the formation of a 6,5-ring system prefers a trans

ring-fusion (entry 4). Except for 1-ene-VCPs, both terminal

and internal 1-yne-VCPs serve as good substrates, giving

rise to the corresponding [3 + 2] cycloadducts in good

yields (entries 5–11). Two 1-yne-VCPs with a stereocenter

neighbouring C(1), 20 and 22, were tested to examine the

stereoinduction in this new [3 + 2] cycloaddition process

(entries 10 and 11). A good level of stereoinduction was

achieved, albeit the stereochemical outcomes of oxygen-tethered

1-yne-VCP 20 and tosylamide-tethered substrate 22 are

opposite (cycloadduct 21 versus 23). This [3 + 2] reaction

can also be extended to 1-allene-substituted VCP (entry 12).

Under the optimized conditions, 1-allene-VCP 24 produced a

mixture of cycloadducts 25a and 25b with exo and endo CQC

bond, respectively. An identical reaction using [Rh(CO)2Cl]2
as the catalyst afforded 25a as the major product.

The 1-ene-VCP substrates 26 and 28 bearing a disubstituted

ene-moiety were also tested to further explore the substrate

scope (Scheme 2). Under the standard conditions, the reaction

of 26 gave no desired [3 + 2] cycloadduct but a monocyclic

byproduct 27, which is assumed to be generated via b-hydride
elimination on the methyl group. The reaction of 28 to

construct a bicyclic structure with two quaternary bridgehead

carbons was feasible, but the reaction was sluggish and only a

minor amount of the desired cycloadduct 29 was obtained.

Control experiments were conducted by submitting ene-

cyclopropane 1a and yne-cyclopropane 1b to the cycloaddition

reaction to probe the mechanism of this [3 + 2] cycloaddition.

It was found that under identical reaction conditions, no

corresponding [3 + 2] cycloadduct was observed and both

substrates remained intact (Scheme 3). This result clearly

identified the crucial function of the vinyl group in this

transformation.

A proposed mechanism of this [3 + 2] process was shown in

Fig. 1. The catalytic cycle commences on the binding of the

cationic catalytic species Rh(dppp)+ to the alkene moiety of

VCP to give intermediate A, followed by cyclopropane ring

Table 1 Optimization studies on the new [3 + 2] cycloadditiona

Entry Catalyst T/1C Time Ratio 2 : 3b Yield (%)c

1 [Rh(CO)2Cl]2 110d 4.5 h 4 : 1 57
2 [Rh(PPh3)3]OTfe 110d 3 h —f —f

3 [Rh(CO)2]SbF6
e 80 1 h 1 : 1 15

4 [Rh(NBD)]SbF6
e 80 2 h 5 : 1 38

5 [Rh(dppe)]SbF6
e 80 2 h 15 : 1 93

6 [Rh(dppp)]SbF6
e 80 2 h 40 : 1 93

7 [Rh(dppb)]SbF6
e 80 2.5 h 8 : 1 88

a Reaction conditions: 5 mol% Rh(I) catalyst, anhydrous dichloro-

ethane (DCE) as solvent (substrate concentration 0.05 M), argon

atmosphere. b Determined by 1H NMR. c Combined isolated yield

of inseparable product mixture of 2 and 3. d Toluene as solvent. e See

ESIw for experimental details. f No [3 + 2] cycloadduct 2 was

generated.

Table 2 Rh(I)-catalyzed [3 + 2] cycloaddition reactionsa

Entry Substrate Cycloadductb Conditions Yieldc

1 80 1C, 2 h 93%

2 80 1C, 13 h 66%

3 90 1C, 3.5 h 53%

4 80 1C, 12 h 98%

5 10 R = H 11 80 1C, 5 h 82%
6 12 R = Me 13 80 1C, 23 h 78%

7 14 R = i-Pr 15 80 1C, 48 h 35%d

8 80 1C, 13 h 66%

9 80 1C, 39 h 59%

10 80 1C, 11.5 h
74% dr
19 : 1e

11 80 1C, 5 h
499%
dr 6 : 1e

12

80 1C, 13 h
48% a : b
3.6 : 1e

110 1C, 2 hf
41% a : b
10 : 1e

a Reaction conditions: 5 mol% [Rh(dppp)]SbF6 as catalyst, DCE

as solvent, unless otherwise indicated. Ts = tosyl, Boc = tert-

butoxycarbonyl, Ph = phenyl, E = COOMe. b The cycloadducts

were obtained as racemic compounds. c Isolated yields after column

chromatography. d Recovered 32% of 14. e Determined by 1H NMR.
f Use 4 mol% [Rh(CO)2Cl]2 as catalyst, toluene as solvent.
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cleavage to generate the key p-allyl rhodacyclo-hexene

intermediate B.7 Then insertion of a CQC or CRC bond

to the C(1)–Rh bond occurs to form the intermediate C, which

undergoes reductive elimination to furnish the bicyclic [3 + 2]

cycloadduct, with the concomitant generation of the catalytic

species for the next catalytic cycle. A minor amount of

the observed byproduct 3 is probably generated through

b-hydride elimination of intermediate C. In the reaction

process, the vinyl group plays an important role as a

‘‘spectator’’ binding group to facilitate the ring-opening of a

cyclopropane ring, well explaining the lack of activity for

ene/yne-cyclopropanes.

In conclusion, we have developed a new type of

Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition of

1-ene-, 1-yne- and 1-allene-VCP substrates. The experimental

findings represent the second example where VCP serves as a

three-carbon component in Rh(I)-catalyzed cycloadditions.

The present methodology provides an efficient, versatile and

diastereoselective approach to carbo- and hetero-bicyclic

compounds. The formation of a vinyl substituted quaternary

stereocenter in this process enables further access to functionalized

quaternary-stereocenter-containing cycloadducts. Further

studies on the reaction mechanism, origins of the stereoinduction

and the application of these cycloaddition reactions are

ongoing.
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