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ABSTRACT

The highly diastereo- and enantioselective synthesis of �-trifluoromethyl-�-lactones bearing two contiguous stereocenters was realized by
chiral N-heterocyclic carbene-catalyzed formal cycloaddition reaction of alkyl(aryl)ketenes and trifluoromethyl ketones.

Because of their unique properties, fluorinated compounds have
found wide applications in pharmaceuticals, agrochemistry, and
materials.1 Among them, trifluoromethyl-substituted compounds
are especially important and have been developed as several
well-known drugs.2 Thus, the efficient synthesis of these
compounds has been pursued for decades.3 In this context,
commercially available trifluoromethyl ketones are valuable
starting materials, and a wide variety of reactions, including
aldol reaction, Friedal-Crafts reaction, alkynylation, alkeny-
lation, arylation, and reduction, have been developed.4

�-Lactones not only are versatile building blocks in organic
synthesis but also represent an important structural motif in

many natural and unnatural bioactive compounds.5,6 Although
the synthesis of �-trifluoromethyl-�-lactones was patented
in 1966,7 to the best of our knowledge, the asymmetric synthesis
of �-trifluoromethyl-�-lactones has not been realized.

N-Heterocyclic carbenes (NHCs) have been successfully
demonstrated as catalysts for a variety of reactions,8 including
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a1-d1 umpolung of aldehydes,9 a3-d3 umpolung of R,�-
unsaturated aldehydes,10 umpolung of Michael acceptors,11

aza-Mortia-Baylis-Hillman reaction,12 and addition of
silylated nucleophiles.13 The synthesis of γ-trifuoromethyl
γ-butyrolactones via NHC-catalyzed annulation of enals and
ketones was reported by Glorius et al. and You et al.14

Interestingly, Glorius et al. obsevered that, under certain
reaction conditions, the corresponding �-lactones could be
formed albeit in quite low yields and diastereoselectivities.15

Recently, the NHC-catalyzed enantioselective cycloaddition
of ketenes and imines, 2-oxoaldehydes, enones, and N-ben-
zoyldiazenes to give �-lactams, �-lactones, δ-lactones, and
oxadiazinones, respectively, have been accomplished by Smith’s
and our group.16 These findings prompted us to explore the
asymmetric synthesis of �-trifluoromethyl-�-lactones via NHC-
catalyzed ketene-ketone cycloaddition reactions.

Initially, a series of NHC precurors 4a-h (Figure 1), derived
from L-pyroglutamic acid,16a were tested for the [2 + 2]

cycloaddition reaction of ethyl(phenyl)ketene (1a) and triflu-
oromethyl ketone 2a (Table 1). It was found that NHC4a′,17

generated freshly from its precursor 4a and Cs2CO3,
18 could

catalyze the reaction to give the corresponding �-trifluorometh-

yl-�-lactone 3a bearing two contiguous stereocenters with good
diastereoselectivity and enantioselectivity albeit in only 16%
yield (entry 1). Better yield and enantioselectivity were observed
when precatalyst 4b, bearing a bulkier tert-butyldimethylsilyl
group, was employed (entry 2). Further optimizations were
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Figure 1. Structure of NHC precursors.

Table 1. Optimization of Conditions for the NHC-Catalyzed
Ketene-Ketone Cycloaddition Reactiona

entry catalyst conditions
yield
(%)b trans:cisc

ee
(%)d

1 4a toluene, rt 16 5:1 77
2 4b toluene, rt 47 5:1 86
3 4c toluene, rt 42 5:1 86
4 4d toluene, rt 57 5:1 89
5 4e toluene, rt trace
6 4f toluene, rt 10 1:1 73
7 4g toluene, rt trace
8 4h toluene, rt trace
9 5 toluene, rt trace
10 6 toluene, rt trace
11 4d benzene, rt 52 5:1 89
12 4d ether, rt 43 4:1 88
13 4d THF, rt 42 3:1 88
14 4d CH2Cl2, rt 41 2:1 85
15 4d toluene/ether (1:1), rt 50 4:1 87
16 4d toluene, 0 °C 64 5:1 92
17 4d toluene, -20 °C 65 6:1 96
18 4d toluene, -40 °C 81 6:1 97
19 4d toluene, -78 °C NR
20 4de toluene, -40 °C 71 6:1 97
21 4df toluene, -40 °C 17 6:1 97

a NHCs were prepared freshly from precursors 4-6 (12 mol %) in the
presence of Cs2CO3 (10 mol %) at rt for 1 h. b Isolated yields. c Determined
by 1H NMR (300 MHz) and/or GC. d ee of trans-3a, determined by GC.
e 4d (6 mol %) and Cs2CO3 (5 mol %) were employed. f 4d (1.2 mol %)
and Cs2CO3 (1 mol %) were employed.

4030 Org. Lett., Vol. 11, No. 18, 2009



the corresponding NHCs.19 Interestingly, although no notable
difference was found for the reaction catalyzed by NHC4c′ (Ar2

) 4-MeOC6H4), NHC 4d′ (Ar2 ) 2-i-PrC6H4) resulted in better
yield and enantioselectivity (entries 3 and 4). The NHCs 4e-g
bearing a free hydroxyl group showed very little activities for
this reaction (entries 5-7).20 NHC 4h, which switched the
enantioselectivities for the [4 + 2] cycloaddition reaction of
ketenes with N-benzoydiazene in our previous report,9e did not
work for this reaction (entry 8). Both the tetracyclic precatalyst
5 and thiazolium precatalyst 6 failed to catalyze the reaction
under current reaction conditions (entries 9 and 10). Experiments
revealed that toluene is the solvent of choice (entries 11-15)
and -40 °C is the optimal reaction temperature (entries 16-19).
Decreasing the loading of the NHC catalyst led to low yields
but without notable change of diastereo- and enantioselectivities
(entries 20 and 21).

A wide variety of aryl(alkyl)ketenes were then tested for the
NHC-catalyzed reaction (Table 2). Both electron-donating and

electron-withdrawing groups in aryl substituent of ketenes or
in trifluoromethyl ketones are tolerable. Ketenes with methyl,
ethyl, n-propyl, and n-butyl substituents all worked well.
However, ketenes with a sterically bulky subsituent, such as
2-chlorophenyl and isopropyl, which worked well in the

cycloaddition reaction with 2-oxoaldehydes,9c gave no �-lac-
tones (entries 17 and 18). The reaction of benzyl(ethyl)ketene
afforded the corresponding �-lactone in quantitative yield with
1:1 diastereoselectivity but excellent enantioselectivities for both
diastereomers (entry 19).

A possible catalytic cycle is depicted in Figure 2. The
stereochemical outcome of the cycloaddition reaction of

ketenes and ketones catalyzed by NHC 4a′-d′ is the same
as other reported [2 + 2] and [4 + 2] cycloaddition reactions
of ketenes and imines, enones, and N-benzoyldiazenes
catalyzed by NHC 4b′. However, this stereochemical out-
come is different from the formal cycloaddition of ketenes
bearing bulkyl substituents and 2-oxoaldehydes.16c,21

In conclusion, chiral triazolium NHCs, derived from
L-pyroglutamic acid, are found to be efficient catalysts for
the enantioselective [2 + 2] cycloaddition reaction of
aryl(alkyl)ketenes and trifluoromethyl ketones to give the
corresponding �-trifluoromethyl-�-lactones bearing two con-
tiguous stereocenters in high yields with good diastereose-
lectivities and excellent enantioselectivities.22
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Table 2. Enantioselective Synthesis of
�-Trifluoromethyl-�-lactones Catalyzed by NHC 4d′

entry 1 (Ar1, R) 2 (Ar2) 3
yield
(%)a trans:cisb

ee
(%)c

1 Ph, Et Ph 3a 81 6:1 97
2 4-MeC6H4, Et Ph 3b 86 7:1 95
3 4-MeOC6H4, Et Ph 3c 90 7:1 93
4 4-ClC6H4, Et Ph 3d 50 14:1 FDd

5 Ph, Me Ph 3e 76 23:1 99
6 4-MeC6H4, Me Ph 3f 84 17:1 99
7 Ph, Et, 4-ClC6H4 3g 89 9:1 98
8 4-MeC6H4, Et 4-ClC6H4 3h 93 11:1 99
9 4-MeOC6H4, Et 4-ClC6H4 3i 95 11:1 97
10 4-ClC6H4, Et 4-ClC6H4 3j 90 16:1 93
11 4-BrC6H4, Et 4-ClC6H4 3k 83 16:1 93
12 4-MeC6H4, Me 4-ClC6H4 3le 96 12:1 99
13 Ph, n-Pr 4-ClC6H4 3m 99 4:1 FD
14f,g Ph, n-Bu 4-ClC6H4 3n 81 6:1 FD
15f Ph, Et 4-MeC6H4 3o 56 7:1 96
16f 4-MeC6H4, Et 4-MeC6H4 3p 60 7:1 FD
17 2-ClC6H4, Et Ph NRh

18 4-ClC6H4, i-Pr Ph NR
19 Bn, Et 4-MeOC6H4 3q 99 1:1 91

a Isolated yields. b Determined by 1H NMR (300 MHz). c ee of trans-
isomer, determined by GC (3a) and HPLC (3b-q). d FD ) failed to
determine the ee because the two enantiomers could not be separated on
the Daicel chiralpak columns. e The absolution configurations of lactone 3l
was determined to be (3S,4S) by X-ray. f The ketenes were added in three
portions every 3 h. g The reaction was carried out at room temperature.
h NR ) no reaction.

Figure 2. Proposed catalytic cycle.
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