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Abstract: Homochiral (E)-enamides derived from (S)-4-phenyl-
5,5-dimethyl-oxazolidin-2-one undergo highly diastereoselective
epoxidation upon treatment with dimethyldioxirane (DMDO).
Treatment with m-chloroperbenzoic acid (MCPBA) produces syn-
(4S,1¢R,2¢S)-1¢-acyloxy-2¢-hydroxy derivatives with high diastereo-
selectivity, consistent with a mechanism involving initial epoxida-
tion and subsequent in situ SN1 type epoxide opening and trapping
with m-chlorobenzoic acid. Reductive cleavage of the isolated 1¢-
acyloxy-2¢-hydroxy derivatives generates 1,2-diols in high yields
and in high ee.

Key words: homochiral 1,2-diols, SuperQuat enamides, asymmet-
ric synthesis

Synthetic investigations concerning the oxidative func-
tionalisation of the C=C bonds of enamines and enamides
with either DMDO or MCPBA have demonstrated that
oxidation occurs selectively at the C=C bond rather than
at the amino functionality. Although isolation of the ep-
oxides formed upon oxidation of enamines is generally
difficult due to facile dimerisation,1 N-acylation has been
shown to stabilise the corresponding enamide epoxides,
enabling their spectroscopic characterisation.2 For in-
stance, epoxidation of vinyl formamides with DMDO and
in situ dehydration allows the efficient formation of epoxy
isonitriles in good yield,3 methodology which has been
applied to the synthesis of isonitrin B.4 As part of our es-
tablished research programme for the direct synthesis of
homochiral aldehydes and alcohols and hence carbohy-
drates from N-acyl oxazolidinones,5 it was envisaged that
stereoselective epoxidation of a SuperQuat enamide 1 to
give epoxide 2, coupled with regioselective ring opening
with a suitably protected nucleophile would offer an alter-
native route to O-protected 1¢-hydroxy derivatives such as
3, with subsequent reduction leading to the formation of
the corresponding 1,2-diols 4 (Figure 1). The recent pub-
lication of related studies concerning the epoxidation of
chiral allenamides6 and enamides7 has prompted us to re-
port our preliminary results within this area.8

Initial investigations were concerned with the preparation
and evaluation of the potential for diastereoselective oxi-
dation of a homochiral enamide derived from (S)-4-phe-
nyl-5,5-dimethyloxazolidin-2-one (5). Treatment of

(S)-4-phenyloxazolidinone 5 with phenylacetaldehyde
and p-TSA in toluene under Dean-Stark conditions gener-
ated enamide (4S,1¢E)-69 in >95% de and in 85% yield af-
ter recrystallisation, with the (1¢E)-configuration within
enamide 6 assigned on the basis of 1H NMR spectroscopy
from the diagnostic olefinic coupling constant (3J =
14.5Hz).10 To test the reactivity of the enamide function-
ality, oxidative functionalisation of (4S,1¢E)-6 via treat-
ment with an acetone solution of dimethyldioxirane was
evaluated,11 with 1H NMR spectroscopic analysis of the
crude reaction mixture indicating that epoxide
(4S,1¢R,2¢S)-7 had been formed in 96 ± 4% de. Direct
crystallisation from the crude reaction mixture gave
epoxide (4S,1¢R,2¢S)-7 in > 98% de and in 84% yield
(Scheme 1).

Alternatively, functionalisation of enamide (4S,1¢E)-6
with MCPBA gave (4S,1¢R,2¢S)-3-(1¢-m-chlorobenzoate-
1¢-ethyl-2¢-hydroxy-2¢-phenyl-4-phenyl-5,5-dimethylox-
azolidin-2-one (8)12 in 96 ± 4% de, with recrystallisation
giving syn-(4S,1¢R,2¢S)-8 in > 98% de and in 84% isolated
yield (Scheme 2). The syn-(1¢R,2¢S)-configuration con-
tained within the major diastereoisomer of 1¢-m-chlo-
robenzoate-8 was confirmed by single crystal X-ray
analysis, with the absolute (4S,1¢R,2¢S)-configuration
known relative to the known (S)-configuration of the ox-
azolidinone (Figure 2).13 This syn-selectivity is opposite
to the anti-stereoselectivity recently predicted by Adam et
al. for oxidation with MCPBA of Evans’ oxazolidinone

Figure 1 Proposed scheme for the asymmetric synthesis of chiral
1,2 diols.
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enamides,7a and is consistent with the reaction proceeding
under the control of the SuperQuat auxiliary via initial
diastereoselective epoxidation of enamide (4S,1¢E)-6
upon treatment with MCPBA, and subsequent epoxide
opening in an SN1 type process with retention of configur-
ation at C(1¢), presumably via N-acyl iminium intermedi-
ate 9.14 Stereoselective addition of m-chlorobenzoate,
rather than direct regioselective SN2 opening of epoxide-
7 at C(1¢),15 leads to syn-(4S,1¢R,2¢S)-8. In further support
of this hypothesis, the addition of m-chlorobenzoic acid to
the isolated (4S,1¢R,2¢S)-epoxide 7 resulted in the forma-
tion of 1¢-m-chlorobenzoate-8 in > 92% de and treatment
of enamide 6 with DMDO in the presence of m-chlo-
robenzoic acid also gave syn-(4S,1¢R,2¢S)-8 in >92% de.

Further confirmation of the (2¢S)-configuration within
syn-(4S,1¢R,2¢S)-8 was provided by reductive cleavage of
the functionalised fragment from the SuperQuat chiral
auxiliary. Treatment of recrystallised syn-(4S,1¢R,2¢S)-8
(> 98% de) with NaBH4 in MeOH furnished the parent
(S)-4-phenyl oxazolidinone auxiliary 5 in 78% yield and
(S)-1-phenylethanediol (10)16 {[a]22

D +64 (c 0.25,
CHCl3), lit., [a]18

D+66 (c 1.0, CHCl3),
17 [a]20

D+63 (c 1.0,
CHCl3)

18} in 81% yield, and in > 98% ee (Scheme 3).19

Scheme 3 Reagents and Conditions; (i) NaBH4, MeOH, r.t.

To demonstrate the generality of this oxidative function-
alisation methodology, hydrocinnamaldehyde, isovaleral-
dehyde and 3,3-dimethylbutyraldehyde were treated with
(S)-5 and catalytic p-TSA, furnishing the (1¢E)-enamide
derivatives (3¢-phenylprop-1¢-enyl)-11, (3¢-dimethylbut-
1¢-enyl)-12 and (3¢,3¢-dimethylbut-1¢-enyl)-13 as single
diastereoisomers in 71%, 77% and 99% yield respective-
ly. Enamide functionalisation of (3¢-phenylprop-1¢-enyl)-
11 and (3¢-dimethylbut-1¢-enyl)-12 by treatment with
MCPBA furnished the syn-(4S,1¢R,2¢S)-derivatives 14
and 15 in 92% and 96% de respectively, with recrystalli-
sation giving syn-14 in 60% yield and syn-15 in 61%
yield, and in > 98% de in each case. Treatment of 2¢-ben-
zyl-(4S,1¢R,2¢S)-14 (>98% de) with NaBH4 in MeOH re-
turned the auxiliary (S)-5 in 99% yield and (S)-3-
phenylpropane-1,2-diol (17) {[a]24

D –33.5 (c 0.93, EtOH),

Scheme 1 Reagents and Conditions; (i) Phenylacetaldehyde, 
p-TSA, toluene, D; (ii) DMDO, acetone, 0 °C to r.t.
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lit.,20 [a]20
D –36 (c 1.0, EtOH)} in 93% yield after purifi-

cation and in > 98% ee.21 Although similar reduction of
(4S,1¢R,2¢S)-15 (>98% d.e.) with NaBH4 led to low isolat-
ed yields of the required diol 18, treatment with LiAlH4 al-
lowed the direct isolation of diol 18 in 56% yield {[a]25

D

+15.2 (c 0.90, CHCl3), lit. ent-18; [a]22
D –11.0 (c 1.00,

CHCl3)
22]; (78% yield as the bis-acetate derivative)23 and

in > 96% ee.24 Treatment of (3¢,3¢-dimethylbut-1¢-enyl)-
13 with MCPBA gave syn-(4S,1¢R,2¢S)-16 in > 96% de,
but this ester was not amenable to recrystallisation and
proved extremely labile, fragmenting to a complex mix-
ture of products upon attempted purification by chroma-
tography. As a result, direct reduction of the crude
reaction mixture with LiAlH4 allowed the direct isolation
of diol 19 in 51% yield (65% yield as the bis-acetate)23

and in > 96% ee (Scheme 4).24

Scheme 4 Reagents and Conditions; (i) aldehyde, p-TSA, toluene,
D; (ii) MCPBA, CHCl3, 0 °C to r.t.; (iii) NaBH4, MeOH, 0 °C to r.t.;
(iv) LiAlH4, THF, r.t. *(isolated yield of bis-acetate)

In conclusion, we have demonstrated that (E)-enamides
may be prepared stereoselectively from (S)-4-phenyl-5,5-
dimethyloxazolidin-2-one (5), which may be epoxidised
selectively upon treatment with DMDO. Alternatively,
treatment of the (E)-enamides with MCPBA generates
syn-(4S,1¢R,2¢S)-1¢-m-chlorobenzoate-2¢-hydroxy deriva-
tives, which upon reductive cleavage furnish homochiral
1,2-diols in high yields. The development of further meth-
odologies for the asymmetric functionalisation of homo-
chiral enamides are currently under investigation within
our laboratory.
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times for 18-(OAc)2 69.41 min (S) and 69.45 min (R); for 19-
(OAc)2 51.00 (R) and 51.07 min (S).

(25) Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. 
W.; Cooper, R. I. CRYSTALS, Issue 11; Chemical 
Crystallography Laboratory: Oxford UK, 2001.
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