

Communication

Asymmetric Allylic C-H Oxidation for the Synthesis of Chromans

Pu-Sheng Wang, Peng Liu, Yu-Jia Zhai, Hua-Chen Lin, Zhi-Yong Han, and Liu-Zhu Gong J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 24 Sep 2015
 Downloaded from http://pubs.acs.org on September 24, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Asymmetric Allylic C–H Oxidation for the Synthesis of Chromans

Pu-Sheng Wang[†], Peng Liu[†], Yu-Jia Zhai[†], Hua-Chen Lin[†], Zhi-Yong Han[†], Liu-Zhu Gong^{*†‡}

[†] Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China

[#] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), China

Supporting Information

ABSTRACT: An enantioselective intramolecular allylic C–H oxidation to generate optically active chromans has been accomplished under the cooperative catalysis of a palladium complex of chiral phosphoramidite ligand and 2-fluorobenzoic acid. Mechanistic studies suggest that this reaction commences with a Pd-catalyzed allylic C–H activation event and then undergoes asymmetric allylic alkoxylation. The synthetic significance of the method has been embodied by concisely building up a key chiral intermediate to access (+)-diversonol.

Chiral chroman core moiety is widely distributed in numerous naturally occurring compounds, many of which exhibit significant biological properties (Figure 1).¹ For example, Vitamin E is a well-known fat-soluble vitamin and important intramembrane antioxidant that prevents the propagation of free radical damage in biological membranes.² Another example is tetrahydroxanthenone, which is a fast growing class of mycotoxins with interesting biological activities.³ Among them is diversonol, which is a fungal metabolite and has been isolated from different fungi such as *Penicillium diversum* and *Microdiplodia sp.*⁴ Although the bioactivity of diversonol seems unclear so far, the related dimeric secalonic acids can exhibit antibacterial, cytostatic, and anti-HIV properties.⁵ Therefore, the total synthesis of diversonol has continuously drawn the attention of chemical community.⁶

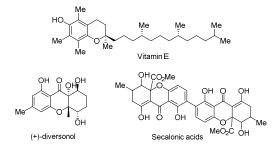
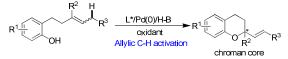


Figure 1. Representative natural products bearing chiral chroman core moiety

For the synthesis of the chiral chroman motifs, a variety of enantioselective approaches have been described.⁷ For years, a great deal of attention has focused on asymmetric synthesis that relies on transition metal-catalyzed Wacker-type⁸ or

allylic substitution processes.9 However, the construction of chiral chroman frameworks via direct inert C-H oxidation strategy has not been reported, yet.¹⁰ In the last decade, highly effective allylic C-H oxidation has been established as one of more appealing synthetic alternatives for fine chemical synthesis, in comparison with conventional procedures.¹¹ chiral Although successful application of а bisoxazoline/copper complexes in asymmetric allylic C-H oxidation has achieved high levels of enantioselectivity (Scheme 1a), the efficiency of these systems is limited to cyclic olefins.¹² Recently, White and coworkers found that the combined use of a palladium complex and a chiral Lewis acid was able to significantly enhance the efficiency of asymmetric allylic C-H oxidation of terminal olefins, but with a moderate enantioselectivity (Scheme 1b).¹³ Soon after the discovery of phosphine ligand promoted Pd-catalyzed allylic C-H alkylations,¹⁴ Trost and coworkers established an asymmetric allylic C-H alkylation by using chiral phosphoramidite ligands to control stereochemistry.¹⁵ Very recently, our group accomplished the first enantioselective a-allylation of aldehydes with terminal alkenes by combining chiral counteranion catalysis and Pd-catalyzed allylic C-H activation.¹⁶ Herein, we will present an asymmetric allylic C-H oxidation for asymmetric synthesis of various chromans enabled by cooperative catalysis of chiral palladium complex and achiral Brønsted acid (Scheme 1c), allowing for a concise enantioselective formal synthesis of (+)-diversonol.

Scheme 1. Asymmetric Allylic C-H Oxidation Reactions


a) bisoxazoline-copper systems

$$\begin{array}{c} & & \\ & &$$

b) bis(sulfoxide)-palladium-chiral Lewis acid system

$$\begin{array}{c} H \\ H \\ R \end{array} \xrightarrow{\text{bis(sulfoxide)/Pd(II)/Cr(III)}} & OAc \\ HOAc, BQ \end{array} \xrightarrow{\text{OAc}} & up to 63\% ee \\ \end{array}$$

c) this work: chiral phosphoramidite-palladium system

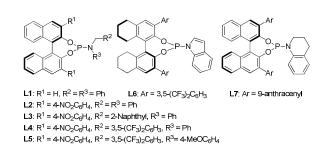
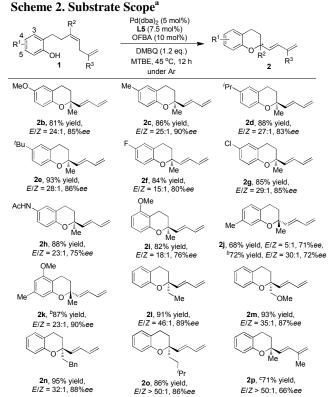


Figure 2. Chiral phosphoramidite ligands used in this study

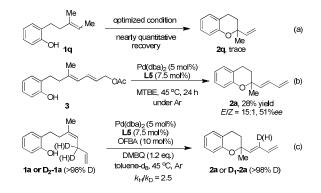
Our previous work on asymmetric allylic C-H alkylation¹⁶ prompted us to initially apply cooperative catalysis of a palladium complex and a chiral Brønsted acid to the synthesis of the desired chiral chromans using the substrate 1a bearing 1,4-diene moiety, however, poor to moderate enantioselectivities were obtained after several trials (Table S1).¹⁷ Alternatively, we decided to employ the combination of palladium complexes of bulky chiral ligands (Figure 2) and Brønsted acids to circumvent the challenge in stereochemical control.¹⁸ Although the use of chiral phosphoric acids still led to unsatisfactory enantioselectivity, an inspiring phenomenon that the counteranions of palladium complexes exerted obvious impact on the catalytic activity was found (Table S1),¹⁷ and thereby prompted us to investigate the effect of achiral Brønsted acid co-catalysts (Table 1, entries 1-4). To our delight, the use of 2-fluorobenzoic acid as the organic co-catalyst was able to promote the efficiency and enantioselectivity of the reaction (entry 4). Then, various chiral BINOL derived phosphoramidites L2-5 were evaluated. was identified that the introduction of highly It electron-deficient 4-nitrobenzyl substitution to 3,3'-positions of the BINOL moiety was able to greatly enhance the enantioselectivity (entry 5). Fine tuning of amine moiety on phosphoramidite ligands found that the presence of sterically less demanding and more electronically deficient substituents on the benzyl group were beneficial to the control of enantioselectivity (entries 6-8). The highest enantioselectivity was obtained upon using a chiral phosphoramidite ligand incorporated with an electronically rich aryl substituent on amine moiety (entry 8). Interestingly, the olefin geometry of the substrate showed obvious impact on the reaction. In comparison with E-isomer, Z-isomer underwent the allylic alkoxylation with higher E/Z selectivity and slightly enhanced enantioselectivity (entries 9-10), which to some extent implied the proposed allylic substitution process, as the Wacker-type approach should give thermodynamically controlled similar E/Z selectivity via β -H elimination event, basically unconnected with the olefin geometry after the initial nucleopalladation,¹⁹ while E/Z selectivity of the allylic alkoxylation showed obvious correlation with the olefin geometry.⁹⁶ Although the reaction was also able to proceed smoothly in the absence of 2-fluorobenzoic acid (OFBA), a much diminished enantioselectivity was obtained (entry 11), implying that the Brønsted acid played an important role in the control of stereoselectivity. Notably, the absence of phosphoramidite ligand L5 was unable to give the desired product 2a with nearly quantitative recovery of 1a (entry 12),

which further demonstrated that this Pd-catalyzed allylic C-H oxidation process was dramatically accelerated by the Brønsted acid and phosphoramidite ligand.


Table 1. Optimization of Reaction Conditions						
С	Me H		(dba) ₂ (5 mol%) ▲* (7.5 mol%) 3-H (10 mol%) MBQ (1.2 eq.) BE, 45 °C, 12 h under Ar	E-2a	+ 0 0 M	/le Ne
entry	1	L*	B-H	yield $(\%)$	E/Z^{b}	ee (%) ^c
1	1a	L1	(PhO) ₂ PO ₂ H	6	4:1	0
2	1a	L1	AcOH	44	20:1	18
3	1a	L1	BzOH	26	36:1	7
4	1a	L1	OFBA	59	20:1	21
5	1a	L2	OFBA	97	18:1	84
6	1a	L3	OFBA	95	16:1	83
7	1a	L4	OFBA	94	16:1	85
8	1a	L5	OFBA	95(92 ^{<i>d</i>})	16:1	87
9	<i>E</i> -1a	L5	OFBA	90^d	7:1	85
10	Z-1a	L5	OFBA	87^d	20:1	88
11	Z-1a	L5		70^d	28:1	48
12	Z-1a		OFBA	trace		
a - .			1 (0.1	1 5/5		

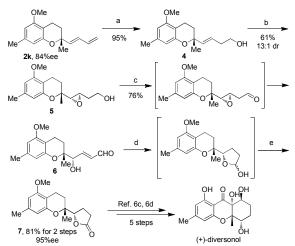
^{*a*}Reaction conditions: **1a** (0.1 mmol, E/Z = 1:1.2), Pd(dba)₂ (5 mol%), L (7.5 mol%), B-H (10 mol%), DMBQ (1.2 equiv), MTBE (1 mL), 45 °C, 12 h, under Ar. ^bBased on ¹H-NMR analysis of the crude reaction mixture using benzyl benzoate as an internal standard. ^cDetermined by HPLC. ^dIsolated yield. OFBA = 2-fluorobenzoic acid. MTBE = methyl *tert*-butyl ether. DMBQ = 2,6-dimethyl-1,4-benzoquinone.

Under the optimized conditions, we next explored the generality of the asymmetric allylic C-H oxidation reaction (Scheme 2). The installation of different substituents on the benzene ring was nicely tolerated, giving rise to the desired chiral chromans 2 in high yields, excellent E/Z selectivity, and with moderate to good levels of enantioselectivities. Either electron donating or withdrawing substituent at 4-position of the benzene ring led to the generation of chromans 2b-g with good performance, except for 4-acetamide substituted substrate 1h, which gave slightly lower enantioselectivity. Especially, the reaction was highly sensitive to the substitution pattern on the benzene ring, as shown in 1i-j. As such, the installation of a substituent at either 3- or 5-position led to much diminished E/Z selectivity and enantioselectivity. To our delight, the E/Z selectivity could be improved to 30:1 with slightly improved enantioselectivity by using ligand L6 to replace L5 in the case of 1j. Notably, 1k was also able to participate in a clean reaction with ligand L6 to give excellent E/Z selectivity and enantioselectivity. Moreover, the presence of bulkier alkyl group adjacent to the internal alkenes (11-0) was also compatible with the optimal reaction conditions, delivering the desired products in good yields and with high enantioselectivities. However, the presence of a substituent at the terminal double bond (1p) led to a much slower reaction


2

under the optimized conditions, while enhanced results could be obtained by replacing ligand L5 with ligand L7.

^{*a*}Reaction conditions: **1** (0.1 mmol), $Pd(dba)_2$ (5 mol%), **L5** (7.5 mol%), OFBA (10 mol%), DMBQ (1.2 equiv), MTBE (1.0 mL), 45 °C, 12 h, under Ar. ^{*b*}L6 was used instead of L5. ^{*c*}L7 was used instead of L5


Scheme 3. Experiments for Mechanistic Studies

Then, a series of parallel reactions (Scheme 3) were conducted to identify the allylic C-H activation pathway. The control reaction using 2-(3-methylpent-3-en-1-yl)phenol (1q) under the optimized conditions (Scheme 3a) failed to afford the desired product and the starting material was nearly quantitatively recovered, implying that the Wacker-type reaction is impossible to occur and might thereby be ruled out as a pathway. In contrast, a typical Pd-catalyzed allylic alkoxylation of **3** in the presence of ligand **L5** resulted in 15:1

E/Z selectivity (Scheme 3b), relatively close to the results observed for the reaction of **1a** (Table 1). More importantly, a significant intramolecular kinetic isotope effect (KIE, $k_{\rm H}/k_{\rm D}$ = 2.5) was observed for the reaction of **D**₂-**1a** (Scheme 3c),¹⁷ which revealed that the allylic C–H cleavage was the rate-determining step. All of these results aggregately suggest that the allylic C-H activation process to generate π -allyl palladium species turns out to be the initial step of the reaction, rather than a Wacker-type pathway.⁸

Scheme 4. Asymmetric Formal Synthesis of (+)-Diversonol

Reaction conditions: a) 9-BBN (2.0 equiv.), THF, rt, 12h, then NaOH, H_2O_2 . b) $Zr(O^{t}Bu)_4$ (0.5 eq.), D-(-)-DIPT (0.6 equiv.), TBHP (2.0 equiv.), DCM, 0 °C, 12 h. c) SO_3 ·Py (6.0 equiv.), Et_3N (10 equiv.), DMSO (40 equiv.), DCM, 0 °C, 1 h. d) Pd/C (5 mol%), H_2 , EtOAc, rt, 1h. e) PCC (2.0 equiv.), DCM, rt, 1h.

Finally, we attempted to apply this new method to the enantioselective synthesis of (+)-diversonol (Scheme 4). It is noteworthy that the more easily accessible E/Z-isomeric mixture of 1k was able to undergo a scale-up reaction to give 2k in a high yield and with synthetically useful enantioselectivity in the presence of 2 mol% of chiral palladium complex.¹⁷ Regioselective hydroboration of **2k** with 9-borabicyclo[3.3.1]nonane (9-BBN) and followed by an oxidation with hydrogen peroxide in the presence of sodium hydroxide was able to give homoallylic alcohol 4 in an almost perfect yield. After various conditions were examined for the diastereoselective epoxidation of 4, a modified Onaka's Zr(O^tBu)₄-DIPT-TBHP system was found to give satisfactory diastereomeric ratio of 13:1.²⁰ The conversion of 5 to γ -hydroxyl unsaturated aldehyde **6** was established by β-elimination reaction of the corresponding epoxide aldehyde intermediate²¹ under the standard Parikh-Doering oxidation conditions.²² The hydrogenation of **6** catalyzed by Pd/C under H₂ atmosphere gave rise to the corresponding hemiacetal intermediate, which was oxidized by PCC to furnish the chroman lactone 5 with 95%ee, which was actually a key intermediate for the total synthesis of (+)-diversonol by following procedures reported by Nicolaou^{6c} and Bräse.^{6d} All of the spectroscopic data of the synthetic chroman lactone 5 was in complete agreement with those reported previously.^{6d,17}

In conclusion, an enantioselective intramolecular allylic C–H oxidation reaction has been established under the cooperative catalysis of a chiral palladium complex and 2-fluorobenzoic acid, allowing for an efficient synthesis of chromans in high yields and with high levels of enantioselectivity. Mechanistic studies suggest that the reaction proceeds via an initial counteranion-assisted Pd-catalyzed allylic C–H activation and followed by an allylic alkoxylation, rather than a formal Wacker-type cyclization. More significantly, this method has provided a new efficient synthetic route to the key chiral intermediate for the synthesis of (+)-diversonol.

ASSOCIATED CONTENT

Supporting Information. Complete experimental procedures and characterization data for the prepared compounds. This material is available free of charge via the internet at http://pubs.acs.org

AUTHOR INFORMATION

Corresponding Author

gonglz@ustc.edu.cn

ACKNOWLEDGMENT

We are grateful for financial support from MOST (973 project 2015CB856600), NSFC (21232007, 21302177), and the Fundamental Research Funds for the Central Universities (WK2060190041).

REFERENCES

- (1) (a) Reddy, K. A.; Lohray, B. B.; Bhushan, V.; Reddy, A. S.; Rao Mamidi, N. V.; Reddy, P. P.; Saibaba, V.; Reddy, N. J.; Suryaprakash, A.; Misra, P.; Vikramadithyan, R. K.; Rajagopalan, R. J. Med. Chem. **1999**, 42, 3265. (b) Koufaki, M.; Detsi, A.; Theodorou, E.; Kiziridi, C.; Calogeropoulou, T.; Vassilopoulos, A.; Kourounakis, A. P.; Rekka, E.; Kourounakis, P. N.; Gaitanaki, C.; Papazafiri, P. Bioorg. Med. Chem. **2004**, 12, 4835. (c) Fukunaga-Takenaka, R.; Shirai, Y.; Yagi, K.; Adachi, N.; Sakai, N.; Merino, E.; Merida, I.; Saito, N. Genes Cells **2005**, 10, 311.
 (d) Koufaki, M.; Theodorou, E.; Galaris, D.; Nousis, L.; Katsanou, E. S.; Alexis, M. N. J. Med. Chem. **2006**, 49, 300. (e) Yang, J.; Liu, G.-Y.; Lu, D.-L.; Dai, F.; Qian, Y.-P.; Jin, X.-L.; Zhou, B. Chem. Eur. J. **2010**, 16, 12808.
- (2) (a) Bowry, V. W.; Stocker, R. J. Am. Chem. Soc. 1993, 115, 6029.
 (b) Weber, C.; Podda, M.; Rallis, M.; Thiele, J. J.; Traber, M. G.; Packer, L. Free Radical Biol. Med. 1997, 22, 761.
- (3) (a) Hayes, A. W. J. Toxicol., Clin. Toxicol. 1980, 17, 45. (b) Lesch, B.; Brase, S. Angew. Chem., Int. Ed. 2004, 43, 115. (c) Rezanka, T.; Sigler, K. J. Nat. Prod. 2007, 70, 1487. (d) Zhang, Y.; Song, Z.; Hao, J.; Qiu, S.; Xu, Z. Fitoterapia 2010, 81, 595.
- (4) Turner, W. B. J. Chem. Soc., Perkin Trans. 1 1978, 1621.
- (5) (a) Franck, B.; Gottscha.Em; Ohnsorge, U.; Baumann, G. Angew. Chem., Int. Ed. 1964, 3, 441. (b) Howard, C. C.; Johnston.Ra J. Chem. Soc., Perkin Trans. 1 1973, 2440. (c) Andersen, R.; Buchi, G.; Kobbe, B.; Demain, A. L. J. Org. Chem. 1977, 42, 352. (d) Kurobane, I.; Iwahashi, S.; Fukuda, A. Drug. Exp. Clin. Res. 1987, 13, 339. (e) El-Elimat, T.; Raja, H.; Oberlies, N. H. Planta Med. 2013, 79, 849.
- (6) (a) Nising, C. F.; Ohnemuller, U. K.; Bräse, S. Angew. Chem., Int. Ed. 2006, 45, 307. (b) Gerard, E. M. C.; Bräse, S. Chem. Eur. J. 2008, 14, 8086. (c) Nicolaou, K. C.; Li, A. Angew. Chem., Int. Ed. 2008, 47, 6579. (d) Brohmer, M. C.; Bourcet, E.; Nieger, M.; Brase, S. Chem. Eur. J. 2011, 17, 13706. (e) Siddiqui, I. N.;

Zahoor, A.; Hussain, H.; Ahmed, I.; Ahmad, V. U.; Padula, D.; Draeger, S.; Schulz, B.; Meier, K.; Steinert, M.; Kurtan, T.; Florke, U.; Pescitelli, G.; Krohn, K. *J. Nat. Prod.* **2011**, *74*, 365. (f) Tietze, L. F.; Jackenkroll, S.; Raith, C.; Spiegl, D. A.; Reiner, J. R.; Ochoa Campos, M. C. *Chem. Eur. J.* **2013**, *19*, 4876. (g) Sudhakar, G.; Bayya, S.; Kadam, V. D.; Nanubolu, J. B. Org. Biomol. Chem. **2014**, *12*, 5601.

- (7) (a) Shen, H. C. *Tetrahedron* 2009, 65, 3931. (b) Nibbs, A. E.; Scheidt, K. A. *Eur. J. Org. Chem.* 2012, 449.
- (8) (a) Tietze, L. F.; Stecker, F.; Zinngrebe, J.; Sommer, K. M. *Chem. Eur. J.* 2006, *12*, 8770. (b) Tietze, L. F.; Zinngrebe, J.; Spiegl, D. A.; Stecker, F. *Heterocycles* 2007, *74*, 473. (c) Hua, Q. L.; Li, C.; Wang, X. F.; Lu, L. Q.; Chen, J. R.; Xiao, W. J. *ACS Catal.* 2011, *1*, 221. (d) Liu, Q. C.; Wen, K.; Zhang, Z. F.; Wu, Z. X.; Zhang, Y. J.; Zhang, W. B. *Tetrahedron* 2012, *68*, 5209.
- (9) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074.
 (b) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J. P.; Sylvain, C. J. Am. Chem. Soc. 2004, 126, 11966. (c) Uria, U.; Vila, C.; Lin, M. Y.; Rueping, M. Chem. Eur. J. 2014, 20, 13913.
- (10) (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Jensen, T.; Fristrup, P. Chem. Eur. J. 2009, 15, 9632. (c) Liu, G.; Wu, Y. Top. Curr. Chem. 2010, 292, 195. (d) Engelin, C. J.; Fristrup, P. Molecules 2011, 16, 951. (e) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588. (f) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 1121. (g) Nakamura, A.; Nakada, M. Synthesis 2013, 45, 1421. (h) Chen, K.; Zhang, P.; Wang, Y.; Li, H. Green Chem. 2014, 16, 2344. (i) Liron, F.; Oble, J.; Lorion, M. M.; Poli, G. Eur. J. Org. Chem. 2014, 5863. (j) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
- (11) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346. (b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (c) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076. (d) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 56. (e) Vermeulen, N. A.; Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2010, 132, 11323. (f) Huang, D. S.; Wang, H. N.; Xue, F. Z.; Shi, Y. J. Org. Chem. 2011, 76, 7269. (g) Ammann, S. E.; Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2014, 136, 10834. (h) Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176. (i) Wang, P.-S.; Lin, H.-C.; Zhou, X.-L.; Gong, L.-Z. Org. Lett. 2014, 16, 3332.
- (12) Andrus, M. B.; Zhou, Z. N. J. Am. Chem. Soc. 2002, 124, 8806.
- (13) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448.
- (14) Trost, B. M.; Hansmann, M. M.; Thaisrivongs, D. A. Angew. Chem., Int. Ed. 2012, 51, 4950.
- (15) (a) Trost, B. M.; Thaisrivongs, D. A.; Donckele, E. J. Angew. Chem., Int. Ed. 2013, 52, 1523. For applications of chiral phosphoramidite ligand in asymmetric allylic C-H amination, see:
 (b) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590.
- (16) Wang, P.-S.; Lin, H.-C.; Zhai, Y.-J.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 12218.
- (17) See the Supporting Information for details.
- (18) Tao, Z.-L.; Zhang, W.Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.
- (19) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
- (20) Okachi, T.; Murai, N.; Onaka, M. Org. Lett. 2003, 5, 85.
- (21) Chakraborty, T. K.; Purkait, S.; Das, S. Tetrahedron 2003, 59, 9127.
- (22) Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505.

1

2

3

4

5

6

7

8

9

10

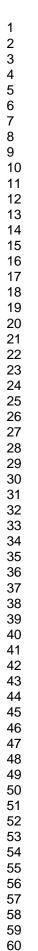
11

12

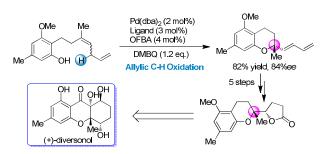
13

14

15


16

17


18

19

20

