Organic & Biomolecular Chemistry

View Article Online

COMMUNICATION

Check for updates

Cite this: Org. Biomol. Chem., 2021, **19**, 2168

Received 4th January 2021, Accepted 16th February 2021 DOI: 10.1039/d1ob00008j

rsc.li/obc

Stereocontrolled syntheses of (–)- and (+)- γ -diisoeugenol along with optically active eight stereoisomers of 7,8'-epoxy-8,7'-neolignan \dagger

Tatsuaki Takubo, Nao Kikuchi, Hisashi Nishiwaki and Satoshi Yamauchi 🕩 *

It was shown that reduction of the tertiary benzylic hydroxy group of (2*R*,3*S*,4*R*,5*S*)-3,5-bis(4-benzyloxy-3-methoxyphenyl)-2,4dimethyltetrahydro-3-furanol 17 followed by the intramolecular Friedel–Crafts reaction gave exclusively indane with (7*S*,7'*S*,8*R*,8'*R*)-2,7'-cyclo-7,8'-neolignan structure 18 along with (7*S*,7'*R*,8*S*,8'*R*)-7,8'-epoxy-8,7'-neolignan structure 19. Indane 18 was converted to (–)- γ -diisoeugenol ((–)-4). On the other hand, (2*S*,3*R*,4*R*,5*S*)-3,5bis(4-benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 22 did not afford indane, but the tetrahydrofuran structure with (7*S*,7' *S*,8*S*,8'*S*)-7,8'-epoxy-8,7'-neolignan structure 23 and 7'-epi-23.

Introduction

The cytotoxicity, apoptosis, and inhibition of cyclooxygenase-2 gene expression of 2,7'-cyclo-7,8'-neolignan (diisoeugenol) (Scheme 1) have been reported.¹ To clarify the effect of stereochemistry on the biological activity, the synthesis of an optically pure compound is required. However, only the racemic syntheses of 2,7'-cyclo-7,8'-neolignan have been reported to date.² On the other hand, 7,7'-epoxy-8,8'-lignan (2,5-bisaryl-3,4dimethyltetrahydrofuran) 6 possesses antimicrobial activity,³ plant growth regulatory activity,4 and cytotoxicity.5 The synthetic research of the stereoisomers of 7,8'-epoxy-8,7'-neolignan 2, which is the positional isomer of 6, would contribute to the structure-activity relationship research of the neolignan.⁶ Although the isolation,⁷ biological activity,⁸ and synthetic study9 of 7,8'-epoxy-8,7'-neolignan 2 have been reported, there are no reports on the syntheses of optically pure compounds. We expected that the exposure of 3-furanol 3 bearing tertiary benzyl alcohol to a Lewis acid and Et₃SiH would give the indane structure bearing 2,7'-cyclo-7,8'-neolignan structure 1, which is a synthetic intermediate to diisoeugenol 4, via

reduction and the intramolecular Friedel–Crafts reaction. It would also be possible to obtain 7,8'-epoxy-8,7'-neolignan 2 by controlling the reaction conditions. This article describes the first syntheses of (-)- and (+)- γ -diisoeugenol 4 and (-)- γ -diisohomogenol 5,¹⁰ which are 2,7'-cyclo-7,8'-neolignan bearing indane structures, along with some stereoisomers of 7,8'-epoxy-8,7'-neolignan 2.

Results and discussion

To construct the optically active 2,7'-cyclo-7,8'-neolignan or 7,8'-epoxy-8,7'-neolignan, 3-furanol with tertiary benzyl alcohols 17 and 22 were selected as substrates for reductions and intramolecular Friedel-Crafts reactions (Schemes 2 and 3). Evans' anti-aldol¹¹ product 7 was converted to aldehyde 10. Treatment of aldehyde 10 with vinylmagnesium bromide gave allyl alcohol 11 (49%) and 3-epi-11 (14%). After the desilylation of 11, the resulting diol 13 was subjected to iodoetherification¹² to give iodomethyltetrahydrofuran 14 (25%) and 2-epi-14 (65%). Irradiation at 5-H of 14 revealed the differential NOEs of 2-CH₂I (3%), 4-CH₃ (7%), and 3-H (7%). In 2-epi-14, the NOEs of 2-H/5-H (7%) and 5-H/4-CH₃ (7%) were observed. The reduction of iodide 14 followed by PCC oxidation gave furanone 16, in which the coupling constant between 2-H and 4-H (1.5 Hz) was observed to confirm the stereochemistry of 2,4-cis. The minor Grignard product 3-epi-11 was desilylated to give diol 3-epi-13 (91% yield). Iodoetherification of 3-epi-13 gave stereoselectively iodomethyltetrahydrofuran 3-epi-14 (88% yield), whose configuration between 2- and 4-positions was confirmed by differential NOE experiments (2-CH₂I/5-H: 3%, 5-H/4-CH₃: 7%). Furanol 3-epi-14 was transformed to furanone **16** (94% yield) by LiAlH₄ reduction followed by PCC oxidation. Furanol with tertiary benzyl alcohol 17 was stereoselectively obtained (74%) by the treatment of ketone 16 with 4-benzyloxy-3-methoxyphenyllithium. The NOEs of $OH/2-CH_3$ (4%), OH/4-CH₃ (4%), and OH/5-H (3%) were observed to confirm the stereochemistry. Reduction of 17 using Et₃SiH¹³ in the

Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan. E-mail: syamauch@agr.ehime-u.ac.jp

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ d1ob00008j

Scheme 1 Conversion of 3-furanol 3 to 2,7'-cyclo-7,8'-neolignan 1 (indane structure) and/or 7,8'-epoxy-8,7'-neolignan 2.

Scheme 2 Syntheses of $(-)-\gamma$ -diisoeugenol ((-)-4) and $(-)-\gamma$ -diisohomogenol ((-)-5) along with (75,7'R,85,8'R)-7,8'-epoxy-8,7'-neolignan (20). (a) TIPSOTf, 2,6-lutidine, CH₂Cl₂, r.t., 1 h, 93% yield. (b) LiBH₄, MeOH, THF, r.t., 1 h, 95% yield. (c) PCC, MS 4A, CH₂Cl₂, 0 °C, 16 h, 70% yield. (d) VinyImagnesium bromide, THF, r.t., 1 h, 11 (49%), 3-*epi*-11 (14%). (e) PDC, MS 4A, CH₂Cl₂, r.t., 16 h, 66% yield. (f) Method A, CeCl₃-7H₂O, NaBH₄, MeOH, THF, -60 °C, 3-*epi*-11 (37% yield), 11 (47% yield). Method B, DIBAL-H, toluene, -75 °C, 2 h, 3-*epi*-11 (54% yield), 11 (8% yield). (g) *n*-Bu₄NF, THF (from 11 to 13: 95% yield; from 3-*epi*-11 to 3-*epi*-13: 91% yield). (h) I₂, NaHCO₃, MeCN, 0 °C, 1 h (from 13 to 14: 25% yield, 2-*epi*-14: 65% yield; from 3-*epi*-13 to 3-*epi*-14: 88% yield). (i) LiAlH₄, THF, r.t., 30 min (from 14 to 15: 79% yield; from 3-*epi*-14 to 3-*epi*-15: 71% yield). (j) PCC, MS 4A, CH₂Cl₂, 0 °C, 16 h (from 15 to 16: 82% yield; from 3-*epi*-15 to 16: 94% yield). (k) 4-Benzyloxy-3-methoxyphenyllithium, THF, -70 °C, 1.5 h, 74% yield (2 steps). (n) H₂, 5% Pd/C, EtOAc, r.t., 2 h (from 21 to (-)-4: 92% yield; from 19 to 20: 53% yield). (o) Mel, K₂CO₃, dibenzo-18-crown-6, MeCN, reflux, 16 h (91% yield).

Scheme 3 Reaction mechanism to prepare indane bearing 2,7'-cyclo-7,8'-neolignan structure **18** and preparation of stereoisomers of 7,8'-epoxy-8,7'-neolignan (7'-epi-**20**, **24**, 7'-epi-**24**). (a) Et₃SiH, BF₃·OEt₂, CH₂Cl₂, -40 °C, 2 h, 22% yield, recovered **17** (74%). (b) H₂, 5% Pd/C, EtOAc, r.t., 2 h (7'-epi-**20**: 53% yield, **24**: 100% yield, 7'-epi-**24**: 96% yield). (c) BF₃·OEt₂, CH₂Cl₂, 0-3 °C, 1 h, 76% yield. (d) LiAlH₄, THF, r.t., 30 min, 74% yield. (e) PCC, MS 4A, CH₂Cl₂, 0 °C, 16 h, 94% yield. (f) 4-Benzyloxy-3-methoxyphenyllithium, THF, -70 °C, 1.5 h, 94% yield. (g) ZnI₂, NaBH₃CN, 1,2-dichloroethane, reflux, 4 h, 27% yield, recovered **22** (71%). (h) Et₃SiH, BF₃·OEt₂, CH₂Cl₂, 0-3 °C, 30 min, 7'-epi-**23** (57% yield), **23** (3% yield).

presence of BF₃·OEt₂ at 0 °C led to 2,7'-cyclo-7,8'-neolignan with indane skeleton 18 (77%) along with (7S,7'R,8S,8'R)-7,8'epoxy-8,7'-neolignan 19 (8%). The reaction did not proceed by employing NaBH₃CN in the presence of ZnI_2 . (-)-y-Diisoeugenol 4 was obtained from 18 by the reduction of the hydroxy group (48%, 2 steps) followed by hydrogenolysis (91%). The irradiation of 7-H appeared the NOEs of 7-H/7'-H (7%) and 7-H/9'-H (4%). The ¹H-NMR datum was similar to that of the literature.^{2b} The ¹H-NMR datum of (-)- γ -diisohomogenol 5 obtained by methylation of (–)-γ-diisoeugenol 4 was also similar to that of the literature.¹⁰ On the other hand, hydrogenolysis of 19 afforded phenolic (7S,7'R,8S,8'R)-7,8'-epoxy-8,7'-neolignan 20 (53%). The NOEs of 7-H/9'-H (3%), 7-H/9H (7%), and 7-H/7'-H (7%) confirmed this stereochemistry. To obtain furanone 16 efficiently, allyl alcohol 11 was isomerized to 3-epi-11 via ketone 12.

The proposed mechanism of the production of indane bearing 2,7'-cyclo-7,8'-neolignan structure **18** is shown in Scheme 3. An explanation for the selective production of the indane structure involves the initial formation of 7'*-epi*-**19**, which was not obtained under this reaction condition $(0-5 \,^{\circ}C)$; however, a lower reaction temperature $(-40 \,^{\circ}C)$ allows the production of 7'*-epi*-**19** in 22% yield along with the recovery of **17** (74%). The NOEs of 7-H/9'-H (3%) and 7-H/9-H (7%) in 7'*-epi*-**19** were observed. The tetrahydrofuran ring of 7'*-epi*-**19**

was opened by treatment with BF₃·OEt₂ to induce the benzylic cation, which stimulated the intramolecular Friedel-Crafts reaction. The aryl group bonded to the carbocation would be placed at a farther position from the 9'-methyl group on the SP_2 plane. The π electron pair attacked the benzylic carbocation to form the trans configuration. It could be assumed that the intramolecular Friedel-Crafts reaction did not occur in the case of stereoisomer 19 in Scheme 2 due to its stable 7,8-trans, 7',8-trans, and 7',8'-trans stereochemistry. The reaction of **19** with Et₃SiH in the presence of BF₃·OEt₂ at 25 °C resulted in the recovery of 19 (81%). 3-Franol with tertiary benzyl alcohol 22 was obtained from 2-epi-14, which was a major product of the iodoetherification of diol 13, by the same method described for the preparation of 17. The NOEs of HO/ 2-CH₃ (3%) and HO/4-H (3%) were observed in 22. Treatment of 22 with ZnI₂ and NaBH₃CN¹⁴ afforded (7S,7'S,8S,8'S)-7,8'epoxy-8,7'-neolignan 23 in 23% yield along with the recovery of 22 (71%). The approach of the hydride reagent to the resulting 3-C carbocation would occur from the same side of the 7-aryl group, giving the 7,7'-trans form. On the other hand, application of 22 to Et₃SiH and BF₃·OEt₂ at 0 °C gave 7'-epi-23 in 57% yield. At this lower temperature, the attack of the hydride reagent would occur from the opposite side of the 7-aryl group to give the 7,7'-cis form. Hydrogenolyses of 23 and 7'-epi-23 gave 24 (100%) and 7'-epi-24 (96%), respectively. The NOEs of

Scheme 4 Synthesis of (+)-γ-diisoeugenol ((+)-4) along with 7,8'-epoxy-8,7'-neolignans (ent-20, ent-7'-epi-20, ent-7'-epi-24).

7'-H/9'-H (7%) and 7-H/9-H (7%) in 24 and 7'-H/9-H (7%) and 7'-H/7-H (7%) in 7'*-epi*-24 confirmed their stereochemistries. The indane structure was not obtained from tertiary benzyl alcohol 22 by our entries.

(+)- γ -Diisoeugenol ((+)-4), *ent*-20, *ent*-7'*-epi*-20, *ent*-24, and *ent*-7'*-epi*-24 were synthesized from the enantiomer of Evnas' anti-aldol product *ent*-7 (Scheme 4). The enantiomeric excess of the synthesized compounds was determined as >99%ee ((-)- and (+)-diisoeugenol (4), 20, 7'*-epi*-20, *ent*-7'*-epi*-20, 24, *ent*-24, 7'*-epi*-24) and 97%ee (*ent*-7'*-epi*-24, *ent*-20) by chiral column chromatography.

Conclusion

The stereoselective synthetic methods of optically pure (-)- γ -diisoeugenol and (+)- γ -diisoeugenol bearing the 2,7'cyclo-7,8'-neolignan structure were explored by employing reduction and the Friedel–Crafts reaction of tetra-substituted 3-furanol with tertiary benzylic alcohol. (7*S*,7'*R*,8*S*,8'*R*)-, (7*S*,7' *S*,8*S*,8'*R*)-, (7*S*,7'*S*,8*S*,8'*S*)-, (7*S*,7'*R*,8*S*,8'*S*)-7,8'-Epoxy-8,7'-neolignan and their enantiomers were also obtained by controlling the reaction conditions. The enantiomeric excess of these compounds was determined as 97–100%ee.

Experimental

General experimental procedures

The melting point (mp) data are uncorrected. Optical rotations were measured on a JASCO P-2100 instrument. NMR data were obtained using a JNM-EX400 spectrometer. EI and FABMS data were measured with a JMS-MS700V spectrometer. The silica gel used was Silica Gel 60N (spherical, neutral, Kanto Chemical, 40–50 μ m). HPLC analysis was performed with Shimadzu LC-6AD and SPD-6AV instruments. The chiral column used for the HPLC analysis of enantiomeric excess was CHIRALCEL AD-H (250 mm × 4.6 mm, i.d., 5 μ m, DAICEL Chemical Industries, Ltd, Tokyo, Japan, 20% iso-PrOH/hexane, 1 mL min⁻¹, detected at 283 nm). The numbering of com-

pounds follows the IUPAC rule. The nomenclature of the lignan structure follows the literature.⁶

The synthetic methods and data of **7–13** and 3*-epi-***13** are shown in the ESI.[†]

(2S,3R,4S,5S)-5-(4-Benzyloxy-3-methoxyphenyl)-2-iodomethyl-4-methyltetrahydro-3-furanol 3-epi-14. To a suspension of diol 3-epi-13 (1.18 g, 3.59 mmol) and NaHCO3 (2.80 g, 33.3 mmol) in MeCN (40 mL) was added iodine (8.10 g, 31.9 mmol) in MeCN (170 mL) at 0 °C. The resulting reaction mixture was stirred at room temperature for 1 h, and then sat. aq. Na₂S₂O₃ and EtOAc were added. The organic solution was separated, washed with brine, and dried (Na_2SO_4) . Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave iodomethyltetrahydrofuranol 3-epi-14 (1.44 g, 3.16 mmol, 88%) as colorless crystals, mp 139–141 °C, $[\alpha]_{D}^{25}$ –31 (c 0.6, CHCl₃). ¹H NMR (400 MHz, $CDCl_3$) δ 1.02 (3H, d, J = 6.8 Hz, CH₃), 1.95 (1H, br s, OH), 2.21 (1H, m, 4-H), 3.31 (1H, dd, J = 9.0, 4.9 Hz, 2-CHH-I), 3.38 (1H, dd, J = 10.5, 9.0 Hz, 2-CHH-I), 3.90 (3H, s, OCH₃), 4.45 (1H, m, 3-H), 4.53 (1H, ddd, J = 10.5, 4.9, 3.1 Hz, 2-H), 4.69 (1H, d, J = 10.5 Hz, 5-H), 5.14 (2H, s, OCH₂Ph), 6.77 (1H, dd, J = 8.3, 1.8 Hz), 6.84 (1H, d, J = 8.3 Hz), 6.87 (1H, d, J = 1.8 Hz), 7.29 (1H, m), 7.35 (2H, br dd, J = 7.6, 7.6 Hz), 7.42 (2H, br d, J = 7.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 2.59 (CH₃), 9.59 (4-C), 48.0 (2-CH₂-I), 56.0 (OCH₃), 71.0 (OCH₂Ph), 75.0 (2-C), 82.9 (5-C), 86.6 (3-C), 109.6, 113.7, 118.7, 127.2, 127.8, 128.5, 134.0, 137.1, 147.8, 149.7. FABMS: 455 (M + H)⁺. HRMS (FAB): calculated C₂₀H₂₅O₄I: 455.0721, found: 455.0716.

*ent-3-epi-***14.** Colorless crystals, mp 140–142 °C, $[\alpha]_D^{25}$ +31 (*c* 0.3, CHCl₃).

(2*S*,3*S*,4*S*,5*S*)-5-(4-Benzyloxy-3-methoxyphenyl)-2-iodomethyl-4-methyltetrahydro-3-furanol 14 and (2*R*,3*S*,4*S*,5*S*)-5-(4-benzyloxy-3-methoxyphenyl)-2-iodomethyl-4-methyltetrahydro-3-furanol 2-*epi*-14. 3-Franol 14 was obtained from 13 in 25% yield by iodoetherification along with 2-*epi*-14 in 65% yield. 14: colorless oil, $[\alpha]_{25}^{D5}$ -28 (*c* 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.06 (3H, d, *J* = 6.7 Hz, CH₃), 2.19 (1H, m, 4-H), 2.25 (1H, br s, OH), 3.38–3.40 (2H, m, 2-CH₂-I), 3.82 (1H, m, 3-H), 3.90 (3H, s, OCH₃), 3.96 (1H, ddd, *J* = 6.3, 6.3, 5.0 Hz, 2-H), 4.49 (1H, d, *J* = 10.3 Hz, 5-H), 5.15 (2H, s, OCH₂Ph), 6.78 (1H, dd, *J* = 8.2, 1.8 Hz), 6.84 (1H, d, *J* = 8.2 Hz), 6.92 (1H, d, *J* = 1.8 Hz), 7.29 (1H,

m), 7.35 (2H, m), 7.42 (2H, m). 13 C NMR (100 MHz, CDCl₃) δ 8.96 (CH₃), 13.2 (4-C), 50.0 (2-CH₂-I), 56.0 (OCH₃), 71.0 (OCH₂Ph), 81.7 (2-C), 83.1 (5-C), 85.6 (3-C), 109.7, 113.7, 119.0, 127.2, 127.8, 128.5, 133.1, 137.0, 148.0, 149.8. FABMS 455 (M + H)⁺. Anal. found: C 52.77%, H 5.42%; calcd for $C_{20}H_{23}O_4I$: C 52.88%, H 5.10%. 2-epi-14: colorless crystals, mp 112-113 °C (EtOAc/hexane = 1/1), $[\alpha]_D^{25}$ +3.9 (c 0.8, CHCl₃). ¹H NMR (400 MHz, $CDCl_3$) δ 1.10 (3H, d, J = 6.9 Hz, CH_3), 2.06 (1H, br s, OH), 2.13 (1H, m, 4-H), 3.35 (1H, dd, J = 9.8, 5.6 Hz, 2-CHH-I), 3.44 (1H, dd, J = 9.8, 7.5 Hz, 2-CHH-I), 3.90 (3H, s, OCH₃), 4.10 (1H, m, 3-H), 4.16 (1H, ddd, J = 7.4, 5.5, 5.5 Hz, 2-H), 4.29 (1H, d, J = 8.1 Hz, 5-H), 5.14 (2H, s, OCH₂Ph), 6.82 (2H, s), 7.03 (1H, s), 7.28 (1H, m), 7.35 (2H, m), 7.42 (2H, d, J = 7.2 Hz). ¹³C NMR (100 MHz, $CDCl_3$) δ 3.21 (CH₃), 15.3 (4-C), 50.3 (2-CH₂-I), 56.0 (OCH₃), 70.9 (OCH₂Ph), 79.4 (2-C), 80.2 (5-C), 86.5 (3-C), 109.9, 113.6, 118.7, 127.2, 127.7, 128.5, 133.5, 137.0, 147.8, 149.7. FABMS 455 $(M + H)^+$. HRMS (FAB): calculated C₂₀H₂₅O₄I: 455.0721, found: 455.0719.

ent-14. Colorless oil, $[\alpha]_{\rm D}^{25}$ +30 (*c* 0.9, CHCl₃).

*ent-2-epi-***14**. Colorless crystals, mp 112–114 °C, $[\alpha]_D^{25}$ –7 (*c* 0.6, CHCl₃).

(2R,3R,4S,5S)-5-(4-Benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 3-epi-15. To an ice-cooled suspension of LiAlH₄ (0.19 g, 5.01 mmol) in THF (5 mL) was added a solution of iodide 3-epi-14 (1.14 g, 2.50 mmol) in THF (10 mL). After the reaction mixture was stirred at room temperature for 30 min, sat. aq. MgSO₄ and K₂CO₃ were added. The mixture was filtered, and then the filtrate was concentrated. The residue was subjected to silica gel column chromatography (EtOAc/hexane = 1/1) to give 3-epi-15 (0.58 g, 1.77 mmol, 71%) as colorless crystals, mp 100–102 °C, $[\alpha]_D^{25}$ +9 (c 0.3, CHCl₃). ¹H NMR (400 MHz, $CDCl_3$) δ 1.06 (3H, d, J = 6.8 Hz, 4-CH₃), 1.33 (3H, d, J = 6.4 Hz, 2-CH₃), 1.63 (1H, br s, OH), 2.22 (1H, ddq, J = 10.2, 6.8, 3.8 Hz, 4-H), 3.90 (3H, s, OCH₃), 4.07 (1H, m, 3-H), 4.40 (1H, dq, J = 6.4, 3.0 Hz, 2-H), 4.58 (1H, d, J = 10.2 Hz, 5-H), 5.14 (2H, s, OCH₂Ph), 6.78 (1H, dd, J = 8.2, 1.9 Hz), 6.84 (1H, d, J = 8.2 Hz), 6.89 (1H, d, J = 1.9 Hz), 7.29 (1H, m), 7.35 (2H, br dd, J = 7.6, 6.9 Hz), 7.43 (2H, br d, J = 7.0 H). ¹³C NMR (100 MHz, CDCl₃) δ 10.1 (4-CH₃), 14.8 (2-CH₃), 48.5 (4-C), 56.0 (OCH₃), 71.0 (OCH₂Ph), 76.7 (2-C), 79.0 (5-C), 84.9 (3-C), 109.7, 113.9, 118.5, 127.2, 127.7, 128.5, 135.3, 137.2, 147.6, 149.7. FABMS 329 $(M + H)^+$. HRMS (FAB): calculated C₂₀H₂₅O₄: 329.1753, found: 329.1760.

ent-3-epi-15. $[\alpha]_D^{25}$ –9 (c 0.7, CHCl₃), colorless crystals, mp 100–102 °C.

(2*R*,3*S*,4*S*,5*S*)-5-(4-Benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 15. 79% yield from 14, colorless oil, $[α]_D^{25}$ +0.2 (*c* 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.06 (3H, d, *J* = 6.5 Hz, 4-CH₃), 1.35 (3H, d, *J* = 6.1 Hz, 2-CH₃), 2.01 (1H, br d, *J* = 5.1 Hz, OH), 2.06 (1H, m, 4-H), 3.53 (1H, m, 3-H), 3.90 (3H, s, OCH₃), 4.03 (1H, dq, *J* = 6.5, 6.1 Hz, 2-H), 4.43 (1H, d, *J* = 9.8 Hz, 5-H), 5.14 (2H, s, OCH₂Ph), 6.78 (1H, dd, *J* = 8.1, 1.6 Hz), 6.83 (1H, d, *J* = 8.1 Hz), 6.93 (1H, d, *J* = 1.6 Hz), 7.28 (1H, m), 7.35 (2H, m), 7.42 (2H, d, *J* = 7.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 13.7 (4-CH₃), 19.1 (2-CH₃), 50.2 (4-C), 55.9 (OCH₃), 71.0 (OCH₂Ph), 79.8 (2-C), 84.1 (5-C), 84.9 (3-C), 109.6, 113.6, 118.7, 127.2, 127.7, 128.5, 134.6, 137.1, 147.7, 149.7; FABMS 329 $(M + H)^+$. Anal. found: C 73.26%, H 7.34%; calcd for $C_{20}H_{24}O_4$: C 73.15%, H 7.37%.

ent-15. Colorless oil, $[\alpha]_{D}^{25}$ -0.2 (*c* 0.2, CHCl₃).

(2R,4R,5S)-5-(4-Benzyloxy-3-methoxyphenyl)-2,4-dimethyl-3 (2H)-furanone 16. A reaction mixture of alcohol 3-epi-15 (0.45 g, 1.37 mmol), PCC (0.35 g, 1.62 mmol), and MS 4A (0.5 g) in CH₂Cl₂ (20 mL) was stirred at 0 °C for 16 h. After the addition of ether, the mixture was filtered. The filtrate was concentrated and the residue was subjected to silica gel column chromatography (EtOAc/hexane = 1/4) to give ketone **16** (0.42 g, 1.29 mmol, 94%) as a colorless oil, $[\alpha]_{D}^{25}$ -52 (c 1.6, CHCl₃). ¹H NMR (400 MHz, $CDCl_3$) δ 1.11 (3H, d, J = 7.0 Hz, 4-CH₃), 1.33 (3H, d, J = 7.3 Hz, 2-CH₃), 2.45 (1H, ddq, J = 10.1, 7.0, 1.5 Hz, 4-H), 3.91 (3H, s, OCH₃), 4.44 (1H, dq, J = 7.0, 1.5 Hz, 2-H), 4.67 (1H, d, J = 10.1 Hz, 5-H), 5.16 (2H, s, OCH₂Ph), 6.86–6.87 (2H, m), 7.01 (1H, d, J = 1.5 Hz), 7.28 (1H, m), 7.35 (2H, dd, J = 7.1, 7.1 Hz), 7.43 (2H, d, J = 7.1 Hz). ¹³C NMR (100 MHz, $CDCl_3$) δ 10.8 (4-CH₃), 16.2 (2-CH₃), 50.1 (4-H), 56.3 (OCH₃), 71.2 (OCH₂Ph), 76.7 (2-C), 83.5 (5-C), 109.7, 114.0, 119.0, 127.4, 128.1, 128.7, 132.8, 137.2, 148.5, 150.2, 218.0 (C=O). FABMS: 327 (M + H)⁺. HRMS (FAB): calculated $C_{20}H_{23}O_4$: 327.1596, found: 327.1589. Alcohol 15 was converted to ketone 16 by PCC oxidation in 82% yield.

ent-16. Colorless oil, $[\alpha]_{D}^{25}$ +60 (*c* 0.7, CHCl₃).

(2R,3S,4R,5S)-3,5-Bis(4-benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 17. To a solution of 1-benzyloxy-4bromo-2-methoxybenzene (1.18 g, 4.03 mmol) in THF (10 mL) was added n-BuLi (1.92 mL, 2.7 M in hexane, 5.18 mmol) at -70 °C. The reaction solution was stirred at -70 °C for 10 min, and then a solution of ketone 16 (0.53 g, 1.62 mmol) in THF (10 mL) was added at -70 °C. After stirring at -70 °C for 1.5 h, sat. aq. NH₄Cl and EtOAc were added. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave 3-furanol 17 (0.65 g, 1.20 mmol, 74%) as a colorless oil, $\left[\alpha\right]_{D}^{25}$ +27 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.89 (3H, d, J = 6.8 Hz, 4-CH₃), 1.19 (3H, d, J = 6.3 Hz, 2-CH₃), 1.90 (1H, s, OH), 2.52 (1H, dq, J = 9.8, 6.8 Hz, 4-H), 3.91 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 4.44 (1H, q, J = 6.4 Hz, 2-H), 4.71 (1H, d, J = 9.8 Hz, 5-H), 5.14 (2H, s, OCH₂Ph), 5.15 (2H, s, OCH₂Ph), 6.86 (4H, s), 6.95 (1H, s), 7.07 (1H, s), 7.28 (2H, m), 7.34 (2H, dd, J = 7.2, 1.5 Hz), 7.36 (2H, dd, J = 7.2, 1.7 Hz), 7.43 (4H, d, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 8.7 (4-CH₃), 12.9 (2-CH₃), 53.5 (4-C), 56.06 (OCH₃), 56.12 (OCH₃), 70.9 (OCH₂Ph), 71.0 (OCH₂Ph), 83.1 (2-C), 83.7 (5-C), 85.2 (3-C), 109.6, 109.7, 113.5, 113.9, 117.2, 118.2, 127.2, 127.7, 127.8, 128.47, 128.50, 133.2, 135.3, 137.0, 137.1, 147.3, 147.6, 149.4, 149.7. FABMS: 541 (M + H)⁺. HRMS (FAB): calculated $C_{34}H_{37}O_6$: 541.2591, found: 541.2594.

ent-17. Colorless oil, $[\alpha]_{D}^{25}$ -27 (*c* 1.1, CHCl₃).

(1S,2R,3S)-6-Benzyloxy-1-(4-benzyloxy-3-methoxyphenyl)-3-((R)-1-hydroxyeth-1-yl)-5-methoxy-2-methylindane, (7S,7'S,8R,8'R)-4,4'-dibenzyloxy-3',5-dimethoxy-2,7'-cyclo-7,8'-neo-lignan-8-ol 18 and (2S,3S,4R,5R)-2,4-bis(4-benzyloxy-3-methoxyphenyl)-3,5-dimethyltetrahydrofuran, (7S,7'R,8S,8'R)-

Organic & Biomolecular Chemistry

4,4'-dibenzyloxy-3,3'-dimethoxy-7,8'-epoxy-8,7'-neolignan 19. To a solution of 3-furanol 17 (0.16 g, 0.30 mmol) and Et₃SiH (0.46 mL, 2.88 mmol) in CH₂Cl₂ (12 mL) was added BF₃·OEt₂ (25 µL, 0.20 mmol) at 0 °C. After the reaction solution was stirred at 0-5 °C for 2 h, sat. aq. NaHCO3 was added. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave 18 (0.12 g, 0.23 mmol, 77%) as a colorless oil, $[\alpha]_D^{25}$ -75 (c 1.8, CHCl₃), and 19 (12 mg, 0.022 mmol, 8%) as a colorless oil, $[\alpha]_{D}^{25}$ -7 (c 0.2, CHCl₃). 18: ¹H NMR (400 MHz, CDCl₃) δ 1.23 (3H, d, J = 6.6 Hz, 9'-H), 1.29 (3H, d, J = 6.4 Hz, 9-H), 1.67 (1H, br s, OH), 2.12 (1H, m, 8'-H), 2.83 (1H, dd, J = 9.6, 5.9 Hz, 7-H), 3.65 (1H, d, J = 8.0 Hz, 7'-H), 3.76 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 4.08 (1H, m, 8-H), 4.95 (1H, d, J = 12.2 Hz, OCHHPh), 5.00 (1H, d, J = 12.2 Hz, OCHHPh), 5.14 (2H, s, OCH₂Ph), 6.46 (1H, s), 6.58 (1H, dd, J = 8.2, 1.9 Hz), 6.62 (1H, d, J = 1.9 Hz), 6.80 (1H, d, J = 8.2 Hz), 6.99 (1H, s), 7.21-7.29 (4H, m), 7.30-7.38 (4H, m), 7.45 (2H, d, J = 7.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 19.6 (9'-C), 21.4 (9-C), 47.4 (8'-C), 55.9 (OCH₃), 56.2 (OCH₃), 58.0 (7-C), 58.5 (7'-C), 70.5 (8-C), 70.8 (OCH₂Ph), 71.0 (OCH₂Ph), 108.3, 110.7, 111.7, 113.7, 120.4, 127.2, 127.3, 127.6, 127.7, 128.3, 128.4, 136.0, 137.0, 137.3, 138.0, 138.2, 146.7, 147.7, 148.9, 149.5. FABMS 525 $(M + H)^+$. HRMS (FAB): calculated $C_{34}H_{37}O_5$: 525.2641, found: 525.2635. **19**: ¹H NMR (400 MHz, CDCl₃) δ 0.92 (3H, d, J = 6.4 Hz, 9-H), 1.29 (3H, d, J = 6.0 Hz, 9'-H), 2.25 (1H, m, 8-H), 2.52 (1H, dd, J = 11.0, 9.5 Hz, 7'-H), 3.89 (3H, s, OCH₃), 3.93 (3H, s, OCH₃), 4.27 (1H, m, 8'-H), 4.54 (1H, d, J = 9.4 Hz, 7-H), 5.14 (2H, s, OCH₂Ph), 5.16 (2H, s, OCH₂Ph), 6.71 (1H, d, J = 1.7 Hz), 6.74 (1H, dd, J = 8.2, 1.7 Hz), 6.85 (1H, d, J = 8.2 Hz), 6.87 (2H, s), 6.99 (1H, s), 7.28-7.31 (2H, m), 7.34-7.38 (4H, m), 7.41–7.45 (4H, m); 13 C NMR (100 MHz, CDCl₃) δ 14.2 (9'-C), 20.0 (9-C), 51.1 (8-C), 56.1 (OCH₃ \times 2), 61.9 (7'-C), 71.1 (OCH₂Ph × 2), 81.8 (8'-C), 87.0 (7-C), 110.0, 111.6, 114.0, 114.1, 118.5, 120.0, 127.3, 127.8, 128.5, 132.3, 135.2, 137.2, 147.2, 147.7, 149.7; FABMS 525 (M + H)⁺. HRMS (FAB): calculated C₃₄H₃₇O₅: 525.2641, found: 525.2637.

ent-18. Colorless oil, $[\alpha]_{\rm D}^{25}$ +75 (c 0.2, CHCl₃).

ent-19. Colorless oil, $[\alpha]_D^{25}$ +7 (*c* 0.2, CHCl₃).

(2S,3S,4S,5R)-2,4-Bis(4-benzyloxy-3-methoxyphenyl)-3,5-dimethyltetrahydrofuran, (7S,7'S,8S,8'R)-(4,4'-dibenzyloxy-3,3'-dimethoxy-7,8'epoxy-8,7'-neolignan 7'-epi-19. To a solution of 3-furanol 17 (70 mg, 0.13 mmol) and Et₃SiH (0.21 mL, 1.30 mmol) in CH₂Cl₂ (5 mL) was added BF₃·OEt₂ (11 µL, 0.091 mmol) at -40 °C. After the reaction solution was stirred at -40 °C for 2 h, sat. aq. NaHCO3 was added. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave 7'-epi-19 (15 mg, 0.029 mmol, 22%) as a colorless oil, $[\alpha]_{D}^{25}$ +34 (c 0.3, CHCl₃). 3-Furanol 17 (52 mg, 0.096 mmol, 74%) was recovered. ¹H NMR (400 MHz, CDCl₃) δ 0.71 (3H, d, J = 6.8 Hz, 9-H), 1.19 (3H, d, J = 6.5 Hz, 9'-H), 2.58 (1H, m, 8-H), 3.15 (1H, dd, J = 6.5, 4.4 Hz, 7'-H), 3.90 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 4.62 (1H, d, J = 9.7 Hz, 7-H), 4.71 (1H, m, 8'-H), 5.15 (4H, s, OCH₂Ph), 6.71 (1H, dd, J = 8.2, 2.0 Hz), 6.82–6.87 (3H, m), 6.87 (1H, d, J = 8.2 Hz), 6.94 (1H, d, J = 1.5 Hz), 7.30 (2H, m), 7.33-7.39 (4H,

m), 742–7.47 (4H, m). ¹³C NMR (100 MHz, CDCl₃) δ 13.0 (9-C), 16.8 (9'-C), 29.7 (8-C), 48.8 (7'-C), 55.6 (OCH₃), 56.1 (OCH₃), 71.1 (OCH₂Ph × 2), 79.2 (8'-C), 86.1 (7-C), 109.6, 113.6, 113.9, 114.0, 118.0, 122.4, 127.2, 127.3, 127.8, 128.5, 131.0, 136.7, 137.25, 137.32, 146.8, 147.5, 149.2, 149.7. FABMS 525 (M + H)⁺. HRMS (FAB): calculated C₃₄H₃₇O₅: 525.2641, found: 525.2639.

*ent-7'-epi-***19**. Colorless oil, $[\alpha]_{D}^{25}$ –39 (*c* 0.1, CHCl₃).

Conversion of 7'-*epi*-19 to indane 18. To a solution of 7'-*epi*-19 (42 mg, 0.078 mmol) in CH_2Cl_2 (5 mL) was added $BF_3 \cdot OEt_2$ (10 µL, 0.079 mmol) at 0 °C, and then the reaction solution was stirred at 0–3 °C for 1 h before the addition of sat. aq. NaHCO₃ and CH_2Cl_2 . The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave 18 (31 mg, 0.059 mmol, 76%).

(2S,3S,4R,5R)-2,4-Bis(4-hydroxy-3-methoxyphenyl)-3,5-dimethyltetrahydrofuran, (7S,7'R,8S,8'R)-3,3'-dimethoxy-7,8'-epoxy-8,7'-neolignan-4,4'-diol 20. A reaction mixture of benzyl ether 19 (12 mg, 0.022 mmol) and 5% Pd/C (20 mg) in EtOAc (10 mL) was stirred under a H₂ atmosphere at room temperature for 2 h, and then the mixture was filtered. After concentration of the filtrate, the residue was subjected to silica gel column chromatography (EtOAc/hexane = 1/3) to give 20 (4 mg, 0.012 mmol, 53%) as a colorless oil, $[\alpha]_{D}^{25}$ +38 (c 0.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.93 (3H, d, J = 6.5 Hz, 9-H), 1.29 (3H, d, J = 6.0 Hz, 9'-H), 2.24 (1H, m, 8-H), 2.52 (1H, dd, J = 11.1, 9.5 Hz, 7'-H), 3.90 (3H, s, OCH₃), 3.94 (3H, s, OCH₃), 4.27 (1H, m, 8'-H), 4.54 (1H, d, J = 9.5 Hz, 7-H), 5.58 (1H, br s, OH), 5.59 (1H, br s, OH), 6.70 (1H, d, J = 1.8 Hz), 6.75 (1H, dd, J = 8.2, 1.8 Hz), 6.88 (1H, d, J = 8.2 Hz), 6.91 (2H, s), 6.95 (1H, s). ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (9-C), 20.0 (9'-C), 51.2 (8-C), 56.0 (OCH₃ × 2), 62.0 (7'-C), 81.8 (8'-C), 87.1 (7-C), 108.7, 110.1, 114.2, 114.5, 119.3, 120.6, 131.0, 134.0, 144.6, 145.1, 146.55, 146.62; EIMS m/z (%): 344 (M⁺, 33), 300 (100), 285 (56), 137 (80). HRMS (EI): calculated C₂₀H₂₄O₅: 344.1624, found: 344.1631. >99%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, $t_{\rm R}$ 20.6 min).

ent-20. Colorless oil, $[\alpha]_{\rm D}^{25}$ -40 (*c* 0.04, CHCl₃). 97%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, $t_{\rm R}$ 33.8 min).

(2S,3S,4S,5R)-2,4-Bis(4-hydroxy-3-methoxyphenyl)-3,5-dimethyltetrahydrofuran, (7S,7'S,8S,8'R)-3,3'-dimethoxyl-7,8'-epoxy-8,7'neolignan-4,4'-diol 7'-epi-20. 53% yield, colorless crystals, mp 84–85 °C, $[\alpha]_{D}^{25}$ +84 (c 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.72 (3H, d, J = 6.8 Hz, 9-H), 1.20 (3H, d, J = 6.4 Hz, 9'-H), 2.58 (1H, m, 8-H), 3.15 (1H, dd, J = 8.4, 5.3 Hz, 7'-H), 3.91 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 4.62 (1H, d, J = 9.7 Hz, 7-H), 4.71 (1H, m, 8'-H), 5.56 (1H, s, OH), 5.57 (1H, s, OH), 6.72 (1H, dd, J = 8.1, 1.5 Hz), 6.78 (1H, d, J = 1.5 Hz), 6.85 (1H, dd, J = 8.1, 1.7 Hz), 6.88–6.90 (3H, m). 13 C NMR (100 MHz, CDCl₃) δ 12.9 (9-C), 16.9 (9'-C), 48.8 (8-C), 55.7 (7'-C), 55.9 (OCH₃), 56.0 (OCH₃), 79.2 (8'-C), 86.2 (7-C), 108.3, 112.4, 114.0, 114.2, 118.8, 123.2, 129.7, 135.4, 144.2, 144.9, 146.2, 146.6. EIMS m/z (%): 344 (M⁺, 16), 300 (100), 284 (45). HRMS (EI): calculated C₂₀H₂₄O₅: 344.1624, found: 344.1613. >99%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, $t_{\rm R}$ 9.8 min).

*ent-7'-epi-***20.** Colorless oil, $[\alpha]_D^{25}$ –84 (*c* 0.1, CHCl₃) >99%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, t_R 18.7 min).

(15,25,35)-6-Benzyloxy-1-(4-benzyloxy-3-methoxyphenyl)-3-ethyl-5-methoxy-2-methylindane, (7S,7'S,8'S)-4,4'-dibenzyloxy-3',5dimethoxy-2,7'-cyclo-7,8'-neolignan 21. To an ice-cooled solution of alcohol 18 (96 mg, 0.18 mmol) and Et₃N (80 µL, 0.57 mmol) in CH₂Cl₂ (5 mL) was added MsCl (40 µL, 0.52 mmol). The reaction mixture was stirred at room temperature for 1 h, and then H₂O and CH₂Cl₂ were added. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography gave crude mesylate. A reaction mixture of crude mesylate and NaBH₄ (0.10 g, 2.64 mmol) in HMPA (2 mL) was stirred at 80 °C for 12 h before the addition of sat. aq. NH₄Cl and EtOAc. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/4) gave 21 (44 mg, 0.087 mmol, 48%, 2 steps) as a colorless oil, $[\alpha]_{D}^{25}$ -63 (c 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.00 (3H, t, J = 7.5 Hz, 9-H), 1.15 (3H, d, J = 6.6 Hz, 9'-H), 1.78 (1H, m, 8-CHH), 1.87 (1H, m, 8-CHH), 1.97 (1H, m, 8'-H), 2.69 (1H, ddd, J = 8.9, 5.4, 5.4 Hz, 7-H), 3.59 (1H, d, J = 9.3 Hz, 7'-H), 3.77 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 4.94 (1H, d, J = 12.2 Hz, OCHHPh), 4.99 (1H, d, J = 12.2 Hz, OCHHPh), 5.15 (2H, s, OCH₂Ph), 6.44 (1H, s), 6.61–6.63 (2H, m), 6.77 (1H, s), 6.82 (1H, d, J = 8.7 Hz), 7.24-7.26 (2H, m), 7.28-7.39 (6H, m), 7.46 (2H, d, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 11.0 (9-C), 17.6 (9'-C), 24.9 (8-C), 51.0 (8'-C), 51.6 (7-C), 56.0 (OCH₃), 56.3 (OCH₃), 58.4 (7'-C), 71.0 (OCH₂Ph × 2), 107.1, 110.7, 111.9, 113.7, 120.7, 127.2, 127.4, 127.6, 127.7, 128.3, 128.5, 137.2, 137.4, 137.7, 138.0, 139.1, 146.7, 147.2, 149.0, 149.5. FABMS 509 (M + H)⁺. HRMS (FAB): calculated C₃₄H₃₇O₄: 509.2692, found: 509.2688.

ent-21. Colorless oil, $[\alpha]_{D}^{25}$ +63 (*c* 0.1, CHCl₃).

(1S,2S,3S)-1-Ethyl-5-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-6-methoxy-2-methylindane, (7S,7'S,8'S)-3',5-dimethoxy-2,7'cyclo-7,8'-neolignan-4,4'-diol, (-)- γ -diisoeugenol 4. A reaction mixture of benzyl ether 21 (40 mg, 0.079 mmol) and 5% Pd/C (50 mg) in EtOAc (10 mL) was stirred under H_2 gas at room temperature for 2 h before filtration. The filtrate was concentrated, and then the residue was subjected to silica gel column chromatography (EtOAc/hexane = 1/1)to give (-)-y-diisoeugenol (4) (24 mg, 0.073 mmol, 92%) as colorless crystals, mp 100–103 °C, $[\alpha]_{D}^{25}$ –24 (c 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.01 (3H, t, J = 7.4 Hz, 9-H), 1.15 (3H, d, J = 6.5 Hz, 9'-H), 1.78 (1H, m, 8-HH), 1.88 (1H, m, 8-HH), 1.99 (1H, m, 8'-H), 2.68 (1H, ddd, J = 9.0, 5.3, 5.3 Hz, 7-H), 3.58 (1H, d, J = 9.4 Hz, 7'-H), 3.83 (3H, s, OCH₃), 3.90 (3H, s, OCH₃), 5.49 (1H, s, OH), 5.55 (1H, s, OH), 6.44 (1H, s), 6.64 (1H, d, J = 1.9 Hz), 6.70 (1H, dd, J = 7.9, 1.9 Hz), 6.72 (1H, s), 6.86 (1H, d, J = 7.9 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 10.9 (9-C), 17.6 (9'-C), 24.9 (8-C), 50.9 (8'-C), 51.5 (7-C), 55.9 (OCH₃), 56.2 (OCH₃), 58.4 (7'-C), 105.7, 110.6, 110.7, 114.1, 121.5, 136.3, 137.7, 139.1, 144.1, 144.5, 145.7, 146.5; EIMS m/z (%): 328 (M⁺, 70), 299 (100). HRMS (EI): calculated C₂₀H₂₄O₄: 328.1675, found: 328.1666. >99%ee (AD-H, 254 nm, 5% 2-propanol/hexane, 1 mL min^{-1} , $t_{\rm R}$ 45.8 min).

*ent-***4** ((+)-diisoeugenol). Colorless crystals, mp 98–100 °C, $[\alpha]_{D}^{25}$ +24 (*c* 0.1, CHCl₃), >99%ee (AD-H, 254 nm, 5% 2-propanol/hexane, 1 mL min⁻¹, t_{R} 38.3 min).

(1S,2S,3S)-1-Ethyl-5,6-dimethoxy-3-(3,4-dimethoxyphenyl)-2methylindane, (75,7'5,8'S)-3',4,4',5-tetramethoxy-2,7'-cyclo-7,8'neolignan, (-)-y-diisohomogenol 5. A reaction mixture of (-)-y-diisoeugenol (4) (73 mg, 0.22 mmol), MeI (1.00 mL, 16.1 mmol), K₂CO₃ (0.12 g, 0.87 mmol), and dibenzo-18crown-6 (10 mg) in MeCN (20 mL) was heated under reflux for 16 h before filtration. Concentration of the filtrate followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave (-)-y-diisohomogenol (5) (73 mg, 0.20 mmol, 91%) as a colorless oil, $[\alpha]_{D}^{25}$ -83 (c 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.01 (3H, t, J = 7.5 Hz, 9-H), 1.17 (3H, d, J = 6.6 Hz, 9'-H), 1.79 (1H, m, 8-HH), 1.90 (1H, m, 8-HH), 2.00 (1H, m, 8'-H), 2.71 (1H, m, 7-H), 3.65 (1H, d, J = 9.3 Hz, 7'-H), 3.72 (3H, s, OCH₃), 3.82 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 3.90 (3H, s, OCH₃), 6.40 (1H, s), 6.68 (1H, d, J = 2.1 Hz), 6.77 (1H, dd, J = 8.1, 2.1 Hz), 6.77 (1H, s), 6.85 (1H, d, J = 8.1 Hz). ¹³C NMR (100 MHz, CDCl₃) & 10.9 (9-C), 17.7 (9'-C), 25.0 (8-C), 51.1 (8'-C), 51.7 (7-C), 55.9 $(OCH_3 \times 2)$, 56.0 (OCH_3) , 56.1 (OCH_3) , 58.6 (7'-C), 106.5, 107.8, 111.1, 111.5, 120.8, 137.3, 138.1, 138.4, 147.6, 148.2, 148.3, 149.0. EIMS m/z (%): 356 (M⁺, 95), 327 (100). HRMS (EI): calculated C₂₂H₂₈O₄: 356.1988, found: 356.1985.

(2S,3R,4R,5S)-3,5-Bis(4-benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 22. 2-epi-15 was obtained by LiAlH₄ reduction of 2-epi-14 in 74% yield as colorless crystals, mp 74-75 °C, $[\alpha]_{D}^{25}$ +17 (c 0.7, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.11 (3H, d, *J* = 6.9 Hz, 4-CH₃), 1.34 (3H, d, *J* = 6.4 Hz, 2-CH₃), 1.78 (1H, br s, OH), 2.06 (1H, m, 4-H), 3.86 (1H, m, 3-H), 3.89 (3H, s, OCH₃), 4.05 (1H, dq, J = 6.9, 5.0 Hz, 2-H), 4.21 (1H, d, J = 7.7 Hz, 5-H), 5.14 (2H, s, OCH₂Ph), 6.82-6.83 (2H, m), 6.97 (1H, s), 7.28 (1H, s), 7.35 (2H, m), 7.42 (2H, m). ^{13}C NMR (100 MHz, CDCl₃) δ 14.6 (4-CH₃), 15.7 (2-CH₃), 50.9 (4-C), 55.9 (OCH₃), 71.0 (OCH₂Ph), 77.0 (2-C), 80.4 (5-C), 86.4 (3-C), 110.0, 113.7, 118.7, 127.2, 127.7, 128.4, 134.2, 137.1, 147.7, 149.6; FABMS 328 (M⁺). Anal. found: C 73.31%, H 7.42%; calcd for C₂₀H₂₄O₄: C 73.15%, H 7.37%. ent-2-epi-15. Colorless crystals, mp 73–74 °C, $[\alpha]_{D}^{25}$ –18 (*c* 0.5, CHCl₃). 2-*epi*-16 was obtained by PCC oxidation of 2-epi-15 at 0 °C in 94% yield as colorless crystals, mp 98–99 °C; $\left[\alpha\right]_{D}^{25}$ –63 (c 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.11 (3H, d, J = 6.9 Hz, 4-CH₃), 1.45 (3H, d, J = 6.8 Hz, 2-CH₃), 2.36 (1H, dq, J = 10.4, 6.9 Hz, 4-H), 3.92 (3H, s, OCH₃), 3.98 (1H, q, J = 6.8 Hz, 2-H), 4.50 (1H, d, J = 10.4 Hz, 5-H), 5.17 (2H, s, OCH₂Ph), 6.88-6.89 (2H, m), 6.98 (1H, s), 7.30 (1H, m), 7.36 (2H, m), 7.43 (2H, m). ¹³C NMR (100 MHz, CDCl₃) δ 10.2 (4-CH₃), 16.4 (2-CH₃), 49.5 (4-C), 56.0 (OCH₃), 71.0 (OCH₂Ph), 77.8 (2-C), 84.5 (5-C), 109.9, 113.8, 118.9, 127.2, 127.8, 128.5, 132.0, 137.0, 148.3, 149.9, 217.9 (C=O). FABMS 326 (M⁺). Anal. found: C 73.81%, H 6.88%; calcd for C₂₀H₂₂O₄: C 73.60%, H 6.79%. ent-2-epi-16. Colorless crystals, mp 98–99 °C, $[\alpha]_{D}^{25}$ +58 (*c* 0.6, CHCl₃). Furanol 22 was obtained by the reaction of 2-epi-16 with 4-benzyloxy-3-methoxyphenyllithium at -70 °C in 94% yield as a colorless oil, $\left[\alpha\right]_{D}^{25}$ +36 (c 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.66 (3H, d, J = 7.1 Hz, 4-CH₃), 1.36 (3H, d, J = 6.3 Hz,

Organic & Biomolecular Chemistry

2-CH₃), 2.30–2.37 (1H, overlapped, 4-H), 2.35 (1H, s, OH), 3.90 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 4.35 (1H, d, J = 7.0 Hz, 5-H), 4.46 (1H, q, J = 6.3 Hz, 2-H), 5.146 (2H, s, OCH₂Ph), 5.155 (2H, s, OCH₂Ph), 6.82–6.90 (4H, m), 7.03 (1H, d, J = 1.8 Hz), 7.09 (1H, d, J = 1.8 Hz), 7.16 (1H, m), 7.30 (1H, m), 7.33–7.38 (4H, m), 7.42 (2H, d, J = 6.6 Hz), 7.44 (2H, d, J = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 14.5 (4-CH₃), 15.7 (2-CH₃), 54.2 (4-C), 55.97 (OCH₃), 56.04 (OCH₃), 70.9 (OCH₂Ph), 71.0 (OCH₂Ph), 79.6 (2-C), 84.1 (5-C), 86.5 (3-C), 110.0, 110.5, 113.2, 113.9, 118.2, 118.5, 127.18, 127.23, 127.7, 127.8, 128.47, 128.50, 134.1, 134.7, 137.0, 137.1, 147.4, 147.7, 149.4, 149.7. FABMS 541 (M + H)⁺. Anal. found: C 75.75%, H 6.84%; calcd for C₃₄H₃₆O₆: C 75.53%, H 6.71%.

ent-22. Colorless oil, $\left[\alpha\right]_{D}^{25}$ -37 (c 0.4, CHCl₃).

(2S,3S,4S,5S)-2,4-Bis(4-benzyloxy-3-methoxyphenyl)-3,5-dimethyl-(7S,7'S,8S,8'S)-4,4'-dibenzyloxy-3,3'-dimethoxyltetrahydrofuran, 7,8'-epoxy-8,7'-neolignan 23. A reaction mixture of 3-furanol 22 (0.28 g, 0.52 mmol), ZnI₂ (0.25 g, 0.78 mmol), and NaBH₃CN (0.24 g, 3.82 mmol) in 1,2-dichloroethane (15 mL) was heated under reflux for 4 h before adding to H₂O. The mixture was extracted with CH2Cl2. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/4) gave 23 (73 mg, 0.14 mmol, 27%) as a colorless oil, $[\alpha]_{D}^{25}$ +44 (c 0.3, CHCl₃). 3-Furanol 22 (0.19 g, 0.37 mmol, 71%) was recovered. ¹H NMR (400 MHz, CDCl₃) δ 0.66 (3H, d, J = 6.9 Hz, 9'-H), 1.43 (3H, d, J = 6.1 Hz, 9-H), 2.38 (1H, m, 8-H), 3.03 (1H, dd, J = 8.4, 5.7 Hz, 7'-H), 3.89 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 4.45 (1H, dq, J = 5.9, 5.9 Hz, 8'-H), 4.49 (1H, d, J = 8.7 Hz, 7-H), 5.15 (4H, s, $OCH_2Ph \times 2$), 6.69 (1H, dd, J = 8.2, 1.8 Hz), 6.75 (1H, d, J = 1.8Hz), 6.84-6.86 (3H, m), 6.96 (1H, d, J = 1.1 Hz), 7.27-7.32 (2H, m), 7.34-7.39 (4H, m), 7.42-7.46 (4H, m). ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (9-C), 21.6 (9'-C), 46.0 (8-C), 55.7 (7'-C), 56.0 (OCH₃), 56.1 (OCH₃), 71.1 (OCH₂Ph × 2), 79.9 (8'-C), 87.2 (7-C), 109.9, 112.8, 113.7, 113.8, 118.4, 120.7, 127.2, 127.3, 127.7, 127.8, 128.5, 133.2, 135.4, 137.2, 146.8, 147.5, 149.4, 149.6. FABMS 525 $(M + H)^+$. HRMS (FAB): calculated $C_{34}H_{37}O_5$: 525.2641, found: 525.2632.

ent-23. Colorless oil, $\left[\alpha\right]_{D}^{25}$ -44 (c 0.2, CHCl₃).

(2S,3S,4R,5S)-2,4-Bis(4-benzyloxy-3-methoxyphenyl)-3,5-dimethyl-(7S,7'R,8S,8'S)-4,4'-dibenzyloxy-3,3'-dimethoxyltetrahydrofuran, 7,8'-epoxy-8,7'-neolignan 7'-epi-23. To a solution of 3-furanol 22 (0.16 g, 0.30 mmol) and Et₃SiH (2.00 mL, 12.5 mmol) in CH₂Cl₂ (10 mL) was added BF₃·OEt₂ (40 µL, 0.32 mmol) at 0 °C. The reaction solution was stirred at 0-3 °C for 30 min before the addition of sat. aq. NaHCO₃. The organic solution was separated and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAc/hexane = 1/3) gave 7'-epi-23 (87 mg, 0.17 mmol, 57%) as a colorless oil, $[\alpha]_{\rm D}^{25}$ -55 (c 1.3, CHCl₃), and 23 (4.8 mg, 0.0091 mmol, 3%). ¹H NMR (400 MHz, $CDCl_3$) δ 0.96 (3H, d, J = 6.4 Hz, 9-H), 1.03 (3H, d, J = 6.5 Hz, 9'-H), 2.30 (1H, m, 8-H), 3.15 (1H, dd, J = 9.3, 8.3 Hz, 7'-H), 3.84 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 4.40-4.46 (1H, overlapped, 8'-H), 4.41 (1H, d, J = 9.2 Hz, 7-H), 5.12 (2H, s, OCH₂Ph), 5.15 (2H, s, OCH₂Ph), 6.66 (1H, dd, J = 8.2, 1.6 Hz), 6.70 (1H, d, J = 1.6 Hz), 6.83 (1H, d, J = 8.2 Hz), 6.86–6.92 (2H, m), 7.01 (1H, d, J = 1.6 Hz), 7.28 (2H, m), 7.35 (4H, dd, J = 7.3, 7.3 Hz), 7.43 (4H, d, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 15.1 (9-C), 18.9 (9'-C), 46.5 (8-C), 56.0 (OCH₃ × 2), 56.5 (7'-C), 71.0 (OCH₂Ph × 2), 77.3 (8'-C), 87.4 (7-C), 110.0, 112.5, 113.7, 113.8, 118.4, 120.5, 127.16, 127.20, 127.7, 128.4, 132.5, 134.5, 137.2, 146.8, 147.6, 149.4, 149.6. FABMS 525 (M + H)⁺. HRMS (FAB): calculated C₃₄H₃₇O₅: 525.2641, found: 525.2630.

ent-7'-epi-23. Colorless oil, $[\alpha]_{D}^{25}$ +55 (c 0.7, CHCl₃).

(2S,3S,4S,5S)-2,4-Bis(4-hydroxy-3-methoxyphenyl)-3,5-dimethyltetrahydrofuran, (75,7'5,85,8'S)-3,3'-dimethoxyl-7,8'-epoxy-8,7'-neolignan-4,4'-diol 24. The phenol 24 was obtained by the hydrogenolysis of 23 using 5% Pd/C in EtOAc under H₂ gas in 100% yield as a colorless oil, $[\alpha]_D^{25}$ +43 (c 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.66 (3H, d, J = 7.0 Hz, 9-H), 1.43 (3H, d, J = 6.1 Hz, 9'-H), 2.36 (1H, m, 8-H), 3.02 (1H, dd, J = 8.4, 5.7 Hz, 7'-H), 3.88 (3H, s, OCH₃), 3.90 (3H, s, OCH₃), 4.44 (1H, dq, J = 6.0, 6.0 Hz, 8'-H), 4.48 (1H, d, J = 8.1 Hz, 7-H), 5.59 (2H, br s, OH × 2), 6.68-6.71 (2H, m), 6.84 (1H, dd, J = 8.2, 1.6 Hz), 6.86–6.89 (2H, m), 6.92 (1H, d, J = 1.6 Hz). ¹³C NMR (100 MHz, CDCl₃) & 13.6 (9-C), 21.6 (9'-C), 46.1 (8-C), 55.8 (7'-C), 55.9 (OCH₃), 56.0 (OCH₃), 80.0 (8'-C), 87.3 (7-C), 108.6, 111.3, 114.1, 119.1, 121.5, 132.0, 134.1, 144.1, 145.0, 146.3, 146.5. EIMS m/z (%): 344 (56), 300 (100), 285 (39). HRMS (EI): calculated C₂₀H₂₄O₅: 344.1624, found: 344.1617. >99%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, $t_{\rm R}$ 11.6 min).

ent-24. Colorless oil, $[\alpha]_D^{25}$ -45 (*c* 0.2, CHCl₃). >99%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, t_R 18.0 min).

(2S,3S,4R,5S)-2,4-Bis(4-hydroxy-3-methoxyphenyl)-3,5-dimethyltetrahydrofuran, (7S,7'R,8S,8'S)-3,3'-dimethoxyl-7,8'-epoxy-8,7'neolignan-4,4'-diol 7'-epi-24. The phenol 7'-epi-24 was obtained by the hydrogenolysis of 7'-epi-23 using 5% Pd/C in EtOAc under H₂ gas in 96% yield as a colorless oil, $[\alpha]_{D}^{25}$ -69 (c 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.97 (3H, d, J = 6.4 Hz, 9-H), 1.04 (3H, d, J = 6.4 Hz, 9'-H), 2.29 (1H, m, 8-H), 3.16 (1H, dd, J = 9.7, 8.5 Hz, 7'-H), 3.87 (3H, s, OCH₃), 3.93 (3H, s, OCH₃), 4.41-4.47 (1H, overlapped, 8'-H), 4.42 (1H, d, J = 9.2 Hz, 7-H), 5.56 (2H, br s, OH × 2), 6.66 (1H, d, J = 1.6 Hz), 6.69 (1H, dd, J = 8.1, 1.6 Hz), 6.87 (1H, d, J = 8.1 Hz), 6.92 (2H, s), 6.98 (1H, s). ¹³C NMR (100 MHz, CDCl₃) δ 15.0 (9-C), 19.0 (9'-C), 46.5 (8-C), 55.9 (OCH₃), 56.6 (7'-C), 76.7 (8'-C), 87.6 (7-C), 108.8, 111.2, 114.1, 119.3, 121.3, 131.3, 133.4, 144.3, 145.1, 146.4, 146.5. EIMS m/z (%): 344 (28), 300 (100), 285 (34). HRMS (EI): calculated C₂₀H₂₄O₅: 344.1624, found: 344.1631. >99%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, $t_{\rm R}$ 23.4 min).

*ent-7'-epi-***24**. Colorless oil, $[\alpha]_D^{25}$ +69 (*c* 0.4, CHCl₃). 97%ee (AD-H, 254 nm, 20% 2-propanol/hexane, 1 mL min⁻¹, t_R 29.6 min).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Part of this work was performed at ADRES (Johoku station) of Ehime University. We are grateful to Marutomo Co. for financial support.

Notes and references

- (a) S. Fujisawa and Y. Kadoma, *Mini-Rev. Med. Chem.*, 2012, 12, 477-490; (b) D. R. M. Arenas, A. M. Acevedo, L. Y. V. Méndez and V. V. Kouznetsov, *Sci. Pharm.*, 2011, 79, 779-791; (c) T. Atsumi, K. Tonosaki and S. Fujisawa, *Arch. Oral Biol.*, 2006, 51, 913-921; (d) T. Atsumi, Y. Murakami, K. Shibuya, K. Tonosaki and S. Fujisawa, *Anticancer Res.*, 2005, 25, 4029-4036; (e) Y. Murakami, M. Shoji, A. Hirata, S. Tanaka, I. Yokoe and S. Fujisawa, *Arch. Biochem. Biophys.*, 2005, 434, 326-332; (f) S. Fujisawa, T. Atsumi, Y. Murakami and Y. Kadoma, *Arch. Immunol. Ther. Exp.*, 2005, 53, 28-38; (g) T. Atsumi, S. Fujisawa, K. Satoh, H. Sakagami, I. Iwakura, T. Ueha, Y. Sugita and I. Yokoe, *Anticancer Res.*, 2000, 20, 2519-2524; (h) C.-H. Lin, Y.-H. Kuo, Y.-L. Lin and C.-M. Teng, *J. Pharm. Pharmacol.*, 1994, 46, 54-57.
- 2 (a) T. Yamamoto, B. Riehi, K. Naba, K. Nakahara, A. Wiebe, T. Saitoh, S. R. Waldvogel and Y. Einaga, *Chem. Commun.*, 2018, 54, 2771–2773; (b) N. Morita, R. Mashiko, D. Hakuta, D. Eguchi, S. Ban, Y. Hashimoto, I. Okamoto and O. Tamura, *Synthesis*, 2016, 1927–1933.
- 3 T. Nakato, S. Yamauchi, R. Tago, K. Akiyama, M. Maruyama, T. Sugahara, T. Kishida and Y. Koba, *Biosci. Biotechnol. Biochem.*, 2009, 73, 1608–1617.
- 4 (a) H. Nishiwaki, K. Nakayama, Y. Shuto and S. Yamauchi, J. Agric. Food Chem., 2014, 62, 651–659; (b) S. Yamauchi,

K. Nakayama, H. Nishiwaki and Y. Shuto, *Bioorg. Med. Chem. Lett.*, 2014, **24**, 4798-4803.

- 5 T. Wukirsari, H. Nishiwaki, K. Nishi, T. Sugahra, K. Akiyama, T. Kishida and S. Yamauchi, *Biosci. Biotechnol. Biochem.*, 2016, **80**, 669–675.
- 6 G. P. Moss, Pure Appl. Chem., 2000, 72, 1493-1523.
- 7 (a) Y. Lu, Y. Xue, J. Liu, G. Yao, D. Li, B. Sun, J. Zhang, Y. Liu, C. Qi, M. Xiang, Z. Luo, G. Du and Y. Zhang, J. Nat. Prod., 2015, 78, 2205–2214; (b) O. Muraoka, T. Sawada, E. Morimoto and G. Tanabe, Chem. Pharm. Bull., 1993, 41, 772–774; (c) T. Tsuruga, Y. Ebizuka, J. Nakajima, Y.-T. Chun, H. Noguchi, Y. Iitaka, U. Sankawa and H. Seto, Tetrahedron Lett., 1984, 25, 4129–4132.
- 8 E. Gao, Z.-Q. Zhou, J. Zou, Y. Yu, X.-L. Feng, G.-D. Chen, R.-R. He, X.-S. Yao and H. Gao, *J. Nat. Prod.*, 2017, 80, 2923–2929.
- 9 (a) B. D. Dickson, N. Dittrich and D. Barker, *Tetrahedron Lett.*, 2012, 53, 4464-4468; (b) B. M. Pérez, D. Schuch and J. Hartung, *Org. Biomol. Chem.*, 2008, 6, 3532-3541; (c) M. Greb, J. Hartung, F. Köhler, K. Spehar, R. Kluge and R. Csuk, *Eur. J. Org. Chem.*, 2004, 3799-3812.
- 10 J. MacMillan, I. L. Martin and D. J. Morris, *Tetrahedron*, 1969, **25**, 905–914.
- 11 D. A. Evans, J. S. Tedrow, J. T. Shaw and C. W. Downey, *J. Am. Chem. Soc.*, 2002, **124**, 392–393.
- 12 Y. Ogura, H. Sato and S. Kuwahara, Org. Lett., 2016, 18, 2399–2402.
- 13 F. A. Carey and H. S. Tremper, *J. Org. Chem.*, 1969, 34, 4–6.
- 14 C. K. Lau, C. Dufresne, P. C. Belanger,
 S. Pietre and J. Scheigetz, *J. Org. Chem.*, 1986, 51, 3038–3043.