Enantioselective Synthesis of β -Trifluoromethyl- β -lactones via NHC-Catalyzed Ketene-Ketone Cycloaddition Reactions

Xiao-Na Wang, Pan-Lin Shao, Hui Lv, and Song Ye*

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

songye@iccas.ac.cn

Received June 10, 2009

ABSTRACT

The highly diastereo- and enantioselective synthesis of β -trifluoromethyl- β -lactones bearing two contiguous stereocenters was realized by chiral N-heterocyclic carbene-catalyzed formal cycloaddition reaction of alkyl(aryl)ketenes and trifluoromethyl ketones.

Because of their unique properties, fluorinated compounds have found wide applications in pharmaceuticals, agrochemistry, and materials.¹ Among them, trifluoromethyl-substituted compounds are especially important and have been developed as several well-known drugs.² Thus, the efficient synthesis of these compounds has been pursued for decades.³ In this context, commercially available trifluoromethyl ketones are valuable starting materials, and a wide variety of reactions, including aldol reaction, Friedal–Crafts reaction, alkynylation, alkenylation, arylation, and reduction, have been developed.⁴

 β -Lactones not only are versatile building blocks in organic synthesis but also represent an important structural motif in

many natural and unnatural bioactive compounds.^{5,6} Although the synthesis of β -trifluoromethyl- β -lactones was patented in 1966,⁷ to the best of our knowledge, the asymmetric synthesis of β -trifluoromethyl- β -lactones has not been realized.

N-Heterocyclic carbenes (NHCs) have been successfully demonstrated as catalysts for a variety of reactions,⁸ including

2009 Vol. 11, No. 18 4029–4031

ORGANIC LETTERS

^{(1) (}a) Kirsch, P. *Modern Fluoroorganic Chemistry*; Wiley-VCH: Weinheim, 2004. (b) *Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications*; Filler, R., Kobayashi, Y., Yagupolskii, L. M., Eds.; Elsevier: Amsterdam, 1993.

^{(2) (}a) *Asymmetric Fluoroorganic Chemistry*; Ramachandran, P. V., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, 2000. (b) Abid, M.; Torok, B. *Adv. Synth. Catal.* **2005**, *347*, 1797.

^{(3) (}a) Ma, J. A.; Cahard, D. *Chem. Rev.* **2004**, *104*, 6119. (b) Uneyama, K.; Katagiri, T.; Amii, H. *Acc. Chem. Res.* **2008**, *41*, 817.

^{(4) (}a) Fernández, R.; Martín-Zamora, E.; Pareja, C.; Vázquez, J.; Díez, E.; Monge, A.; Lassaletta, J. M. Angew. Chem., Int. Ed. 1998, 37, 3428.
(b) Motoki, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997. (c) Martina, S. L. X.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Chem. Commun. 2006, 4093. (d) Bøgevig, A.; Gothelf, K. V.; Jørgensen, K. A. Chem. -Eur. J. 2002, 8, 5652. (e) Bandini, M.; Sinisi, R.; Umani-Ronchi, A. Chem. Commun. 2008, 4360. (f) Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R. M. Angew. Chem., Int. Ed. 2008, 47, 6798. (g) Zhao, J.-L.; Liu, L.; Gu, C.-L.; Wang, D.; Chen, Y.-J. Tetrahedron Lett. 2008, 49, 1476. (h) Shi, M.; Liu, X.-G.; Guo, Y.-W.; Zhang, W. Tetrahedron 2007, 63, 12731. (i) Tur, F.; Saá, J. M. Org. Lett. 2007, 9, 5079. (j) Motoki, R.; Tomita, D.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2006, 47, 8083.

⁽⁵⁾ For the highlights and reviews, see: (a) Schneider, C. Angew. Chem., Int. Ed. **2002**, 41, 744. (b) Yang, H. W.; Romo, D. Tetrahedron **1999**, 55, 6403. (c) Wang, Y.; Tennyson, R. L.; Romo, D. Heterocycles **2004**, 64, 605.

a¹-d¹ umpolung of aldehydes,⁹ a³-d³ umpolung of α,β unsaturated aldehydes,¹⁰ umpolung of Michael acceptors,¹¹ aza-Mortia–Baylis–Hillman reaction,¹² and addition of silylated nucleophiles.¹³ The synthesis of γ -trifuoromethyl γ -butyrolactones via NHC-catalyzed annulation of enals and ketones was reported by Glorius et al. and You et al.¹⁴ Interestingly, Glorius et al. obsevered that, under certain reaction conditions, the corresponding β -lactones could be formed albeit in quite low yields and diastereoselectivities.¹⁵

Recently, the NHC-catalyzed enantioselective cycloaddition of ketenes and imines, 2-oxoaldehydes, enones, and *N*-benzoyldiazenes to give β -lactams, β -lactones, δ -lactones, and oxadiazinones, respectively, have been accomplished by Smith's and our group.¹⁶ These findings prompted us to explore the asymmetric synthesis of β -trifluoromethyl- β -lactones via NHCcatalyzed ketene—ketone cycloaddition reactions.

Initially, a series of NHC precurors 4a-h (Figure 1), derived from L-pyroglutamic acid, ^{16a} were tested for the [2 + 2]

Figure 1. Structure of NHC precursors.

cycloaddition reaction of ethyl(phenyl)ketene (**1a**) and trifluoromethyl ketone **2a** (Table 1). It was found that NHC**4a'**,¹⁷ generated freshly from its precursor **4a** and Cs₂CO₃,¹⁸ could catalyze the reaction to give the corresponding β -trifluorometh-

entry	catalyst	conditions	yield $(\%)^b$	trans:cis ^c	ee (%) ^d
1	4a	toluene, rt	16	5:1	77
2	4b	toluene, rt	47	5:1	86
3	4c	toluene, rt	42	5:1	86
4	4d	toluene, rt	57	5:1	89
5	4e	toluene, rt	trace		
6	4f	toluene, rt	10	1:1	73
7	4g	toluene, rt	trace		
8	4h	toluene, rt	trace		
9	5	toluene, rt	trace		
10	6	toluene, rt	trace		
11	4d	benzene, rt	52	5:1	89
12	4d	ether, rt	43	4:1	88
13	4d	THF, rt	42	3:1	88
14	4d	$\rm CH_2 \rm Cl_2, rt$	41	2:1	85
15	4d	toluene/ether (1:1), rt	50	4:1	87
16	4d	toluene, 0 °C	64	5:1	92
17	4d	toluene, $-20~^\circ\mathrm{C}$	65	6:1	96
18	4d	toluene, $-40~^\circ\mathrm{C}$	81	6:1	97
19	4d	toluene, $-78~^{\circ}\mathrm{C}$	NR		
20	$4\mathbf{d}^e$	toluene, $-40~^\circ\mathrm{C}$	71	6:1	97
21	$4d^f$	toluene, -40 °C	17	6:1	97

^{*a*} NHCs were prepared freshly from precursors 4-6 (12 mol %) in the presence of Cs₂CO₃ (10 mol %) at rt for 1 h. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR (300 MHz) and/or GC. ^{*d*} ee of *trans*-**3a**, determined by GC. ^{*e*} **4d** (6 mol %) and Cs₂CO₃ (5 mol %) were employed. ^{*f*} **4d** (1.2 mol %) and Cs₂CO₃ (1 mol %) were employed.

yl- β -lactone **3a** bearing two contiguous stereocenters with good diastereoselectivity and enantioselectivity albeit in only 16% yield (entry 1). Better yield and enantioselectivity were observed when precatalyst **4b**, bearing a bulkier *tert*-butyldimethylsilyl group, was employed (entry 2). Further optimizations were carried out by installing an electron-donating group in the *N*-aryl group of the NHCs in order to increase the nucleophilicity of

(13) (a) Song, J. J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. *Org. Lett.* **2005**, *7*, 2193. (b) Wu, J.; Sun, X.; Ye, S.; Sun, W. *Tetrahedron Lett.* **2006**, *47*, 4813.

⁽⁶⁾ For the enantioselective synthesis of β -lactones via [2 + 2] cycloaddition of ketenes and aldehydes, see: (a) Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. **1982**, 104, 166. (b) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. **1999**, 121, 9742. (c) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. **2001**, 123, 7945. (d) Evans, D. A.; Janey, J. M. Org. Lett. **2001**, 3, 2125. (e) Calter, M. A.; Tretyak, O. A.; Flaschenriem, C. Org. Lett. **2005**, 7, 1809. (f) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. **2004**, 43, 6358. (g) Gnandesikan, V.; Corey, E. J. Org. Lett. **2006**, 8, 4943.

⁽⁷⁾ Linn, W. J. U.S. Patent 3,271,419, Sept. 6, 1966.

⁽⁸⁾ For reviews of NHC-catalyzed reactions, see: (a) Enders, D.;
Niemeier, O.; Henseler, A. *Chem. Rev.* 2007, *107*, 5606. (b) Marion, N.;
Díez-González, S.; Nolan, S. P. *Angew. Chem., Int. Ed.* 2007, *46*, 2988.
(c) Zeitler, K. *Angew. Chem., Int. Ed.* 2005, *44*, 7506. (d) Enders, D.;
Balensiefer, T. *Acc. Chem. Res.* 2004, *37*, 554.

^{(9) (}a) Sheehan, J.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666.
(b) Enders, D.; Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1217.
(c) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696. (d) Li, G.-Q.; Dai, L.-X.; You, S.-L. Chem. Commun. 2007, 852. (d) Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639. (e) Enders, D.; Han, J.; Henseler, A. Chem. Commun. 2008, 3989.

^{(10) (}a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
(b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370. (c) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905.

⁽¹¹⁾ Fischer, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 1472.

⁽¹²⁾ He, L.; Jian, T.-Y.; Ye, S. J. Org. Chem. 2007, 72, 7466.

^{(14) (}a) Hirano, K.; Piel, I.; Glorius, F. Adv. Synth. Catal. 2008, 350,
984. (b) Li, Y.; Zhao, Z.-A.; He, H.; You, S.-L. Adv. Synth. Catal. 2008,
350, 1885. (c) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43,
6205.

⁽¹⁵⁾ Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418.
(16) (a) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett.
2008, 10, 277. (b) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2008, 6, 1108. (c) He, L.; Lv, H.; Zhang, Y.-R.; Ye, S. J. Org. Chem. 2008, 73, 8101. (d) Zhang, Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem.-Eur. J. 2008, 14, 8473. (e) Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192.

⁽¹⁷⁾ For convenience, the corresponding NHCs prepared from the precursors 4a-h were denoted as NHCs 4a'-h'.

⁽¹⁸⁾ It was found that Cs_2CO_3 alone could promote the reaction. Thus a little excess of NHC precursor was used to make the full consumption of the base of Cs_2CO_3 .

the corresponding NHCs.¹⁹ Interestingly, although no notable difference was found for the reaction catalyzed by NHC4c' (Ar² = 4-MeOC₆H₄), NHC 4d' (Ar² = 2-*i*-PrC₆H₄) resulted in better yield and enantioselectivity (entries 3 and 4). The NHCs 4e-gbearing a free hydroxyl group showed very little activities for this reaction (entries 5-7).²⁰ NHC **4h**, which switched the enantioselectivities for the [4 + 2] cycloaddition reaction of ketenes with N-benzovdiazene in our previous report,^{9e} did not work for this reaction (entry 8). Both the tetracyclic precatalyst 5 and thiazolium precatalyst 6 failed to catalyze the reaction under current reaction conditions (entries 9 and 10). Experiments revealed that toluene is the solvent of choice (entries 11-15) and -40 °C is the optimal reaction temperature (entries 16–19). Decreasing the loading of the NHC catalyst led to low yields but without notable change of diastereo- and enantioselectivities (entries 20 and 21).

A wide variety of aryl(alkyl)ketenes were then tested for the NHC-catalyzed reaction (Table 2). Both electron-donating and

Table 2. Enantioselective Synthesis of
β -Trifluoromethyl- β -lactones Catalyzed by NHC 4d'

		%) ol %)	γ			
Δ.	Ar^2	°C	Ar ¹	F ₃		
1 (1	.5 m mol) 2 (1.0 mr		R Ar∸ 3 (<i>trans</i> , major)			
		vield		ee		
entry	1 (Ar ¹ , R)	2 (Ar ²)	3	(%) ^a	trans:cis ^b	$(\%)^c$
1	Ph, Et	Ph	3a	81	6:1	97
2	$4\text{-MeC}_6\text{H}_4$, Et	Ph	3b	86	7:1	95
3	4-MeOC ₆ H ₄ , Et	Ph	3c	90	7:1	93
4	4-ClC ₆ H ₄ , Et	Ph	3d	50	14:1	FD^d
5	Ph, Me	Ph	3e	76	23:1	99
6	$4\text{-MeC}_6\text{H}_4$, Me	Ph	3f	84	17:1	99
7	Ph, Et,	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	$3\mathbf{g}$	89	9:1	98
8	$4\text{-MeC}_6\text{H}_4$, Et	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	3h	93	11:1	99
9	4-MeOC ₆ H ₄ , Et	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	3i	95	11:1	97
10	$4\text{-ClC}_6\text{H}_4$, Et	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	3j	90	16:1	93
11	$4\text{-BrC}_6\text{H}_4$, Et	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	3k	83	16:1	93
12	$4\text{-MeC}_6\text{H}_4$, Me	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	$\mathbf{3l}^{e}$	96	12:1	99
13	Ph, <i>n</i> -Pr	$4-ClC_6H_4$	3m	99	4:1	FD
$14^{f,g}$	Ph, <i>n</i> -Bu	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	3n	81	6:1	FD
15^{f}	Ph, Et	$4 - MeC_6H_4$	30	56	7:1	96
16 ^f	$4\text{-MeC}_6\text{H}_4$, Et	$4 - MeC_6H_4$	3p	60	7:1	FD
17	$2\text{-ClC}_6\text{H}_4$, Et	Ph		NR^h		
18	4-ClC ₆ H ₄ , <i>i</i> -Pr	Ph		NR		
19	Bn, Et	$4\text{-}MeOC_6H_4$	3q	99	1:1	91

^{*a*} Isolated yields. ^{*b*} Determined by ¹H NMR (300 MHz). ^{*c*} ee of *trans*isomer, determined by GC (**3a**) and HPLC (**3b**-**q**). ^{*d*} FD = failed to determine the ee because the two enantiomers could not be separated on the Daicel chiralpak columns. ^{*c*} The absolution configurations of lactone **3I** was determined to be (3*S*,4*S*) by X-ray. ^{*f*} The ketenes were added in three portions every 3 h. ^{*g*} The reaction was carried out at room temperature. ^{*h*} NR = no reaction.

electron-withdrawing groups in aryl substituent of ketenes or in trifluoromethyl ketones are tolerable. Ketenes with methyl, ethyl, *n*-propyl, and *n*-butyl substituents all worked well. However, ketenes with a sterically bulky substituent, such as 2-chlorophenyl and isopropyl, which worked well in the cycloaddition reaction with 2-oxoaldehydes,^{9c} gave no β -lactones (entries 17 and 18). The reaction of benzyl(ethyl)ketene afforded the corresponding β -lactone in quantitative yield with 1:1 diastereoselectivity but excellent enantioselectivities for both diastereomers (entry 19).

A possible catalytic cycle is depicted in Figure 2. The stereochemical outcome of the cycloaddition reaction of

Figure 2. Proposed catalytic cycle.

ketenes and ketones catalyzed by NHC 4a'-d' is the same as other reported [2 + 2] and [4 + 2] cycloaddition reactions of ketenes and imines, enones, and *N*-benzoyldiazenes catalyzed by NHC 4b'. However, this stereochemical outcome is different from the formal cycloaddition of ketenes bearing bulkyl substituents and 2-oxoaldehydes.^{16c,21}

In conclusion, chiral triazolium NHCs, derived from L-pyroglutamic acid, are found to be efficient catalysts for the enantioselective [2 + 2] cycloaddition reaction of aryl(alkyl)ketenes and trifluoromethyl ketones to give the corresponding β -trifluoromethyl- β -lactones bearing two contiguous stereocenters in high yields with good diastereose-lectivities and excellent enantioselectivities.²²

Acknowledgment. This paper is dedicated to Professor Li-Xin Dai on the occasion of his 85th birthday. Financial support from National Natural Science Foundation of China (Nos. 20602036, 20872143), the Ministry of Science and Technology of China (2009ZX09501-018), and the Chinese Academy of Sciences are greatly acknowledged.

Supporting Information Available: Experimental procedures, compound characteriations, CD spectra, and crystal structure data of lactone **31** in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901290Z

⁽¹⁹⁾ Lv, H.; Zhang, Y.-R.; Huang, X.-L.; Ye, S. Adv. Synth. Catal. 2008, 350, 2715.

⁽²⁰⁾ He, L.; Zhang, Y.-R.; Huang, X.-L.; Ye, S. *Synthesis* **2008**, 2825. (21) The different stereochemical outcome of bulky ketenes is also observed in the [4 + 2] cycloaddition reaction of ketenes with *N*-benzoyldiazenes (ref 16e).

⁽²²⁾ Attempts for the chemical transformations of β -lactone **3a** revealed that (1) compound **3a** was stable and did not decarboxylate upon heating in acidic conditions; (2) no reaction occurred under the saponification condition; and (3) reductive opening with LiAlH₄ led to a complex instead of the corresponding diol. See Supporting Information for details.