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ABSTRACT: Metal-organic layers (MOLs) have recently
emerged as a novel class of molecular 2D materials with
significant potential for catalytic applications. Herein we report
the design of a new multifunctional MOL, Hf},-Ir-Ni, by laterally
linking Hf;; secondary building units (SBUs) with
photosensitizing [r(DBB)[dF(CF;)ppy]," [DBB-Ir-F, DBB = 4,4'-
di(4-benzoato)-2,2'-bipyridine; dF(CF3)ppy = 2-(2,4-
difluorophenyl)-5-(trifluoromethyl)pyridine] bridging ligands and
vertically terminating the SBUs with catalytic Ni(MBA)CL,
[MBA = 2-(4"-methyl-[2,2'-bipyridin]-4-yl)acetate] capping
agents. Hf}»-Ir-Ni was synthesized in a bottom-up approach and
characterized by TEM, AFM, PXRD, TGA, NMR, ICP-MS, UV-
Vis, and luminescence spectroscopy. The proximity between
photosensitizing Ir centers and catalytic Ni centers (~0.85 nm) in
Hfti,-Ir-Ni facilitates single electron transfer, leading to a 15-fold
increase in photoredox reactivity. Hf;,-Ir-Ni was highly effective
in catalytic C-S, C-O, and C-C cross-coupling reactions with
broad substrate scopes and turnover numbers of ~4500, ~1900,
and ~450, respectively.

Two-dimensional (2D) materials, exemplified by graphene and
transition metal dichalcogenides (TMDCs), have been intensively
studied owing to their favorable -electronic and optical
properties.!* Intrinsically high surface areas of 2D materials
should in principle allow the incorporation of multiple
functionalities via surface modification to mediate photocatalytic
reactions.>® To date, however, the performance of 2D materials in
photocatalysis has been underwhelming, often limited by poor
light-harvesting efficiency or/and low catalytic activity due to the
difficulty of installing disparate functionalities in a spatially
controlled manner.”® It is thus of great importance to develop
molecular 2D materials with synthetic flexibility and molecular
tunability, allowing for hierarchical installation of multiple
functionalities to afford much enhanced photocatalytic activities
over their homogeneous counterparts.®-11

As a dispersible monolayered version of metal-organic
frameworks (MOFs),122¢ metal-organic layers (MOLs) have
recently emerged as a novel class of molecular 2D materials with
tremendous potential for catalytic applications.?’?° MOLs not
only retain the advantages offered by MOFs such as structural
regularity/tunability and compositional diversity but also possess
the aforementioned strengths of 2D materials. Importantly, unlike
graphene and TMDCs, disparate functionalities can be installed

onto the surfaces of MOLs in a spatially controlled fashion by
modifying distinct functional groups on their secondary building
units (SBUs) and bridging ligands to accomplish synergistic
complex functions (Figure 1). Herein we report the design of a
new multifunctional MOL, Hfj;-Ir-Ni, for highly efficient
photoredox catalysis by taking advantage of the proximity
between photosensitizing bridging ligands and Ni catalysts on the
SBUs.

a) Graphene:

b) Transition metal dichalcogenides:
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Figure 1. Schematic depiction of graphene (a), TMDCs (b), and
MOLs (c). Unlike graphene and TMDCs, MOLs allow
hierarchical incorporation of disparate functional groups (FGs)
into both bridging linkers and capping agents. Zoomed-in view of
postsynthetic surface modification of MOLs with functional
capping agents through carboxylate exchange.
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Hf}5-Ir-N1 is a 2D network built from Hf;, SBUs and
photosensitizing [r(DBB)[dF(CF;)ppy]," [DBB-Ir-F, DBB = 4,4'-
di(4-benzoato)-2,2'-bipyridine; dF(CF3)ppy = 2-(2,4-
difluorophenyl)-5-(trifluoromethyl)pyridine]  bridging ligands
(Figures S1-S4, SI). The SBUs are vertically terminated by
catalytically active Ni(MBA)Cl, [MBA-Ni, MBA = 2-(4"-methyl-
[2,2'-bipyridin]-4-yl)acetate] capping agents (Figures S5-S9, SI)
to afford a monolayer structure. Hf},-Ir-Ni was synthesized in
three steps (Figures 2a and S10, SI). First, free-standing Hf},-Ir-F
was prepared through a solvothermal reaction between HfCl, and
H,DBB-Ir-F in N,N-dimethylformamide (DMF) at 80 °C with
trifluoroacetic acid and water as modulators. Hf;, SBUs were
vertically terminated by trifluoroacetate (TFA) capping agents and

laterally bridged by DBB-Ir-F ligands to afford an infinite 2D
network of the formula Hf,(ps-O)s(s-OH)g(1,-OH)(DBB-Ir-
F)s(TFA)s. Second, MBA capping agents were installed on the
surface of Hfj,-Ir-F by replacing TFA groups to afford Hfyp-Ir-
MBA with the formula of Hfl2(“3-0)8(u3-OH)g(u2-OH)6(DBB-IT-
F)s(MBA)¢. Finally, Hf;,-Ir-Ni was obtained by metalating the
MBA capping agents on Hfj,-I-MBA to generate catalytically
active MBA-Ni. Hfj,-Ir-Ni has a formula of Hfj(ps-O)s(Hs-
OH)s(12-OH)(DBB-Ir-F)¢(MBA-Ni)¢ with the Ir and Ni centers
in close proximity of ~0.85 nm from each other, which affords a
>10-fold increase in single electron transfer (SET) and a 15-fold
increase in photoredox reactivity over the homogenous control
(Figure 3a).
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e 2. Synthesis and Characterization of Hf},-Ir-F, Hf},-Ir-MBA, and Hf},-Ir-Ni. (a) Schematic showing the synthesis of Hf;,-Ir-Ni. (b-

¢) TEM image (b), HRTEM image with the FFT pattern in the inset (¢), and AFM topography (d) and height profile (e) of Hf},-Ir-F. (f)
PXRD patterns of Hf},-Ir-F and Hfj,-Ir-Ni, freshly prepared or after photoredox reaction, in comparison to the simulated pattern for the
Ht}, MOL. (g) NMR spectrum of digested Hf),-Ir--MBA. Peaks labeled with yellow and green stars correspond to H,DBB-Ir-F and H-
MBA ligands, respectively. (h-1) EXAFS fitting (h), TEM image (1), HRTEM image with the FFT pattern in the inset (j), and AFM
topography (k) and height profile (1) of Hf},-Ir-Ni.

The monolayer structure of Hfj,-Ir-F was confirmed by a
combination of transmission electron microscopy (TEM, Figures
2b and S11a, SI) and atomic force microscopy (AFM, Figures 2d,

e, and S11b, SI), with a diameter of ~300 nm and a thickness of
~1.8 nm. This thickness is consistent with the modeled height of
Hf}, clusters capped with TFA groups (~1.8 nm, Figure S21a, SI).
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Dynamic light scattering (DLS) measurements gave a number-
averaged diameter of 116.2 + 7.3 nm for Hf),-Ir-F (Figure S17,
SI). The proposed kgd topological structure of Hfj,-Ir-F was
supported by powder X-ray diffraction (PXRD) studies and high-
resolution TEM (HRTEM) imaging. Hf},-Ir-F displayed a PXRD
pattern similar to that simulated based on the structure model of
the Hf;; MOL (Figure 2f) whereas HRTEM and its fast Fourier
transform (FFT, Figure 2c) revealed a six-fold symmetry and a
Hf},-Hf}, distance of 2.7 nm, matching well with the modeled
structure (Figure S21a, SI). In addition, the 'H NMR spectrum of
digested Hf),-Ir-F showed only signals corresponding to DBB-Ir-
F (Figure S12, SI). Thermogravimetric analysis (TGA) of Hf},-Ir-
F showed a weight loss of 62.4% in the 350-800 °C range,
corresponding to its decomposition to (12 HfO, + 6 IrO,) (61.5%
expected; Figure S13, SI). Finally, UV-Vis (Figure S18, SI) and
luminescence (Figure S14, SI) spectra showed that Hfj,-Ir-F
displayed the same characteristic absorption, excitation, and
emission spectra as Me,DBB-Ir, suggesting the photosensitizing
ability of Hf},-Ir-F.

Hfj,-Ir-F was further functionalized through exchanging
weakly coordinating TFA groups on the SBUs with MBA capping
agents to afford Hfj,-Ir-MBA. The 'TH NMR spectrum of digested
Hf,-Ir-MBA showed an MBA to DBB-Ir-F molar ratio of ~1:1
(Figure 2g), indicating complete replacement of TFA groups.
After metalation of the MBA sites on Hfj,-Ir-MBA with NiCl,,
we used X-ray absorption spectroscopy to characterize the
coordination environment of the MBA-Ni species. Hf},-Ir-Ni
showed similar extended X-ray absorption fine structure (EXAFS)
features as Me-MBA-Ni, both of which were well fitted to the
molecular model of tetrahedrally coordinated Ni(bpy)Cl, (bpy =
2,2'-bipyridine; Figures 1h, S19-20, and Table S1, SI). Inductively
coupled plasma-mass spectrometry (ICP-MS) analysis indicated
that Hf)»-Ir-Ni had a Ni to Hf molar ratio of ~1:2, matching the
ratio expected for complete metalation of Hf»-Ir-MBA by NiCl,.
The UV-Vis absorption spectrum of Hfj,-Ir-Ni displayed
characteristic absorption peaks attributable to both Me,DBB-Ir-F
and Me-MBA-Ni (Figure S18, SI). TEM and AFM imaging
indicated that Hfj,-Ir-Ni retained the monolayer structure and
morphology of Hf},-Ir-F, with a diameter of ~300 nm (Figures 2i
and S16a, SI) and a thickness of ~2.9 nm (Figures 2k, 1, and S16b,
SI). The increased thickness was consistent with the modeled
height of the Hf}, cluster capped with MBA-Ni ligands (Figure
S21b, SI). DLS measurements also showed that Hf},-Ir-Ni
exhibited a slightly increased size with a number-averaged
diameter of 122.0 + 2.3 nm (Figure S17, SI). Finally, Hf},-Ir-Ni
exhibited similar PXRD patterns (Figure 2f) and HRTEM images
(Figure 2j) to Hfj,-Ir-F, indicating the retention of the kgd
topological structure during postsynthetic capping ligand
exchange and Ni coordination.

On the basis of the proximity between photosensitizing DBB-
Ir-F bridging ligands and catalytic MBA-Ni capping groups in
Hfj,-Ir-Ni (~0.85 nm measured from the modeled structure,
Figure S22, SI), we proposed that electron transfer (ET) from
photoexcited DBB-Ir-F to MBA-NiCl, could be greatly enhanced
to promote efficient photocatalytic reactions (Figure 3a). The
spatially isolated MBA-Ni sites on the MOL surface are also
expected to prevent the formation of Nil-Ni!! dimers which were
recently shown to lead to diminished photoredox reactivity.
Photocatalytic performance of Hf},-Ir-Ni was evaluated in three
important SET reactions, including C-S cross coupling between
aryl iodides and thiols, C-O cross coupling between alcohols and
aryl bromides, and C-C cross-coupling between potassium
benzyltrifluoroborates and aryl bromides under mild conditions
(visible light, room temperature, and no strong base).’!3° As

shown in Table 1, Hfj,-Ir-Ni efficiently catalyzed all three SET
reactions to afford C-S, C-O, and C-C coupling products in high
yields. With very low loadings of Hfj,-Ir-Ni (0.02 mol%, 0.05
mol%, and 0.20 mol% based on Ni for C-S, C-O, and C-C
couplings, respectively), the reactions proceeded smoothly to
afford C-S, C-O, and C-C cross-coupled products with turnover
numbers (TONs) of ~4500, ~1800, and ~450, respectively. In
contrast, the homogenous control containing Me,DBB-Ir-F and
Me-MBA-Ni in a 1:1 molar ratio afforded low yields of cross-
coupled products (5¢: 7%, 15¢: 5%, and 20¢: 12% for C-S, C-O,
and C-C cross-couplings, respectively) at the same catalyst
loadings under identical conditions (Table S2, SI). 15-500 times
more homogenous Ni catalysts than Hf},-Ir-Ni were required to
afford comparable yields of cross-coupling products (Table S2,
SD).

Table 1. Hf},-Ir-Ni catalyzed C-S, C-O, and C-C cross-coupling
reactions under LED irradiation at 410-480 nm.

ACS Paragon Plus Environment



oNOYTULT D WN =

Journal of the American Chemical Society
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C-C coupling®
Hfy-1r-Ni (0.20 mol%)

Br 4 Reppy _20Lutdine (35 eq)
* 3 Dioxane (0.25 M)
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BnOCN Bn
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Ac Bn@*CH
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D
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“Reactions at 0.50 mmol scale. 20.01 mol% catalyst was used. ¢
Reactions at 0.25 mmol scale. ¢ Reactions at 0.125 mmol scale.

s

Hf},-Ir-Ni catalyzed cross-coupling reactions exhibit broad
substrate scopes with good compatibility with many functional
groups including trifluoromethyl, cyano, carbonyl, esteryl,
amidyl, naphthyl and pyrimidinyl groups. Neither acidic proton
nor coordinating substituents retarded the coupling reactions. Aryl
halides bearing electron-withdrawing groups afforded coupling
products in higher yields, due probably to their preference to
undergo oxidative addition on the Ni(0) species. No reaction was
observed in the absence of either MOL catalyst or light,
supporting their crucial roles in these coupling reactions. Hfj,-Ir-
Ni was stable under photocatalytic reactions as demonstrated by
the retention of PXRD pattern for the recovered Hfj,-Ir-Ni (Figure
1f) and the leaching of <0.3% Hf, <0.6% Ir, and <0.1% Ni as

determined by ICP-MS. We further showed that Hf,-Ir-Ni could
be recovered and used for at least five cycles without loss of
catalytic activity (Figure 3f). We have thus developed a versatile
and recyclable MOL catalyst for C-C, C-O and C-S cross-
coupling reactions.?!

a Homogeneous:

Metal-Organic Layers:

R it

©= Photosensitizer ©= Catalyst "\~ = Light irradiation ) = Electron transfer
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Figure 3. (a) Schematic showing enhanced SET in Hf},-Ir-Ni
over the homogeneous system. (b-d) Emission spectra (b) and
normalized luminescence decay traces (d) of Hfj,-Ir-Ni with
different Ni loadings. Plots of Iy/I (¢) and 7¢/T (e) as a function of
the ratio of MBA-Ni to DBB-It-F. (f) Yields of S¢ with recovered
Hf},-Ir-Ni in five consecutive runs. (g) Time-dependent yields of
5S¢ with different catalysts.

To understand how the proximity between DBB-Ir-F and
MBA-Ni in Hf},-Ir-Ni impacts the photocatalytic activities, we
compared ET rates from photoexcited [DBB-Ir-F]* to NBA-Ni
among three different systems: a homogenous solution of
Me,DBB-Ir-F and Me-MBA-Ni, a suspension of Hfj,-Ir-F and
Me-MBA-Ni, and Hf},-Ir-Ni. Cyclic voltammetry (CV) studies
showed that [DBB-Ir-F]* could reduce MBA-Ni'' to MBA-Ni via
ET (Figure S23, SI). Upon light irradiation, ET from excited
[DBB-Ir-F]* to MBA-Ni led to a decrease of luminescence
intensity and lifetime of [DBB-Ir-F]*, which was determined by
ET rates between [DBB-Ir-F]* and MBA-Ni. These luminescence
quenching curves were fitted with the following Stern-Volmer

4
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equations with ET rates proportional to Stern-Volmer (Kg)
constants,
Iy

7= 1+ KsvRni/ir Eq1l
To
T 1+ KsvRni/ir Eq2

where Iy/I and 7y/t are the ratios of luminescence intensity and
lifetime of [DBB-Ir-F]* in the absence and presence of MBA-Ni
compounds, respectively, and Ry, represents the ratio of MBA-
Ni to DBB-Ir-F in each system.

While a drastic decrease in luminescence intensity was
observed in Hfj,-Ir-Ni with increased loading of MBA-Ni, only
moderate and minimal intensity decreases were observed when
Me-MBA-Ni was added to Hfj,-Ir-F and Me,DBB-Ir-F,
respectively (Figures 3b and S24, SI). These luminescence
intensity curves were well fitted with Eq 1 to afford K, values of
3.01 £0.15,0.63 £ 0.06, and 0.12 + 0.01 for Hf}»-Ir-Ni, Hf»-Ir-F,
and Me,DBB-Ir-F, respectively (Figure 3c and S24, SI).
Luminescence lifetimes showed similar behaviors and were fitted
to Eq 2, affording K, values of 1.64 £ 0.09, 0.46 + 0.01, and 0.21
+ 0.01 for Hf},-Ir-Ni, Hf},-Ir-F, and Me,DBB-Ir-F, respectively
(Figures 3d, e, and S25, SI). Hfj,-Ir-Ni thus shows a 25-fold
increase in luminescence intensity quenching and an
approximately 8-fold increase in luminescence lifetime quenching
over the homogenous system (Me,DBB-Ir-F + Me-MBA-Ni),
suggesting an order of magnitude enhancement in intra-MOL ET
from [DBB-Ir-F]* to MBA-Ni in Hf},-Ir-Ni. Hf},-Ir-F shows
slightly enhanced ET from [DBB-Ir-F]* to Me,MBA-Ni, likely
due to attractive interactions between Hfj,-Ir-F and Me-MBA-Ni.
To probe how enhanced ET affects the rates of photocatalytic
reactions, we studied time-dependent yields of 5¢ with the three
catalytic systems: Hf},-Ir-Ni and Hf},-Ir-F + Me-MBA-Ni showed

~15-fold and ~4-fold increases in reaction rates over the
homogenous  control  (Me,DBB-Ir-F  +  Me-MBA-Ni),
respectively.

In summary, we developed a bottom-up approach to a new
multifunctional MOL for efficient photoredox catalysis.
Hierarchical installation of photosensitizing DBB-Ir-F bridging
ligands and catalytically active MBA-Ni capping agents in close
proximity (~0.85 nm) on the Hf},-Ir-Ni MOL significantly
enhances electron transfer from [DBB-Ir-F]* to MBA-Nill,
leading to a 15-fold increase in photoredox reactivity. Hf},-Ir-Ni
is highly effective in catalyzing important C-S, C-O, and C-C
cross-coupling reactions with broad substrate scopes and turnover
numbers of ~4500, ~1900, and ~450, respectively. This work
provides a general strategy for designing multifunctional MOLs
for photocatalytic applications.
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