Preparation of Alkyl and Aryl Chlorodifluoromethyl Ethers Using BrF₃

Youlia Hagooly,^[a] Revital Sasson,^[a] Michael J. Welch,^[b] and Shlomo Rozen*^[a]

Keywords: Bromine trifluoride / Fluorination / Chlorodifluoromethyl ethers / Chlorothioformates

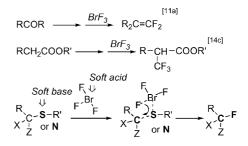
Both alkyl and aryl chlorothioformates could readily be obtained from the corresponding alcohols and thiophosgene. These families of compounds were treated with BrF_3 to form the corresponding alkyl and aryl chlorodifluoromethyl ethers in 60–85 % yields. The method is suitable for constructing

a variety of aliphatic as well as electron-deficient aromatic chlorodifluoromethyl ethers. The reactions proceed under mild conditions and short reaction times.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

The chlorodifluoromethoxy group, OCF₂Cl, has wide applications in the realm of biologically interesting compounds. It can be found in anesthetics,^[1] in antimalarial drugs,^[2] in various inhibitors,^[3] and more. Incorporation of this moiety into organic molecules can often modify the biological and physiological activities and properties. These modifications are associated with increasing stability and lipophilicity without gross steric distortion. In addition, the interest in preparing the OCF₂Cl moiety is also based on its ability to serve as a starting point for further chemical transformations. For instance, substitution of the chlorine atom with trimethylsilane in aromatic chlorodifluoro ethers, forms a reactive intermediate used to incorporate the CF₂ group in different substrates.^[4] The chlorine atom in OCF₂Cl can also be replaced by fluorine to access trifluoromethyl ethers that can serve as potential anesthetics among other useful functions.^[5]


ROCF₂Cl ethers are usually prepared by treatment of the corresponding trichloromethyl derivatives – ROCCl₃ with $HF_{,}^{[6,7]}$ or SbF_{3} .^[1,8] The main disadvantage of these methods is the difficulty to stop at the chlorodifluoromethoxylation stage and the main product of these reactions is often the trifluoromethyl ether.

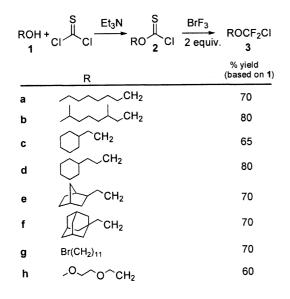
Additional methods for the preparation of this group rely on radical chlorination of difluoromethyl ethers^[9] or reactions of aryl (but not alkyl) alcohols with CF_2Cl_2 .^[10] Invariably, all these methods were demonstrated on aromatic or heavily halogenated alkyl compounds.

- [b] Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

The preparation of regular alkyl chlorodifluoromethyl ethers is suspiciously lacking in the literature. We describe here a general method for the preparation of these ethers applicable for most types of alcohols and especially for aliphatic ones.

For the last 10 years or so, we have investigated the versatility of BrF₃ as a nucleophilic fluorinating agent, especially in constructing and attaching the $CF_2^{[11,12]}$ and the $CF_3^{[13,14]}$ groups to various sites in organic molecules (Scheme 1). The main feature of the mechanism governing most reactions with BrF₃ involves complexation of the soft acidic bromine around a soft base (e.g., sulfur or nitrogen atoms) in the target molecule. The naked fluorides react then selectively with the activated carbon, forming the desired products and minimizing undesired radical destructive reactions (Scheme 1).

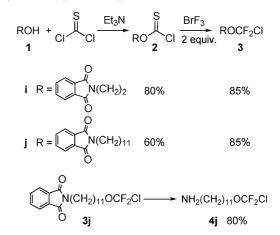
Scheme 1. Examples and mechanism for selective fluorination with BrF_{3} .


Results and Discussion

The reaction between octanol (1a), triethylamine (Et₃N) and thiophosgene in THF provided octyl chlorothioformate $(2a)^{[15]}$ in good yield. Applying 2 molar equiv. of BrF₃, for about a minute, led to the yet unknown chlorodifluoromethyl octyl ether (3a) in 70% yield (Scheme 2).

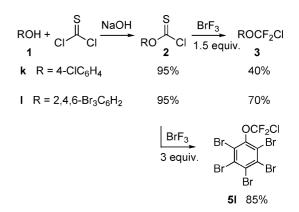
 [[]a] School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel Fax: 972-3-6409293

E-mail: rozens@post.tau.ac.il


Scheme 2. Conversion of alipathic alcohols to alkyl chlorodifluoromethyl ethers.

Similarly, the branched and cyclic aliphatic alcohols 1b-d, were converted into the corresponding chlorothioformate derivatives 2b-d. After fast reactions with BrF₃, chlorodifluoromethyl 3,7-dimethyloctyl ether (3b), chlorodifluoromethyl 2-cyclohexylethyl ether (3c) and chlorodifluoromethyl 3-cyclohexylpropyl ether (3d) were formed in 80%, 65% and 80% yields respectively. Bi- and tricyclic compounds, such as 2-norbornylethanol (1e) and 1-adamantaneethanol (1f) also provided, after treatment with thiophosgene, the corresponding 2-norbornylethyl chlorothioformate (2f). Both materials were successfully reacted with 2 molar equiv. of BrF₃, to produce the desired chlorodifluoromethyl 1-norbornylethyl ether (3f) in 70% yields.

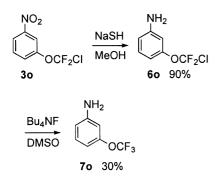
It was documented that the fluorine atoms in BrF_3 can, in certain cases, act as electrophiles^[16] and substitute tertiary hydrogen atoms similarly to F_2 .^[17] Because no such process took place with the above examples, it was clear that the reaction around the sulfur atom were much faster. In addition, BrF_3 is known to substitute bromine atoms,^[18] but again the complexation and the fast reaction with the sulfur atoms in the reaction of **2g** was far more selective, and the bromine stays intact to yield chlorodifluoromethyl 11-bromoundecyl ether (**3g**) in 70% yield.


The polyether alcohol **1h** too was converted into the (2methoxyethoxy)ethyl chlorothioformate (**2h**) and treated with BrF_3 . The hard basic oxygen atoms in the alkyl chain did not complex themselves with the bromine atom of the reagent and hence only chlorodifluoromethyl (2-methoxyethoxy)ethyl ether (**3h**) was obtained in 60% yield.

Because the amine moiety can also react with thiophosgene as well as with BrF_3 , it has to be protected and one option is to form the phthalimide derivative.^[19] Indeed, the reaction of such derivatives, e.g. *N*-(2-hydroxyethyl)phthalimide (**1i**) and *N*-(11-hydroxyundecyl)phthalimide (**1j**) with thiophosgene followed by treatment with BrF_3 led to the formation of **3i** and **3j** in 85% yield (Scheme 3). The protecting group can then be removed^[19] with hydrazine hydrate without affecting the OCF₂Cl group as demonstrated for **3j**, converted to 11-(aminoundecyl) chlorodifluoromethyl ether (**4j**) in 80% yield.

Scheme 3. Preparation of chlorodifluoromethyl *N*-phthalimidoalkyl ethers and chlorodifluoromethyl alkylamine ethers.

The presence of aromatic rings, especially ones with electron-donating groups, can pose a problem because the electrophilic bromine in BrF₃ tends to brominate the electronrich ring and compete with the fluorination process around the carbon-sulfur bond.^[20] This is expressed, for example, when deactivated 4-chlorophenyl chlorothioformate $(2k)^{[21]}$ was treated with BrF₃. Analysis of the crude reaction mixture revealed that in addition to the formation of the desired 4-chloro-1-(chlorodifluoromethoxy)benzene (3k),^[9] a variety of brominated products were also formed, reducing the yield of 3k to 40%. Somewhat similar results were obtained when 2,4,6-tribromophenyl chlorothioformate (21) was treated with BrF₃ (Scheme 4). Lowering the amount of BrF₃ to 1 molar equiv. led to **31** in 70% yield, accompanied with 15% of unreacted starting material 21. Increasing the amount of BrF₃ up to 3 molar equiv., resulted in a full bromination of the aromatic ring, and 2,3,4,5,6-pentabromo-1-(chlorodifluoromethoxy)benzene (51) was obtained in 85% yield.


Scheme 4. Conversion of slightly deactivated phenol derivatives to aryl chlorodifluoromethyl ethers.

Phenol derivatives with strong electron-withdrawing group (EWG), such as cyano or nitro, do not suffer from the above limitations. The aryl chlorothioformate derivatives (2m,^[22] 2n,^[21] 2o^[21] and 2p^[21]) were formed and isolated in high yields (90–95%) using thiophosgene and NaOH as a base.^[23] After a fast reaction with 1.5 molar equiv. of BrF₃, 4-(chlorodifluoromethoxy)benzonitrile (3m) ^[9] was obtained in 65% yield (Scheme 5). The three isomers of nitrophenyl chlorothioformate (2n, 2o, 2p) were also converted successfully to 1-(chlorodifluoromethoxy)-2-, -3-, or -4-nitrobenzene (3n, 3o, 3p^[21]), each in 80% yields.

ArO 1	H+ _{CI} CI	H S ArO CI	$\frac{\text{BrF}_3}{1.5 \text{ equiv}}$	ArOCF ₂ CI 3
	Ar		% yield	
m	4-CNC ₆ H ₄	90		65
n	2-NO ₂ C ₆ H ₄	95		80
ο	3-NO ₂ C ₆ H ₄	95		80
р	4-NO ₂ C ₆ H ₄	95		80

Scheme 5. Conversion of deactivated aromatics to aryl chlorodifluoromethyl ethers.

It should be emphasized that the nitro groups can be reduced without affecting the OCF₂Cl moiety forming the respective amino derivatives. Thus, 1-(chlorodifluoro-methoxy)-3-nitrobenzene (**30**) was reduced by NaSH to produce 3-(chlorodifluoromethoxy)aniline (**60**)^[21] in 90% yield (Scheme 6). This opens, of course, new avenues for making practically any aromatic chlorodifluoromethyl ethers at will.

Scheme 6. Reduction of (chlorodifluoromethoxy)nitrobenzenes to the corresponding anilines and its transformation to the (trifluoromethoxy)anilines.

Although the CF₃ group is present in large numbers of drugs, only a few examples in the literature deal with the incorporation of the positron emitter radionuclide ¹⁸F into this moiety for imaging using positron emitting tomography (PET).^[24] When 3-(chlorodifluoromethoxy)aniline (**60**) was treated with tetrabutylammonium fluoride in conditions suitable for ¹⁸F labeling, the desired 3-(trifluoromethoxy)-aniline (**70**)^[21] was produced, but in only 30% yield (Scheme 6).

This preliminary result may suggest that the aryl or alkyl chlorodifluoromethyl ether derivatives 3 can serve as candidates for ¹⁸F containing compounds targeted for PET studies.

Conclusions

In conclusion, this work describes a general method for the preparation of aromatic and especially aliphatic chlorodifluoromethyl ethers **3** in reasonable yield under fast and uncomplicated reaction conditions. When properly used, BrF_3 could serve as an excellent fluorinating agent for hard to prepare fluorinated compounds.

Experimental Section

¹H NMR spectra were recorded using a 200 MHz or 400 MHz spectrometer with CDCl₃ as a solvent and Me₄Si as an internal standard. The ¹⁹F NMR spectra were measured at 188.1 MHz with CFCl₃, serving as an internal standard. The proton broad-band decoupled ¹³C NMR spectra were recorded at 50.2 MHz or at 100.5 MHz. Here, CDCl₃ served as a solvent and Me₄Si as an internal standard. MS was measured under CI, EI, or ESI-QqTOF conditions. In case that these methods could not detect the molecular ion, we have successfully used the Amirav's supersonic GC-MS developed in our department. The main feature of this method is to provide electron ionization while the sample is vibrationally cooled in a supersonic molecular beam. This considerably enhances the relative abundance of molecular ions.^[25] Silica gel 60H (Merck) and petroleum ether/ethyl acetate were used for flash chromatography.

Preparing and Handling of BrF₃: Although commercially available, we prepare BrF₃ simply by passing 0.6 mol of commercially available fluorine (ca. 95%) through 0.2 mol of bromine placed in a copper reactor that is held at temperatures between 4–10 °C. Under these conditions, the higher oxidation state of bromine, BrF₅, does not form in appreciable amounts.^[26] The reagent can be stored in Teflon[®] containers indefinitely. BrF₃ tends to react very exothermically with water and oxygenated organic solvents such as acetone or THF. Alkanes, like petroleum ether, cannot serve as solvents because they react fast with BrF₃. Solvents such as CHCl₃, CH₂Cl₂, CFCl₃ or, if solubility is not an issue, any perfluoroalkane or perfluoroether may be used. Any use of BrF₃ should be conducted in a well-ventilated area, and caution and common sense should be exercised.

At this point we would like to clarify that when dealing with BrF_3 all molar equiv. values given are approximates because the reagent is never completely pure and usually contains some bromine. Furthermore, regardless of the nature of the solvent, it will slowly react with the reagent, effectively reducing the amount of bromine trifluoride reaching the substrate.

Some of the starting compounds are known and referenced, but frequently not adequately described. In such cases their spectral properties are given below.

General Procedure for the Preparation of Alkyl Chlorothioformate Derivatives 2a-j: A solution of the appropriate alcohol 1 (16.6 mmol) and 2.3 mL of triethylamine (16.6 mmol) in 10 mL of THF was added dropwise to a stirred solution of 5 mL thiophosgene (49.8 mmol) in 10 mL THF at 0 °C. Stirring was continued for 20 min, precipitated salt filtered, and the red liquid evaporated to provide a crude mixture containing the corresponding alkyl chlorothioformate (2) in 80–90% yield (based on ¹H NMR). The

FULL PAPER

latter compounds were treated with BrF_3 without further purification with the exceptions of **2i** and **2j**, which were purified by flash chromatography before reacted with BrF_3 .

3,7-Dimethyloctyl Chlorothioformate (2b): This compound was prepared from 3,7-dimethyloctanol (**1b**) (2.6 g), as described above: 3.5 g crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.61 (t, *J* = 7 Hz, 2 H, CH₂), 1.92–1.18 [m, 10 H, (CH)CH₂CH₂CH₂-(CH) CH₂], 0.92 [t, *J* = 7 Hz, 9 H, (CH₃)₃] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.1, 76.6, 45.9, 38.8, 36.7, 34.4, 29.3, 27.6, 24.4, 22.4, 19.3 ppm.

2-Cyclohexylethyl Chlorothioformate (2c): This compound was prepared from 2-cyclohexylethanol (**1c**) (2.1 g) as described above: 2.9 g of crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.54 (t, *J* = 7 Hz, 2 H, CH₂), 1.68–0.75 [m, 13 H, (CH₂)₅(CH)CH₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.5, 76.3, 67.9, 35.5, 33.0, 26.2, 26.0 ppm.

3-Cyclohexylpropyl Chlorothioformate (2d): This compound was prepared from 3-cyclohexylpropanol (**1d**) (2.3 g) as described above: 3.3 g of crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): $\delta = 4.57$ (t, J = 7 Hz, 2 H, CH₂), 1.76–0.91 [m, 15 H, (CH₂)₅(CH)-CH₂CH₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 186.3$, 79.3, 65.9, 34.7, 32.1, 26.8, 25.9 ppm.

2-Nonbornylethyl Chlorothioformate (2e): This compound was prepared from 2-norbornanylethanol (1e) (2.3 g) as described above: 3.3 g of crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.53 (t, *J* = 7 Hz, 2 H, CH₂), 2.23 (s, 1 H, CH), 1.99 (s, 1 H, CH), 1.85 (s, 1 H, CH), 1.61–1.05 [m, 10 H, (CH₂)₅] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.3 76.8, 40.1, 38.0, 37.3, 36.5, 31.0, 29.9, 28.2 ppm.

1-Adamantylethyl Chlorothioformate (2f): This compound was prepared from 1-adamantylethanol (**1f**) (2.9 g) as described above: 3.8 g of crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.62 (t, *J* = 7 Hz, 2 H, CH₂), 1.97 [s, 3 H, (CH)₃], 1.74–1.33 [m, 14 H, (CH₂)₇] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.4, 74.8, 42.6, 42.3, 37.0, 25.6 ppm.

11-Bromoundecyl Chlorothioformate (2g): This compound was prepared from 11-bromoundecan-1-ol (**1g**) (2.8 g) as described above: 3.1 g of crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.81 (t, *J* = 7 Hz, 2 H, CH₂), 3.67 (t, *J* = 7 Hz, 2 H, CH₂), 2.16–2.05 [m, 4 H, (CH₂)₂], 1.70–1.57 [m, 14 H, (CH₂)₇] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.3, 78.1, 33.9, 32.8, 29.4, 29.1, 28.7, 28.1, 27.8, 25.7 ppm.

(2-Methoxyethoxy)ethyl Chlorothioformate (2h): This compound was prepared from (2-methoxyethoxy)methanol (1g) (1.9 g) as described above: 2.9 g of crude mixture, red oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.68 (t, J = 5 Hz, 2 H, CH₂), 3.70–3.55 [m, 6 H, (CH₂)₂], 3.86 (s, 3 H, CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.3, 76.3, 71.1, 70.0, 67.7, 58.8 ppm.

N-Phthalimidoethyl Chlorothioformate (2i): This compound was prepared from *N*-(2-hydroxyethyl)phthalimide (1i) (3.2 g) as described above. Yield 80% (3.6 g), red oil. ¹H NMR (200 MHz, CDCl₃): δ = 7.71–7.60 [m, 4 H, (CH)₄], 4.65 (t, *J* = 7 Hz, 2 H, CH₂), 3.98 (t, *J* = 7 Hz, 2 H, CH₂) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.4, 167.5, 134.2, 131.6, 123.4, 73.3, 35.7 ppm.

Procedure for Preparation of N-Phthalimidoundecyl Chlorothioformate (2j): 11-Bromoundecan-1-ol (**1g**) (3.7 g, 14.7 mmol), potassium phthalimide (2.8 g, 15.0 mmol), and DMF (20 mL) were heated at 130 °C for 3 h. The DMF was removed under reduced pressure and the crude product dissolved in diethyl ether (30 mL), washed twice with water (40 mL), and dried with MgSO₄ to yield pure *N*-(2-hydroxyundecyl)phthalimide (**1j**) in 90% (4.2 g). ¹H NMR (200 MHz, CDCl₃): δ = 7.87–7.69 [m, 4 H, (CH)₄], 3.66 [m, 4 H, (CH₂)₂], 1.66–1.53 [m, 4 H, (CH₂)₂], 1.27 [s, 14 H, (CH₂)₇] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 168.3, 134.0, 131.9, 123.0, 62.7, 37.9, 32.6, 29.3, 29.0, 28.4, 26.7, 25.6 ppm.

N-Phthalimidoundecyl Chlorothioformate (2j): This compound was prepared from *N*-(2-hydroxyundecyl)phthalimide (1j) (1.2 g) as described above. Yield 60% (900 mg), red oil. ¹H NMR (200 MHz, CDCl₃): δ = 7.81–7.68 [m, 2 H, (CH)₂], 7.87–7.81 [m, 2 H, (CH)₂], 4.53 (t, *J* = 7 Hz, 2 H, CH₂), 3.62 (t, *J* = 7 Hz, 2 H, CH₂), 1.70–1.59 [m, 4 H, (CH₂)₂], 1.27 [s, 14 H, (CH₂)₇] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.3, 168.2, 133.6, 132.0, 122.9 77.9, 37.8, 32.4, 29.3, 28.7, 28.4, 27.7, 26.7, 25.5 ppm.

General Procedure for the Preparation of Aryl Chlorothioformate Derivatives 2k-p:^[23] The phenol derivative 1 (6.7 mmol) in 6 mL of 5% NaOH solution in water was added to a thiophosgene (6.7 mmol) in 4 mL of CHCl₃ at 0 °C. The reaction was stirred for 1 h at 0–5 °C. The chloroform layer was washed with 3 M HCl, water, dried with MgSO₄ and evaporated to provide a crude oil which was homogenized by flash chromatography to the corresponding aryl chlorothioformate **2** in almost quantitative yield (90– 95%).

2,4,6-Tribromophenyl Chlorothioformate (2l): This compound was prepared from 2,4,6-tribromophenol (**1l**, 2.2 g) as described above. Yield 95% (2.6 g), yellow crystals, m.p. 48.8–49.30 °C. ¹H NMR (200 MHz, CDCl₃): δ = 7.73 [s, 2 H, (CH)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 181.4, 148.3, 134.6, 121.3, 117.8 ppm.

4-Cyanophenyl Chlorothioformat (2m):^[22] This compound was prepared from 4-hydroxybenzonitrile (**1m**, 0.8 g) as described above. Yield 90% (1.2 g), yellow oil. ¹H NMR (200 MHz, CDCl₃): δ = 7.73 [d, J = 7 Hz, 2 H, (CH)₂], 7.25 [d, J = 7 Hz, 2 H, (CH)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 184.6, 156.8, 134.2, 123.2, 117.6, 111.5 ppm.

General Procedure for the Preparation of Chlorodifluoromethyl Alkyl or Aryl Ether Derivatives 3a–p with BrF₃: The alkyl or aryl chlorothioformate derivative 2 (usually 3 mmol) was dissolved in 20-25 mL of dry CFCl₃ and cooled to 0 °C. Approximately 4.5– 6.0 mmol of BrF₃ (1.5–2.0 molar equiv.) was dissolved in 10-15 mL of dry CFCl₃, cooled to 0 °C, and added dropwise (about 1 min) to the alkyl or aryl chlorothioformate 2 solution at the same temperature. The reaction mixture was then washed with aqueous Na₂SO₃ till colorless, the aqueous layer extracted three times with CH₂Cl₂ and the combined organic layers dried with MgSO₄. Evaporation of the solvent followed by flash chromatography yielded the desired fluorinated compounds 3.

Chlorodifluoromethyl Octyl Ether (3a): This compound was prepared from **2a** (3.1 g) as described above with 1.8 molar equiv. of BrF₃ in 70% yield (2.5 g), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.99 (t, J = 7 Hz, 2 H, CH₂), 1.71 (quint, J = 7 Hz, 2 H, CH₂), 1.42–1.36 (m, 2 H, CH₂), 1.32–1.29 [m, 8 H, (CH₂)₄], 0.89 (t, J = 7 Hz, 3 H, CH₃) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.7 (t, J = 286 Hz, CF₂), 69.1, 31.6, 28.9, 28.8, 28.3, 25.4, 22.5, 13.9 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.5 (s) ppm. MS (ESI-Qq TOF): m/z = 215.1254 [MH]⁺. C₉H₁₇ClF₂O (214.68): calcd. C 50.35; H, 7.98; Cl, 16.51; F, 17.70; found: C, 49.57; H, 7.73; Cl, 16.45; F, 16.98.

Chlorodifluoromethyl 3,7-Dimethyloctyl Ether (3b): This compound was prepared from **2b** (3.5 g) as described above with 1.8 molar equiv. of BrF₃ in 80% yield (3.2 g), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 4.07 (t, *J* = 7 Hz, 2 H, CH₂), 1.76–1.66 [m, 4 H, CH₂, (CH)₂], 1.37–1.18 [m, 6 H, (CH₂)₃], 0.89 [t, *J* = 7 Hz, 9 H, (CH₃)₃] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.8 (t, *J* =

285 Hz, CF₂), 67.6, 39.1, 37.0, 35.3, 29.3, 27.9, 24.5, 22.6, 22.5, 19.2 . ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.6 (s) ppm. C₁₁H₂₁ClF₂O (242.73): calcd. C 54.43, H 8.72; found C 54.06, H 8.98.

Chlorodifluoromethyl 2-Cyclohexylethyl Ether (3c): This compound was prepared from **2c** (2.9 g) as described above with 1.9 molar equiv. of BrF₃ in 65% yield (2.3 g), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.03 (t, *J* = 7 Hz, 2 H, CH₂), 1.75–0.95 [m, 13 H, (CH₂)₅(CH)CH₂] ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = NMR 125.9 (t, *J* = 287 Hz, CF₂), 67.4, 35.9, 34.1, 33.1, 26.6, 26.2 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.5 (s) ppm. MS (ESI-Qq TOF): *m/z* = 213.1548 [MH]⁺.

Chlorodifluoromethyl 3-Cyclohexylpropyl Ether (3d): This compound was prepared from **2d** (3.3 g) as described above with 1.7 molar equiv. of BrF₃ in 80% yield (3.0 g), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 3.93 (t, *J* = 7 Hz, 2 H, CH₂), 1.78–1.69 [m, 7 H, CH₂CH₂(CH)CH₂], 1.27–1.23 [m, 6 H, (CH₂)₃], 0.98–0.93 (m, 2 H, CH₂) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 125.5 (t, *J* = 285 Hz, CF₂), 68.9, 36.7, 33.1, 26.6, 26.2, 25.8 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.7 (s) ppm. For MS, the usual methods fail to show any molecular peak. However, using Amirav's method provided the solution and indeed a strong molecular ion peak of *m*/*z* 226 (M)⁺ was observed. C₁₀H₁₇ClF₂O (226.69): calcd. C 52.98, H 7.56, F 16.76; found C 52.92, H 7.60, F 16.34.

Chlorodifluoromethyl 2-Norbornylethyl Ether (3e): This compound was prepared from **2e** (3.3 g) as described above with 1.9 molar equiv. of BrF₃ in 70% yield (2.6 g), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.99 (t, *J* = 7 Hz, 2 H, CH₂), 2.23 (s, 1 H, CH), 1.98 (s, 1 H, CH), 1.74 (s, 1 H, CH), 1.54–1.49 [m, 4 H, (CH₂)₂], 1.31–1.29 (m, 2 H, CH₂), 1.19–1.10 [m, 4 H, (CH₂)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.8 (t, *J* = 285 Hz, CF₂), 69.7, 40.9, 38.1, 37.9, 36.6, 35.5, 31.6, 29.7, 28.6 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.5 (s) ppm. For MS, the usual methods fail to show any molecular peak. However, using Amirav's method provided the solution and indeed a strong molecular ion peak of *m*/*z* 224 [M]⁺ was observed. C₁₀H₁₅ClF₂O (224.68): calcd. C 53.46, H 6.73, F 16.91; found C 53.56, H 6.91, F 16.55.

Chlorodifluoromethyl 1-Adamantylethyl Ether (3f): This compound was prepared from **2f** (3.8 g) as described above with 1.9 molar equiv. of BrF₃ in 70% yield (3.1 g), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.05 (t, *J* = 7 Hz, 2 H, CH₂), 1.96 [s, 3 H, (CH)₃], 1.69–1.47 [m, 14 H, (CH₂)₇] ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 125.7 (t, *J* = 285 Hz, CF₂), 65.6, 42.3, 42.0, 36.8, 28.4 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.4 (s) ppm. For MS, the usual methods fail to show any molecular peak. However, using Amirav's method provided the solution and indeed a strong molecular ion peak of *m*/*z* 264 [M]⁺ was observed. C₁₃H₁₉ClF₂O (264.74): calcd. C 58.98, H 7.23, F 14.35, Cl 13.39; found C 59.10, H 7.30, F 14.62, Cl 13.64.

Chlorodifluoromethyl 11-Bromoundecyl Ether 3g: This compound was prepared from **2g** (3.1 g) as described above with 1.5 molar equiv. of BrF₃ in 70% yield (2.6 g), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 3.98 (t, *J* = 7 Hz, 2 H, CH₂), 3.39 (t, *J* = 7 Hz, 2 H, CH₂), 1.88–1.67 [m, 4 H, (CH₂)₂], 1.30 [s, 14 H, (CH₂)₇] ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 125.7 (t, *J* = 285 Hz, CF₂), 69.1, 33.7, 32.7, 29.3, 28.9, 28.6, 28.3, 28.1, 25.4 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.5 (s) ppm. For MS, the usual methods fail to show any molecular peak. However, using Amirav's method provided the solution and indeed a strong molecular ion peak of *m*/*z* 336 [M]⁺ was observed. C₁₂H₂₂BrClF₂O (335.66): calcd. C 42.94, H 6.61, F 11.32; found C 43.02, H 6.69, F 11.70.

Chlorodifluoromethyl (2-Methoxyethoxy)ethyl Ether (3h): This compound was prepared from **2h** (2.9 g) as described above with 1.7 molar equiv. of BrF₃ in 60% (2.0 g), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 4.16 (t, *J* = 5 Hz, 2 H, CH₂), 3.77 (t, *J* = 5 Hz, 2 H, CH₂), 3.69–3.66 (m, 2 H, CH₂), 3.59–3.56 (m, 2 H, CH₂), 3.39 (s, 3 H, CH₃) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 125.7 (t, *J* = 286 Hz, CF₂), 71.6, 70.5, 68.1, 67.9, 58.6 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -28.4 (s) ppm. HRMS (ESI-Qq TOF) *m*/*z* calcd. for C₆H₁₁ClF₂NaO₃ 227.0256 (MNa)⁺, found 227.0259 (MNa)⁺. C₆H₁₁ClF₂O₃ (204.60): calcd. C 35.22, H 5.42; found C 34.98, H 4.97.

Chlorodifluoromethyl *N*-Phthalimidoethyl Ether (3i): This compound was prepared from 2i (3.6 g) as described above with 1.8 molar equiv. of BrF₃ in 85% yield (3.1 g); white crystals; m.p. 54.2–55.1 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.91 [t, *J* = 5 Hz, 2 H, (CH)₂], 7.78 [t, *J* = 5 Hz, 2 H, (CH)₂], 4.29 (t, *J* = 7 Hz, 2 H, CH₂), 4.06 (t, *J* = 7 Hz, 2 H, CH₂) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.7 (t, *J* = 285 Hz, CF₂), 167.8, 134.2, 131.7, 123.7, 65.3, 40.7. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -28.5 (s) ppm. HRMS (CI) *m*/*z* calcd. for C₁₁H₉ClF₂NO₃ (275.64): calcd. C 47.93, H 2.93, F 13.79; found C 48.16, H 2.67, F 13.96.

Chlorodifluoromethyl *N*-**Phthalimidoundecyl Ether** (**3j**): This compound was prepared from **2j** (900 mg) as described above with 1.5 mol equiv. of BrF₃ in 85% yield (810 mg); white crystals; m.p. 33 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.83 [t, J = 5 Hz, 2 H, (CH)₂], 7.71 [t, J = 5 Hz, 2 H, (CH)₂], 3.98 (t, J = 7 Hz, 2 H, CH₂), 3.67 (t, J = 7 Hz, 2 H, CH₂), 1.69–1.63 [m, 4 H, (CH₂)₂], 1.27 [s, 14 H, (CH₂)₇] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.7 (t, J = 285 Hz, CF₂), 168.2, 134.1, 133.7, 123.8, 69.2, 37.9, 29.0, 28.7, 28.6, 28.4, 26.7, 25.4 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = –27.5 (s) ppm. HRMS (CI) *m*/*z* calcd. for C₂₀H₂₆ClF₂NO₃ (401.88): calcd. C 59.77, H 6.52, N 3.49; found C 60.07, H 6.60, N 3.48.

Preparation of Chlorodifluoromethyl 11-Aminoundecyl Ether 4j: Compound 3i (400 mg, 0.96 mmol) was dissolved in 15 mL of ethanol, hydrazine hydrate (0.5 mL) was added, and the mixture was heated at reflux for 1.5 h. The reaction mixture was cooled and 0.2 mL of concentrated hydrochloric acid was added. The white precipitate formed was filtered, the filtrate neutralized with 30% sodium hydroxide, extracted with chloroform and dried with MgSO₄. The solvent removed under reduced pressure to yield the chlorodifluoromethyl 11-aminoundecyl ether (4j) in 80% yield (208 mg), yellow oil. ¹H NMR (200 MHz, CDCl₃): δ = 3.91 (t, J = 7 Hz, 2 H, CH₂), 2.55 (t, J = 7 Hz, 2 H, CH₂), 1.73–1.64 (m, 2 H, CH₂), 1.47–1.25 [m, 16 H, 2 H br, (CH₂)₈, NH₂] ppm. ¹³C NMR $(50.3 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 125.6$ (t, $J = 284 \text{ Hz}, \text{ CF}_2$), 69.0, 41.6, 33.2, 29.3, 28.8, 28.2, 27.2, 26.6, 25.3 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): $\delta = -27.6$ (s) ppm. For MS, the usual methods fail to show any molecular peak. However, using Amirav's method provided the solution and indeed a strong molecular ion peak of m/z 271 [M]⁺ was observed.

4-Chloro-1-(chlorodifluoromethoxy)benzene (3k):^[9] This compound was prepared from **2k** (621 mg) as described above with 1.9 molar equiv. of BrF₃ in 40% yield (256 mg), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 7.40 [d, *J* = 8 Hz, 2 H, (CH)₂], 7.22 [d, *J* = 8 Hz, 2 H, (CH)₂] ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 124.9 (t, *J* = 289 Hz, CF₂), 148.5, 141.9, 132.5, 129.7, 122.7 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -26.4 (s) ppm.

2,4,6-Tribromo-1-(chlorodifluoromethoxy)benzene (31): This compound was prepared from **2I** (1.1 g) as described above with 1 mo-

FULL PAPER

lar equiv. of BrF₃ in 70% yield (850 mg), colorless oil. ¹H NMR (200 MHz, CDCl₃): δ = 7.75 [s, 2 H, (CH)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 124.8 (t, *J* = 296 Hz, CF₂), 145.9, 135.6, 121.3, 119.8 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -21.6 (s) ppm. HRMS (CI) *m*/*z* calcd. for C₇H₂Br₃ClF₂O 415.727140 [M]⁺, found 415.726944 [M]⁺. C₇H₂Br₃ClF₂O (415.25): calcd. C 20.25; H, 0.49; F, 9.15; found: C, 20.49; H, 0.50; F, 9.10.

2,3,4,5,6-Pentabromo-1-(chlorodifluoromethoxy)benzene (51): This compound was prepared by treatment **2l** (1.1 g) as described above with up to 3 molar equiv. of BrF₃ in 85% yield (1.3 g); white crystals, m.p. 69 °C. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.7 (t, *J* = 296 Hz, CF₂), 146.8, 128.6, 122.5, 119.8 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -20.7 (s) ppm. HRMS (EI) *m/z* calcd. for C₇Br₅ClF₂O 573.546116 [M]⁺, found 573.547668 [M]⁺. C₇Br₅ClF₂O (573.04): calcd. C 14.67, H 0.00; found C 14.72, H 0.00.

4-(Chlorodifluoromethoxy)benzonitrile (3m):^[9] This compound was prepared from **2m** (593 mg) as described above with 1.5 molar equiv. of BrF₃ in 65% yield (400 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.69 [d, J = 8.7 Hz, 2 H, (CH)₂], 7.25 [d, J = 8.7 Hz, 2 H, (CH)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 124.7 (t, J = 291 Hz, CF₂), 153.8, 134.4, 121.8, 117.6, 111.3 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -26.5 (s) ppm. HRMS (CI) m/z calcd. for C₈H₅ClF₂NO 204.002773 [MH]⁺, found 204.002677 [MH]⁺.

1-(Chlorodifluoromethoxy)-2-nitrobenzene (3n): This compound was prepared from **2n** (651 mg) as described above with 1.9 molar equiv. of BrF₃ in 80% yield (500 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 8 Hz, 1 H, CH), 7.72 (td, *J*₁ = 8, *J*₂ = 2 Hz, 1 H, CH), 7.53–7.48 [m, 2 H, (CH)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 124.9 (t, *J* = 292 Hz, CF₂), 142.6, 141.9, 134.1, 127.6, 124.9, 123.5 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -26.5 (s) ppm. HRMS (CI) *m*/*z* calcd. for C₇H₅ClF₂NO₃ 223.992602 [MH]⁺, found 223.992447 [MH]⁺. C₇H₄ClF₂NO₃ (223.56): calcd. C 37.61, H 1.80, CI 15.86, F 17.00, N 6.27; found C 37.32, H 1.77, Cl 16.20, F 18.10, N 6.13.

1-(Chlorodifluoromethoxy)-3-nitrobenzene (30): This compound was prepared from **20** (651 mg) as described above with 1.9 molar equiv. of BrF₃ in 80% yield (500 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.20 (d, *J* = 8 Hz, 1 H, CH), 8.09 (s, 1 H, CH), 7.73–7.58 [m, 2 H, (CH)₂] ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 125.4 (t, *J* = 291 Hz, CF₂), 150.2, 148.8, 130.7, 127.8, 122.1, 117.4 ppm. ¹⁹F NMR (188.1 MHz, CDCl₃): δ = -27.1 (s) ppm. HRMS (CI) *m*/*z* calcd. for C₇H₅ClF₂NO₃ 223.992602 [MH]⁺, found 223.993132 [MH]⁺. C₇H₄ClF₂NO₃ (223.56): calcd. C 37.61, H 1.80, F 17.00; found C 37.39, H 1.57, F 17.48.

Preparation of 3-(Chlorodifluoromethoxy)aniline (60):^[21] NaHCO₃ (2 g, 0.024 mol) was added to the solution of sodium sulfide (Na₂S·9H₂O, 6 g, 0.025 mol) dissolved in 20 mL of water. When the carbonate has dissolved completely, 20 mL of methanol were added. Filtration of the precipitated sodium carbonate left a methanol solution of sodium hydrogen sulfide (NaSH). This solution was added to a solution of 1-(chlorodifluoromethoxy)-3-nitrobenzene (**30**, 2.6 g, 0.012 mol) in 20 mL of methanol and refluxed for 1 h. Purification by flash chromatography led to the desired **60** in 90% yield (2 g), yellow oil.

Preparation of 3-(Trifluoromethoxy)aniline (70):^[21] Tetrabutylammonium fluoride (3.9 mL, 3.85 mmol, 1.0 M solution in THF) was added to 3-(difluorochloromethoxy)aniline (**60**, 150 mg, 0.77 mmol) dissolved in 3 mL of anhydrous dimethyl sulfoxide. Reflux for 2 h followed by purification by flash chromatography, led to 3-(trifluoromethoxy)aniline (**70**) in 30% yield (41 mg), yellow oil.

Supporting Information (see also the footnote on the first page of this article): All NMR spectra of the new chlorodifluoromethyl ethers described in this work.

Acknowledgments

This work was supported by the USA–Israel Binational Science Foundation (BSF), Jerusalem, Israel.

- D. D. Koblin, M. J. Laster, P. Ionescu, D. Gong, E. I. Eger, M. J. Halsey, T. Hudlicky, *Anesth. Analg.* **1999**, 88, 1161–1167.
- [2] E. L. Stogryn, J. Med. Chem. 1973, 16, 1399–1401.
- [3] A. S. Kiselyov, M. Semenova, V. V. Semenov, D. Milligan, *Bioorg. Med. Chem. Lett.* 2006, 16, 1913–1919.
- [4] J. Guidotti, F. Metz, M. Tordeux, C. Wakselman, *Synlett* **2004**, *10*, 1759–1762.
- [5] T. Hudlicky, C. Duan, J. W. Reed, F. Yan, M. Hudlicky, M. A. Endoma, E. I. Eger, *J. Fluorine Chem.* **2000**, *102*, 363–367.
- [6] A. E. Feiring, J. Org. Chem. 1979, 44, 2907–2910.
- [7] L. Saint-Jalmes, J. Fluorine Chem. 2006, 127, 85-90.
- [8] R. C. Terrel, L. Speers, A. J. Szur, T. Ucciardi, J. F. Vitcha, J. Med. Chem. 1972, 15, 604–606.
- [9] S. V. Shelyazhenko, Y. A. Fialkov, L. M. Yagupolskii, Zh. Organicheskoi Khimii 1992, 28, 1652–1659.
- [10] F. Karrer, H. Meier, A. Pascual, J. Fluorine Chem. 2000, 103, 81–84.
- [11] a) A. Hagooly, S. Rozen, J. Fluorine Chem. 2005, 126, 1239–1245; b) A. Hagooly, R. Sasson, S. Rozen, J. Org. Chem. 2003, 68, 8287–8289; c) S. Rozen, I. Ben-David, J. Org. Chem. 2001, 66, 496–500.
- [12] R. Sasson, A. Hagooly, S. Rozen, Org. Lett. 2003, 5, 769-771.
- [13] I. Ben-David, D. Rechavi, E. Mishani, S. Rozen, J. Fluorine Chem. 1999, 97, 75–78.
- [14] a) R. Sasson, S. Rozen, *Tetrahedron* **2005**, *61*, 1083–1086; b) S. Rozen, E. Mishani, J. Chem. Soc., Chem. Commun. **1994**, *18*, 2081–2082; c) A. Hagooly, S. Rozen, Chem. Commun. **2004**, *5*, 594–595.
- [15] M. A. Fikse, W. E. Bylund, N. E. Holubowitch, C. J. Abelt, Synthesis 2006, 24, 4118–4120.
- [16] L. A. Rozov, C. G. Huang, D. F. Halpern, G. G. Vernice, K. Raming, *Tetrahedron: Asymmetry* 1997, 8, 3023–3025.
- [17] S. Rozen, C. Gal, J. Org. Chem. 1987, 52, 2769–2779; S. Rozen, C. Gal, J. Org. Chem. 1987, 52, 4928–4933.
- [18] R. A. Davis, E. A. Larsen, J. Org. Chem. 1967, 32, 3478-3481.
- [19] A. Bendavid, C. J. Burns, L. D. Field, K. Hashimoto, D. D. Ridley, S. K. Sandanayake, L. Wieczorek, J. Org. Chem. 2001, 66, 3709–3716.
- [20] S. Rozen, O. Lerman, J. Org. Chem. 1993, 58, 239-240.
- [21] These compounds are commercially available.
- [22] H. R. Al-Kazimi, D. S. Tarbell, D. Plant, J. Am. Chem. Soc. 1955, 77, 2479–2482.
- [23] H. K. Oh, J. S. Ha, D. D. Sung, I. Lee, J. Org. Chem. 2004, 69, 8219–8223.
- [24] a) A. Hammadi, C. Crouzel, J. Labelled Compd. Radiophar.
 1993, 33, 703; b) M. R. Kilbourn, M. R. Pavia, V. E. Gregor, Appl. Radiat. Isot. 1990, 41, 823.
- [25] a) S. Dagan, A. Amirav, J. Am. Mass Spectrom. 1995, 6, 120–131; b) A. Amirav, A. Gordin, N. Tzanani, Rapid Commun. Mass Spectrom. 2001, 15, 811–820.
- [26] L. Stein, J. Am. Chem. Soc. 1959, 81, 1269-1273.

Received: February 29, 2008 Published Online: April 29, 2008