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Molecular complexity from aromatics: Synthesis
and photoreaction of endo-tricyclo[5.2.2.02,6]undecane—

A stereoselective route to tricyclic framework of protoilludanes
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Abstract—A stereoselective route towards protoilludanoids from simple aromatic precursor is described. The methodology involves
in situ generation of spiroepoxycyclohexadienone and cycloaddition with cyclopentadiene and photochemical 1,3-acyl shift.
� 2005 Elsevier Ltd. All rights reserved.
Protoilludanes are a unique class of naturally occurring
sesquiterpenoids that possess a tricyclic structure com-
posed of a four-membered ring angularly fused to a
cis-hydrindane ring system in a cis:anti:cis fashion. The
fungus Basidiomycetes is a rich source of such secondary
metabolites, and a variety of protoilludanes having a
variety of substitution and functionalisation pattern have
been isolated.1–3 While protoilluden-6-ol 1 is one of the
older members of this family, the melleolides of type 2
(Fig. 1) were isolated recently from the cultured mycelia
Armillariella mellea4a and Armillaria novae-zelandiae.4b

Many of these fungal metabolites and their congeners
exhibit promising biological activities.5 The unusual car-
bocyclic structure coupled with their role in biosynthesis
and the interesting biological properties have generated
renewed interest in the chemistry of protoilludanes.6 Sur-
prisingly, however, only a few methods have been devel-
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Figure 1.
oped.6,7 Many of these employ a photochemical p2s + p2s

cycloaddition for the creation of cyclobutane ring.

In view of the above and our interest in development of
new methodology employing photochemical reactions
of complex b,c-enones,8 we thought to develop a stereo-
selective route to functionalised protoilludane frame-
work. It was considered that the tricyclic compound of
type 3 having a cis:anti:cis protoilludane network may
be generated in a single stereoselective step from the
endo-annulated tricyclic system 4 containing a b,c-
enone chromophore via a 1,3-acyl shift.9,10 The desired
chromophoric system 4 was thought to be prepared
from the aromatic precursor 5 via its oxidation to the
corresponding spiroepoxycyclohexadienone, cycloaddi-
tion with cyclopentadiene and manipulation of the
resulting adduct (Scheme 1). In this communication,
we report on the synthesis of the tricyclic compound 4
and its photochemical reaction leading to a stereoselec-
tive route to tricyclic framework of protoilludanes.

Towards the above objective, the aldehyde 6 was
prepared from 3,5-dimethyl phenol and subjected to
Scheme 1.
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Scheme 2. Reagents: (i) NaBH4, MeOH–H2O; (ii) NaIO4, CH3CN–H2O, cyclopentadiene (75%).

Scheme 4.
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reduction with sodium borohydride. Though the reduc-
tion proceeded well (TLC), the isolation of the product 5
proved to be difficult. Therefore, the aldehyde 6 was re-
duced and the resulting bis-hydroxymethyl compound 5
was directly subjected to oxidation with sodium metape-
riodate in the presence of cyclopentadiene, following a
procedure developed in our laboratory.11 Usual work-
up and chromatography furnished the endo adduct 8
as a result of in situ generation of spiroepoxycyclo-
hexa-2,4-dienone 7 and interception with cyclopentadi-
ene (Scheme 2). The structure of the adduct was
deduced from its spectral data12 and comparison with
other analogous compounds.

Towards the synthesis of the chromophoric system 4, the
hydroxymethyl group in the adduct 8 was protected as
methyl ether to give 9. Reduction of 9 with zinc in aque-
ous methanol containing ammonium chloride furnished
the keto-alcohol 10 as a mixture of syn–anti isomer (1H
NMR, 300 MHz). The keto-alcohol 10 was then oxidised
with Jones reagent and the resulting b-keto-acid was
decarboxylated to furnish the desired tricyclic compound
4 (Scheme 3), whose structure was clearly revealed from
its spectral data.

After assembly of the tricyclic compound 4 containing a
b,c-enone chromophore, its photochemical reaction in
the excited singlet state was explored. Photochemical
reaction of b,c-enones has stimulated a sustained inter-
est for a long time, which is further enhanced due to
the synthetic potential.9,10 In general, b,c-enones under-
go two unique reactions; that is, triplet excitation leads
Scheme 3. Reagents and conditions: (i) NaH, THF, MeI, D, 60%;

(ii) Zn, NH4CI, MeHO–H2O, rt, 54%; (iii) Jones� oxidation; (iv) THF–

H2O, D, 40% (for iii and iv).
to oxa-di-p-methane rearrangement whereas singlet
excitation induces a 1,3-acyl migration.9,10,13 However,
the exact nature of photoreaction depends upon the
structure of the chromophore and the functional groups
in a subtle fashion. Considering the above possibilities, a
solution of the compound 4 was irradiated with a high
pressure mercury vapour lamp (400 W, APP) in a Pyrex
immersion well for half an hour. Chromatography of
the photolysate furnished the tricyclic compound 3
having protoilludane framework as a result of a stereo-
selective 1,3-acyl shift (Scheme 4).

The IR spectrum of the photoproduct showed a charac-
teristic absorption band at 1769 cm�1 for the cyclobuta-
none carbonyl. 1H NMR (300 MHz) spectrum of 3
exhibited three olefinic signals at d 5.71 (br m, 1H),
5.66 (br m, 1H) and 5.39 (br s, 1H) in addition to other
resonances. The presence of cyclobutanone carbonyl
group in the IR spectrum and three olefinic protons in
the 1H NMR spectrum clearly indicated that a 1,3-acyl
shift had occurred during the irradiation. The above for-
mulation was also supported from the 13C NMR spec-
trum, which exhibited signals at d 205.06, and 131.52,
130.80, 126.16, 125.83 for the carbonyl carbon and
olefinic carbons, respectively. In addition, signals were
observed at d 70.91, 67.61, 59.18, 55.70, 43.51, 43.24,
34.81, 33.63, 23.54, 20.23 for the other carbons.

In summary, we have described an efficient synthesis of
tricyclic compounds of type 4 containing a b,c-enone
chromophore from a simple aromatic precursor and
photoreaction in singlet excited state that provides a
stereoselective entry into functionalised protoilludane
framework in a single step.
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