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Dynamic light scattering (DLS) measurements gave a number-

averaged diameter of 116.2 ± 7.3 nm for Hf12-Ir-F (Figure S17, 

SI). The proposed kgd topological structure of Hf12-Ir-F was 

supported by powder X-ray diffraction (PXRD) studies and high-

resolution TEM (HRTEM) imaging. Hf12-Ir-F displayed a PXRD 

pattern similar to that simulated based on the structure model of 

the Hf12 MOL (Figure 2f) whereas HRTEM and its fast Fourier 

transform (FFT, Figure 2c) revealed a six-fold symmetry and a 

Hf12-Hf12 distance of 2.7 nm, matching well with the modeled 

structure (Figure S21a, SI). In addition, the 1H NMR spectrum of 

digested Hf12-Ir-F showed only signals corresponding to DBB-Ir-

F (Figure S12, SI). Thermogravimetric analysis (TGA) of Hf12-Ir-

F showed a weight loss of 62.4% in the 350-800 °C range, 

corresponding to its decomposition to (12 HfO2 + 6 IrO2) (61.5% 

expected; Figure S13, SI). Finally, UV-Vis (Figure S18, SI) and 

luminescence (Figure S14, SI) spectra showed that Hf12-Ir-F 

displayed the same characteristic absorption, excitation, and 

emission spectra as Me2DBB-Ir, suggesting the photosensitizing 

ability of Hf12-Ir-F.

Hf12-Ir-F was further functionalized through exchanging 

weakly coordinating TFA groups on the SBUs with MBA capping 

agents to afford Hf12-Ir-MBA. The 1H NMR spectrum of digested 

Hf12-Ir-MBA showed an MBA to DBB-Ir-F molar ratio of ~1:1 

(Figure 2g), indicating complete replacement of TFA groups. 

After metalation of the MBA sites on Hf12-Ir-MBA with NiCl2, 

we used X-ray absorption spectroscopy to characterize the 

coordination environment of the MBA-Ni species. Hf12-Ir-Ni 

showed similar extended X-ray absorption fine structure (EXAFS) 

features as Me-MBA-Ni, both of which were well fitted to the 

molecular model of tetrahedrally coordinated Ni(bpy)Cl2 (bpy = 

2,2'-bipyridine; Figures 1h, S19-20, and Table S1, SI). Inductively 

coupled plasma-mass spectrometry (ICP-MS) analysis indicated 

that Hf12-Ir-Ni had a Ni to Hf molar ratio of ~1:2, matching the 

ratio expected for complete metalation of Hf12-Ir-MBA by NiCl2. 

The UV-Vis absorption spectrum of Hf12-Ir-Ni displayed 

characteristic absorption peaks attributable to both Me2DBB-Ir-F 

and Me-MBA-Ni (Figure S18, SI). TEM and AFM imaging 

indicated that Hf12-Ir-Ni retained the monolayer structure and 

morphology of Hf12-Ir-F, with a diameter of ~300 nm (Figures 2i 

and S16a, SI) and a thickness of ~2.9 nm (Figures 2k, l, and S16b, 

SI). The increased thickness was consistent with the modeled 

height of the Hf12 cluster capped with MBA-Ni ligands (Figure 

S21b, SI). DLS measurements also showed that Hf12-Ir-Ni 

exhibited a slightly increased size with a number-averaged 

diameter of 122.0 ± 2.3 nm (Figure S17, SI). Finally, Hf12-Ir-Ni 

exhibited similar PXRD patterns (Figure 2f) and HRTEM images 

(Figure 2j) to Hf12-Ir-F, indicating the retention of the kgd 

topological structure during postsynthetic capping ligand 

exchange and Ni coordination.

On the basis of the proximity between photosensitizing DBB-

Ir-F bridging ligands and catalytic MBA-Ni capping groups in 

Hf12-Ir-Ni (~0.85 nm measured from the modeled structure, 

Figure S22, SI), we proposed that electron transfer (ET) from 

photoexcited DBB-Ir-F to MBA-NiCl2 could be greatly enhanced 

to promote efficient photocatalytic reactions (Figure 3a). The 

spatially isolated MBA-Ni sites on the MOL surface are also 

expected to prevent the formation of NiI-NiII dimers which were 

recently shown to lead to diminished photoredox reactivity.30 

Photocatalytic performance of Hf12-Ir-Ni was evaluated in three 

important SET reactions, including C-S cross coupling between 

aryl iodides and thiols, C-O cross coupling between alcohols and 

aryl bromides, and C-C cross-coupling between potassium 

benzyltrifluoroborates and aryl bromides under mild conditions 

(visible light, room temperature, and no strong base).31-39 As 

shown in Table 1, Hf12-Ir-Ni efficiently catalyzed all three SET 

reactions to afford C-S, C-O, and C-C coupling products in high 

yields. With very low loadings of Hf12-Ir-Ni (0.02 mol%, 0.05 

mol%, and 0.20 mol% based on Ni for C-S, C-O, and C-C 

couplings, respectively), the reactions proceeded smoothly to 

afford C-S, C-O, and C-C cross-coupled products with turnover 

numbers (TONs) of ~4500, ~1800, and ~450, respectively. In 

contrast, the homogenous control containing Me2DBB-Ir-F and 

Me-MBA-Ni in a 1:1 molar ratio afforded low yields of cross-

coupled products (5c: 7%, 15c: 5%, and 20c: 12% for C-S, C-O, 

and C-C cross-couplings, respectively) at the same catalyst 

loadings under identical conditions (Table S2, SI). 15-500 times 

more homogenous Ni catalysts than Hf12-Ir-Ni were required to 

afford comparable yields of cross-coupling products (Table S2, 

SI).

Table 1. Hf12-Ir-Ni catalyzed C-S, C-O, and C-C cross-coupling 

reactions under LED irradiation at 410-480 nm.
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equations with ET rates proportional to Stern-Völmer (Ksv) 

constants,

�0

�
= 1 + 	SV�Ni/Ir                                                                         Eq 1

�0

�
= 1 + 	SV�Ni/Ir                                                                        Eq 2

where I0/I and �0/� are the ratios of luminescence intensity and 

lifetime of [DBB-Ir-F]* in the absence and presence of MBA-Ni 

compounds, respectively, and RNi/Ir represents the ratio of MBA-

Ni to DBB-Ir-F in each system. 

While a drastic decrease in luminescence intensity was 

observed in Hf12-Ir-Ni with increased loading of MBA-Ni, only 

moderate and minimal intensity decreases were observed when 

Me-MBA-Ni was added to Hf12-Ir-F and Me2DBB-Ir-F, 

respectively (Figures 3b and S24, SI). These luminescence 

intensity curves were well fitted with Eq 1 to afford Ksv values of 

3.01 ± 0.15, 0.63 ± 0.06, and 0.12 ± 0.01 for Hf12-Ir-Ni, Hf12-Ir-F, 

and Me2DBB-Ir-F, respectively (Figure 3c and S24, SI). 

Luminescence lifetimes showed similar behaviors and were fitted 

to Eq 2, affording Ksv values of 1.64 ± 0.09, 0.46 ± 0.01, and 0.21 

± 0.01 for Hf12-Ir-Ni, Hf12-Ir-F, and Me2DBB-Ir-F, respectively 

(Figures 3d, e, and S25, SI). Hf12-Ir-Ni thus shows a 25-fold 

increase in luminescence intensity quenching and an 

approximately 8-fold increase in luminescence lifetime quenching 

over the homogenous system (Me2DBB-Ir-F + Me-MBA-Ni), 

suggesting an order of magnitude enhancement in intra-MOL ET 

from [DBB-Ir-F]* to MBA-Ni in Hf12-Ir-Ni. Hf12-Ir-F shows 

slightly enhanced ET from [DBB-Ir-F]* to Me2MBA-Ni, likely 

due to attractive interactions between Hf12-Ir-F and Me-MBA-Ni. 

To probe how enhanced ET affects the rates of photocatalytic 

reactions, we studied time-dependent yields of 5c with the three 

catalytic systems: Hf12-Ir-Ni and Hf12-Ir-F + Me-MBA-Ni showed 

~15-fold and ~4-fold increases in reaction rates over the 

homogenous control (Me2DBB-Ir-F + Me-MBA-Ni), 

respectively.

In summary, we developed a bottom-up approach to a new 

multifunctional MOL for efficient photoredox catalysis. 

Hierarchical installation of photosensitizing DBB-Ir-F bridging 

ligands and catalytically active MBA-Ni capping agents in close 

proximity (~0.85 nm) on the Hf12-Ir-Ni MOL significantly 

enhances electron transfer from [DBB-Ir-F]* to MBA-NiII, 

leading to a 15-fold increase in photoredox reactivity. Hf12-Ir-Ni 

is highly effective in catalyzing important C-S, C-O, and C-C 

cross-coupling reactions with broad substrate scopes and turnover 

numbers of ~4500, ~1900, and ~450, respectively. This work 

provides a general strategy for designing multifunctional MOLs 

for photocatalytic applications.
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