LETTERS

Gold-Catalyzed *N*,*O*-Functionalizations of 6-Allenyl-1-ynes with *N*-Hydroxyanilines To Construct Benzo[*b*]-azepin-4-one Cores

Antony Sekar Kulandai Raj,[†] Balaji S. Kale,[†] Bhanudas Dattatray Mokar, and Rai-Shung Liu*®

Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC

Supporting Information

ABSTRACT: Gold-catalyzed reactions of 6-allen-1-ynes with *N*-hydroxyanilines afford thermally stable benzoazepin-4-ones in *anti*-selectivity; these *anti*-configured products are easily isomerized to their *syn*-isomers on a silica column. The mechanism of reactions likely involve initial nitrone/allene cycloadditions, followed by skeletal rearrangement of resulting intermediates.

N itrones are versatile building blocks to construct selective [3 + 2]-cycloadditions with alkenes;¹ these species are commonly generated in situ from the reactions of N-hydroxyamines with aldehydes.² Ketone-derived nitrones (R, R' = alkyl or aryl) are generally kinetically unstable^{3a} unless R' or R'' is an electron-withdrawing group.^{3b-e} With aldehydederived nitrones, unactivated allenes generally deliver pyrrolidin-3-ones (II) from a rearrangement of 5-alkylideneisoxazolidines (I)⁴, whereas electron-deficient allenes typically afford indole derivatives IV or V through a facile rearrangement of unstable benzoazepin-4-one intermediates III'.⁵ [3 + 2]-Cycloadditions of ketone-derived nitrones (R', R'' = alkyl or aryl) with unactivated allenes still remain undocumented.⁶ In our recent findings, terminal alkynes react with N-hydroxyanilines to generate ketone-derived nitrones that enable [3 + 2]cycloadditions with tethered alkenes.⁷ We report here goldcatalyzed N,O-functionalizations of 6-allenyl-1-ynes with Nhydroxyanilines to initially generate these nitrones (VI), further affording benzoazepin-4-ones efficiently. Notably, the kinetic control of these new reactions is to form anti-configured products, which are subsequently isomerized to their synisomers on a silica column (Scheme 1).

The importance of this work is to provide a facile and stereoselective construction of valuable benzoazepin-4-one cores that are present in bioactive molecules VII–XII.⁸ Homocryptolepione (VII) is a natural product isolated from the Ghanaian plant, gryptolepis sanquinolenta;^{8a,b} oxcarbazepine (VIII) was used to treat epilepsy and bipolar disorder.^{8c} Dehydrotolvaptan (IX)^{8d} exhibited oxytocin and vasopressin antagonists whereas benzoazepin-4-ol (X)^{8e} showed in vitro antiparasitic activity against trypanosome cruzi. Species XI and XII are mitochondrial benzodiazepine receptor (MBR) receptors (Figure 1).^{8f}

Table 1 optimizes the reactions with common gold catalysts. Our initial tests employed IPrAuCl/AgX (5 mol %, $X = NTf_2$ and OTf) to catalyze the reactions of 6-allenyl-1-yne **1a** with *N*-hydroxyaniline **2a** in dichloromethane (DCM, 25 °C, 20 h), affording benzoazepin-4-one **3a** in 40% and 38% yields,

respectively; unreacted 6-allenyl-1-yne **1a** was recovered in 27-31% (entries 1-2). A high loading (10 mol %) of IPrAuCl/AgNTf₂ led to a complete consumption of the initial **1a** to yield the desired **3a** in 71% (entry 3). Heating this mixture in DCE at 60 °C (2.5 h) further improved the yield of **3a** up to 85% (entry 4). With a small loading (1.2 equiv) of *N*-hydroxyaniline, the reaction still gave the desired **3a** in 87% yield. A switch of catalyst to $P(t-Bu)_2(o-biphenyl)AuCl/AgNTf_2$ (10 mol %) maintained the same efficiency in hot DCE (60 °C, 2 h, entry 6). The reactions became less efficient in other solvents such as THF, toluene and DMF, giving the desired **3a** in low yields (entries 7–9). The proposed structure of compound **3a** was

Received: August 24, 2017

Figure 1. Representative bioactive molecules.

^{*a*}[1a] = 0.3 M, 6-allenyl-1-yne 1a was recovered in 27% and 31% in entries 1–2. ^{*b*}Product yields are obtained after purification from a silica column. IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, L = $P(t-Bu)_2(o-biphenyl)$.

inferred from X-ray diffraction⁹ of its relative **3i** (Table 2, entry 8).

Table 2 shows the scope of these catalytic reactions with 6allenyl-1-ynes 1 bearing various substituents on alkynes, allenes and bridging units X. For NTs or NMs-bridged 6-allenyl-1-ynes 1b and 1c, their reactions with N-hydroxyaniline 2a delivered benzoazepin-4-ones 3b and 3c in reasonable yields (56-65%, entries 1-2). We prepared O- and N-linked alkyl-substituted allenes 1d-1f; their resulting benzoazepin-4-ones 3d-3f were obtained with high yields and good diastereoselectivity (dr >10:1, entries 3-5); proton NOE confirms the syn-configuration of the major isomers. For aryl-substituted allenes 1g-1k, their corresponding products 3g-3k were produced efficiently and highly diastereoselectively (dr > 7:1 entries 6-10); the molecular structure of compound 3i was confirmed by X-ray diffraction to confirm the syn-configuration.⁹ We also prepared 6-allenyl-1-ynes 11-1n bearing one or two substituents at the C(5)-carbon, yielding desired benzoazepin-4ones 31-3n as single diastereomers exclusively (entries 11-13); these C(5)-substituents significantly enhance the product yields (>90%) because of the Thorpe–Ingold effects.¹⁰ We also examined the reactions on trisubstituted allene substrates 1o-1s, affording desired benzo azepin-4-ones 30-3s in satisfactory

^{*a*}[1a] = 0.3 M. ^{*b*}Product yields are obtained after purification from a silica column. IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene.

yields (82–90%, entries 14–18). 6-Allenyl-1-ynes (1a'-1c') bearing alkynyl esters or ketones were also compatible with these reactions, yielding desired benzoazepin-4-ones 4a-4c in high yields (90–92%, entries 19–21).

The scope of reactions is significantly expanded with their compatibility with various *N*-hydroxyanilines (Table 3). We prepared *N*-hydroxyanilines 2b-2c bearing *p*-phenyl substituents including R = Me and *tert*-butyl to test the reactions, their resulting benzoazepin-4-ones **5a**–**5b** were obtained in satisfactorily yields (79–82%). Notably, *N*-hydroxyanilines 2d-2f bearing R = Br, Cl and CO₂Et were also applicable substrates

Table 3. Reactions with Various N-Hydroxyanilines^{*a,b*}

^{*a*}[11] = 0.3 M. ^{*b*}Product yields are obtained after purification from a silica column. IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene.

although the mechanisms involve anilinium carbocations. For 2-choro substituted derivative **2g**, its corresponding product **5f** was obtained in 77% yield.

Notably, ¹H NMR spectra of crude 3g indicates that the *anti*isomer 3g' is the major species (*anti/syn* = 1.9:1); purification of this crude mixture on a silica column allowed a rapid epimerization, yielding *syn*-isomer 3g (*syn/anti* = 17:1) predominantly. To ascertain this *anti*-selectivity, we prepared trisubstituted allene substrates 1t-1u and 1d', affording desired products 3t'-3u' and 4d' as single isomeric products; the *anti*configurations of compounds 3t' and 4d' were established by ¹H NOE spectra. The molecular structure of compound 3t' was again confirmed by X-ray diffraction.⁹

This work reports unprecedented nitrone/allene reactions,⁴⁻⁶ affording kinetically stable benzoazepin-4-ones 3' with *anti*-selectivity, which subsequently rearrange to their *syn*isomers. Reported heterocycles such as pyrrolidin-3-ones (II) and indole derivatives IV or V, as depicted in Scheme 1, are

completely absent.⁴⁻⁶ In a postulated mechanism, as depicted in Scheme 3, gold-catalyzed attack of N-hydroxyaniline at alkynes A forms species B, and eventually nitrones C; this Nattack regioselectivity as represented by B is operable only in the presence of an alkene⁷ or allene in this system. A subsequent nitrone/allene cycloaddition yields 5-alkylideneisoxazolidine species D, followed by a gold-catalyzed N-Ocleavage to yield a gold enolate E bearing an anilinium moiety. Two possible conformations, E or E', are conceivable for this enolate intermediate to affect their reaction chemoselectivity toward pyrrolidin-3-ones F versus benzoazepin-4-ones 3'. Herein, conformation E is difficult to form because of a steric hindrance between the methyl and anilinium groups. In our preferable conformation E', methyl is larger than its adjacent hydrogen, rendering its anilinium ring lying above the enolate moiety; accordingly, this intramolecular cyclization is expected to yield benzoazepin-4- ones 3' with anti-selectivity. We envisage that the amino group of species 3' facilitates its anti/ syn isomerization through a proton transfer.

Herein, we do not exclude an alternative process involving a 3,3-sigamatropic rearrangement of intermediate D' that has a *E*-configured alkene. This rearrangement will also provide *anti*-configured precursor **G** before a tautomerization to the final product **3**'.

Scheme 3. Postulated Mechanisms

Dipolar [3 + 2]-cycloadditions of ketone-derived nitrones with unactivated allenes remain unexplored in nitrone chemistry.⁶ We report the feasibility of such reactions through gold-catalyzed *N*,*O*-functionalizations^{11,12} of 6-alllenyl-1-ynes with *N*-hydroxyanilines to afford stable benzoazepin-4-ones in *anti*-selectivity. These *anti*-configured products are easily isomerized to their *syn*-isomers on a silica column. Such a chemoselectivity and antiselectivity is rationalized with a postulated gold-enolate intermediate bearing an anilinium moiety; its preferable conformation controls the chemoselectivity and stereoselection of benzoazepin-4-one products.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b02629.

Experimental details and spectral data of all compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: rsliu@mx.nthu.edu.tw.

ORCID [©]

Rai-Shung Liu: 0000-0002-2011-8124

Author Contributions

[†]A.S.K.R. and B.S.K. contributed equally. Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the financial support of this work from Ministry of Science and Technology, Taiwan.

REFERENCES

(1) Selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocyclic and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, 2002. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887–2092. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863–910. (d) Cardona, F.; Goti, A. Angew. Chem., Int. Ed. 2005, 44, 7832–7835.

(2) (a) Hames, J.; Macaluso, A. Chem. Rev. 1964, 64, 473-495.
(b) Snider, B. B.; Lin, H.; Foxman, B. M. J. Org. Chem. 1998, 63, 6442-6443. (c) Torrente, S.; Noya, B.; Branchadell, V.; Alonso, R. J. Org. Chem. 2003, 68, 4772-4783. (d) Grigorev, I. A. Oxides, Nitrones and Nitronates in Organic Synthesis; Feuer, H., Ed.; Wiley: Hoboken, 2008; pp 129-434.

(3) (a) Pfeiffer, J. Y.; Beauchemin, A. M. J. Org. Chem. 2009, 74, 8381–8383. (b) Nguyen, T. B.; Martel, A.; Dhai, R.; Dujardin, G. Org. Lett. 2008, 10, 4493–4496. (c) Winterfeldt, E.; Krohn, W.; Stracke, H. Chem. Ber. 1969, 102, 2346–2361. (d) Pernet-Poil-Chevrier, A.; Cantagrel, F.; Le Jeune, K.; Philouze, C.; Chavant, P. Y. Tetrahedron: Asymmetry 2006, 17, 1969–1974. (e) Cantagrel, F.; Pinet, S.; Gimbert, Y.; Chavant, P. Y. Eur. J. Org. Chem. 2005, 2005, 2694–2701.

(4) (a) Padwa, A.; Kline, D. N.; Norman, B. H. J. Org. Chem. 1989, 54, 810–817. (b) Tufarriello, J. J.; Ali, S. A.; Klingele, H. O. J. Org. Chem. 1979, 44, 4213–4215.

(5) (a) Anderson, L. L.; Kroc, M. A.; Reidl, T. W.; Son, J. J. Org. Chem. 2016, 81, 9521–9529 (review). (b) Blechert, S. Liebigs Ann. Chem. 1985, 1985, 673–682. (c) Mo, D.-L.; Wink, D. J.; Anderson, L. L. Chem. - Eur. J. 2014, 20, 13217–13225. (d) Wilkens, J.; Kuhling, A.; Blechert, S. Tetrahedron 1987, 43, 3237–3246. (e) Singh, R. R.; Liu, R.-S. Chem. Commun. 2014, 50, 15864–15866.

(6) Cycloadditions of electron-deficient allenes with trisubstituted nitrones bearing two electron-withdrawing groups were recently reported, see: Garcia-Castro, M.; Kremer, L.; Reinkemeier, C. D.; Unkelbach, C.; Strohmann, C.; Ziegler, S.; Ostermann, C.; Kumar, K. *Nat. Commun.* **2015**, *6*, 6516–6528.

(7) (a) Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem., Int. Ed. **2015**, 54, 14924–14928. (b) Mokar, B. D.; Huple, D. B.; Liu, R.-S. Angew. Chem., Int. Ed. **2016**, 55, 11892–11896.

(8) (a) Sharaf, M. H. M.; Schiff, P. L., Jr.; Tackie, A. N.; Phoebe, C. H., Jr.; Davis, A. O.; Andrews, C. W.; Crouch, R. C.; Martin, G. E. J. *Heterocycl. Chem.* 1995, 32, 1631–1636. (b) Waetjen, F.; Dahl, B. H.; Drejer, J.; Jensen, L. H.; (NeuroSearch A/S, Den). Application: US, 1995, 8 pp Cont-in-part of US 5,242,918. (c) Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I. *Tetrahedron* 2007, 63, 690–702. (d) Ogawa, H.; Kondo, K.; Yamashita, H.; Kan, K.; Tominaga, M.; Yabuuchi, Y. (Otsuka Pharmaceutical Co., Ltd., Japan). Application: WO, 1994, 159 pp. (e) Gómez-Ayala, S.; Castrillón, J. A.; Palma, A.; Leal, S. M.; Escobar, P.; Bahsas, A. *Bioorg. Med. Chem.* 2010, 18, 4721–4739. (f) Seko, T.; Katsumata, S.; Kato, M.; Manako, J.-i.; Ohmoto, K. (Ono Pharmaceutical Co., Ltd., Japan). Application: WO, 2003, 222 pp.

(9) Crystallographic data of compounds 3i, 3s and 3t' were deposited at Cambridge Crystallographic Data Center: 3i (CCDC 1567416), 3s (CCDC 1567417) and 3t' (CCDC 1568212).

(10) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc., Trans. 1915, 107, 1080–1106. (b) Jung, M. E.; Piizzi, G. Chem. Rev.
2005, 105, 1735–1766. (c) Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org. Biomol. Chem. 2004, 2, 1098–1103. (d) Bachrach, S. M. J. Org. Chem. 2008, 73, 2466–2468.

(11) Recent review for gold-catalyzed N,O-functionalizations of alkynes, see: Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348–1367.

(12) For gold-catalyzed intermolecular reactions of N-hydroxyamines with alkynes or allenes, see: (a) Wang, Y.; Ye, L.; Zhang, L. *Chem. Commun.* **2011**, *47*, 7815–7817. (b) Wang, Y.; Liu, L.; Zhang, L. *Chem. Sci.* **2013**, *4*, 739–746. (c) Kawade, R. K.; Huang, P.-H.; Karad, S. N.; Liu, R.-S. *Org. Biomol. Chem.* **2014**, *12*, 737–740. (d) Chen, J.-M.; Chang, C.-J.; Ke, Y.-J.; Liu, R.-S. J. Org. Chem. **2014**, *79*, 4306–4311.