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Abstract A redox neutral rearrangement of an allene to a 1,3-diene by
means of a unique palladium hydride complex is reported. The palladi-
um hydride complex is generated from a simple Pd0 source and boric
acid [B(OH)3], which is typically identified as a waste by-product of the
Suzuki–Miyaura reaction. A mechanism for this transformation using
this novel palladium hydride complex is presented; using a direct sam-
ple loop and flow injection ESI-HRMS analysis we have detected and
identified key π-allylpalladium complexes that support the addition of
the palladium hydride complex to the allene.

Key words allene, 1,3-diene, palladium, boric acid, palladium hydride
complex

1,3-Dienes are prominent and ubiquitous motifs in nat-
ural products, biosynthetic metabolites, potential drug tar-
gets, and functional molecules.1 It is a core part within
polyketide antibiotics such as  callystatin A (1),2a the EPA
oxidation anti-inflammatory metabolite resolvin E1 (3),2b

as well as anticancer agents such as maytansine (2),2c which
is currently used within antibody drug conjugates ado-tras-
tuzumab emtansine marketed by Genetech and Immuno-
Gen under the name Kadcyla® (Figure 1).

Importantly, they have proven value as flexible interme-
diates in complex target synthesis.3 The success of staple re-
actions such as [4+2]-cycloadditions (e.g., Diels–Alder reac-
tion,1b 1O2 addition,4 etc.) are predicated on convenient
routes to suitably functionalized 1,3-dienes. Additionally, a
number of high profile transition-metal transformations
using 1,3-diene have been recently reported that also high-
light the need to access these substrates.5

The isomerization of an unactivated allene 4 to a 1,3-di-
ene 5 represents a redox neutral, atom-efficient process,
where the overall oxidation state of the starting material

and product remain unchanged (Scheme 1). Similarly, the
rearrangement of an unactivated alkyne 6 to a 1,3-diene 5
also can be seen as a redox neutral process. Yet, although
unactivated alkynes have been shown to undergo this ar-
rangement,6 often facilitated by a transition metal, synthet-
ically useful examples of unactivated allenes undergoing
this transformation are far scarcer within the literature.

Scheme 1  Rearrangement of unactivated alkynes and allenes to 1,3-
dienes

To date this rearrangement has been accomplished un-
der thermal, acidic, and metal-mediated reaction condi-
tions. In the 1960s and 1970s cyclopropyl-derived allenes
were shown to experience thermal rearrangement; while

Figure 1  Representative natural products, metabolites, and marketed 
drugs that contain 1,3-dienes
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in the late 1980s, allenic system were shown to give cyclo-
pentyl dienes under high temperatures.7 Acidic conditions,
using both mineral acids and organic Brønsted acids, have
also been employed; however, the substrate scope for these
processes has been limited and often biased toward more
electron-rich allenyl substrates.8

More recently, metal-mediated processes, using com-
plexes of palladium and gold, have found prominence
(Scheme 2).9 Following on from initial reports by Tsuji in
the 1980s,10a,b in 1998 Yamamoto described the use of a
palladium hydride complex derived from Pd0 and acetic
acid, H-PdII-OAc, to affect this rearrangement, although
yields were modest, substrate scope limited and the reac-
tion was complicated by a competing hydroalkoxylation
pathway.10c In 2012, Liu successfully developed a AuI/PhNO
system to efficiently transform a range of allenyl substrates

to their 1,3-diene products;11a,b while Widenhoefer in 2014
was able to crystallize a AuI–π-1,3-diene complex derived
from the reaction of an allene and a AuI complex.11c

In 2016, we described a direct conversion of propargyl
alcohols and aryl/heteroarylboronic acids into 1,3-dienes.12

This process was expedited by way of a distinctive, and as
yet unreported, palladium hydride complex [H-PdII-OB(OH)2]
that derives from Pd0 and the by-product of the base free
Suzuki–Miyaura reaction, boric acid [B(OH)3]. Boric acid is
rarely considered as a functional element within catalytic
reactions, and there is surprisingly little within the litera-
ture describing the use of boric acid as a reagent. This is re-
markable given that it is ubiquitous as a by-product in many
classical metal-catalysed processes, such as the Suzuki–
Miyaura reaction. An exception to this is the work of
Watson and co-workers who identified the key role of boric
acid within the Cham–Lam amination reaction.13
ny
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Therefore, herein, we describe the direct conversion of
an allene into its 1,3-diene (Scheme 2, 11 to 12) using this
unique palladium hydride complex (H-PdII-OB(OH)2. Fur-
thermore, we provide ESI-HRMS evidence, utilising a direct
sample loop and flow injection system, that supports the
proposed mechanism of this rearrangement and formation
of the palladium hydride complex.

Mechanistic work on the propargyl alcohol to 1,3-diene
transformation had established the pivotal role of boric ac-
id.12 Therefore, using this as a starting point we treated al-
lene 13a with 10 mol% of Pd(PPh3)4 in the presence of 200
mol% of boric acid in 1,4-dioxane at 75 °C for 8 h, and this
gave the expected 1,3-diene product 14a in a respectable
66% conversion (Table 1, entry 1). Increasing the reaction
time to 24 h increased this conversion of 13a into 14a to
90%, and an isolated yield of 70% was also achieved (entry
2). When the rearrangement was conducted at room tem-
perature it proved detrimental, with the conversion to 14a
dropping to 55% (entry 3); and an increase in temperature
to 90 °C, resulted in the conversion to 14a slightly rising to
60%, but we did observed degradation of the product via
polymerisation (entry 4). When the amount of boric acid
was reduced by 100 mol% the conversion to 14a fell to 35%
and a minor product, 15, was also observed (entry 5). This
product 15 was also detected when B(OH)3 was replaced
with BzOH;14 however, in this case, minimal 1,3-diene was
observed.

With rearrangement conditions established, we exam-
ined the scope of the rearrangement with a number of alle-
nyl substrates [Scheme 3 (a)]. All the allenes in this study
were synthesised using known methods.15 The arylvi-
nylidenecyclohexanes 13a–c were cleanly converted into
[2-(cyclohex-1-enyl)vinyl]arenes 14a–c; an exception was

the naphthyl-substituted allene 13d, which failed to deliver
the expected 1,3-diene 14d. Yields for the 1,3-diene 14e
were variable due to the instability of the allene; addition-
ally, attempts to synthesise a pyridyl-substituted allene for
the rearrangement proved difficult. The arylvinylidenecy-
clopentane 13f, -cycloheptane 13g, and -cyclooctane 13h
all cleanly gave their respective 1,3-diene products 14f–h in
good to excellent isolated yields. As can be seen in these ex-
amples, there is no prerequisite in having an activated al-
lene, for example the 3-methylphenyl-substituted allenes
13c,f,g all underwent conversion, as do phenyl-substituted
allenes 13b,f. The 3-aryl-1,1-dimethylallene series 14i–n
also performed adequately in this rearrangement giving the
desired 1,3-dienes in high isolated yields; of note is the per-
formance of relatively electron-poor allene 13n that gave
the anticipated 1,3-diene 14n in 98% yield. This result
shows that both electron-rich and electron-deficient aryl-
substituted allenes perform well in this rearrangement in
contrast to the acid-mediated processes previously report-
ed.8

A 1,3-diarylallene 13o was rearranged [Scheme 3 (b)] to
give its 1,3-diene 14o as indicated by crude 1H NMR, but its
isolation proved very problematic, as it readily polymerised
upon standing. The 1,1-diaryl-3,3-dimethylallene 13p could
also be rearranged under these conditions, giving its 1,3-di-
ene 14p as a 1:1 mixture of E/Z geometric isomers and in an
isolated yield of 67% [Scheme 3 (c)].

Scheme 2  Rearrangement of unactivated alkynes and allenes to 1,3-
dienes
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Table 1  The Rearrangement of Allene 13a to 1,3-Diene 14aa

Entry Temp (°C) Time (h) Conversion (%)

14a 15

1 75  8 66 –

2 75 24 90 (70)b –

3 RT 24 55 –

4 90 24 60c –

5d 75 24 35 45

6e 75 4.5 >5 40
a Reaction conditions: allene (1 equiv), Pd(PPh3)4 (10 mol%), B(OH)3 (200 
mol%), 1,4-dioxane, N2 or argon atmosphere, unless otherwise stated. The 
conversion was determined by 1H NMR analysis.
b Isolated yields.
c Degradation.
d B(OH)3 (100 mol%).
e BzOH (100 mol%) instead of B(OH)3.

Table 1

13a 14a
15

minor by-product

OMe OMe

OMe
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Scheme 3  (a) Rearrangement of unactivated allenes to 1,3-dienes; (b) formation of a 1,3-diaryl-1,3-diene; (c) rearrangement of tetrasubstituted 
allenes; (d) product distribution observed from the rearrangement of 3-methyl-1-(3-methylphenyl)penta-1,2-diene.

1-Aryl-3-methylpenta-1,2-diene 16 was exposed to the
rearrangement conditions [Scheme 3 (d)]. Again, this alle-
nyl-substrates performed very well, but gave a mixture of
1,3-diene products 17a–c in good isolated yields. The ther-
modynamically stable E,E-1-aryl-1,3-diene 17a proved to
be the predominant product, together with small amount

of its E,Z-isomer 17c; however, the exo-1,3-diene 17b was
also detected and subsequently isolated.

The mechanism of this transformation can be adequate-
ly described in Scheme 4 (a). Following formation of the hy-
dridopalladium species H-PdII-OB(OH)2 (18),12 hydropalla-
dation of 19 can occur to give the π-allylpalladium complex
20. Of the two plausible structures, 21 is the only one that
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can undergo syn-β-hydride elimination to give the thermo-
dynamic 1,3-diene product 22. This mechanism is, in part,
supported by the hydroalkoxylation of alkynes described by
Yamamoto,14 but importantly in the case shown in Scheme
4 (a) the absence of an external nucleophile adding to the π-
allylpalladium complex 21 leads to the formation 22. Fur-
thermore, unlike benzoic acid, which also can also lead to
1,3-diene formation,14 boric acid does not undergo reduc-
tive coupling, possibly due to the significant difference in
pKa.16 It is entirely plausible that the by-product observed in
Table 1, entries 5 and 6, derives from intermediate 21.

To give further support to this mechanistic hypothesis,
and particularly the formation of the key π-allylpalladium
complex 20, we utilised the ESI-FTMS approach of Guo and
Ma.17 We selected two arylallenes 13a and 13i as substrates
for this study; where the substitution on the aryl ring on
each allene was selected to ensure adequate ionization, via
the use of a protonatable group. However, to reduce the
electron-donating ability of each allene, and to impede any
adventitious protonation, a meta-substitution pattern was
also selected. Firstly, the rearrangement of allene 13a was
monitored by direct sample loop and flow injection analysis
by ESI-HRMS. After 10 minutes, we were able to intercept,
detect, and characterize a number of significant palladium
complexes. Two distinct complexes can be observed18

which correspond well to the π-allylpalladium complex 20
described in Scheme 4 (a); complex 23a where one phos-
phine is attached to the Pd centre (m/z 585.1378; calcd for
[C33H34OP108Pd]+: m/z 585.1386) and complex 23b (m/z
323.0467; calcd for [C15H19O108Pd]+: m/z 323.0470) where
there are no phosphines attached to the Pd centre [Scheme
4 (b)]. To further support the formation of the π-allylpalla-
dium complex 20 shown in Scheme 4 (a), allene 13i was
also analysed where an ion corresponding to complex 24
where one phosphine is attached to the Pd centre (m/z
545.1072; calcd for C30H30OP108Pd+: m/z 545.1072) was ob-
served [Scheme 4 (b)].18

These MS results firmly support the formation of the
PdII–hydride complex, as the key π-allylpalladium complex
can only result from addition of the PdII to the allene as de-
scribed by Yamamoto.14 However, unlike Yamamoto’s re-

port the poor nucleophilicity of boric acid results in β-hy-
dride elimination instead of undergoing reductive elimina-
tion to give the addition product.

In summary, we have demonstrated that a palladium
hydride complex derived from simple Pd(PPh3)4 and boric
acid (B(OH)3) can rearrange allenes to their respective 1,3-
dienes in good isolated yields. The mechanism of this rear-
rangement has been supported by the identification of key
π-allylpalladium complexes via direct sample loop and flow
injection analysis by ESI-HRMS. Importantly, this rear-
rangement demonstrates that boric acid can play a signifi-
cant role within an established palladium-catalysed reac-
tion.

All reagent chemicals were purchased from Sigma-Aldrich Chemical
Company Ltd. and Lancaster Chemical Synthesis Ltd. Commercially
available reagents were used and without further purification. Palla-
dium reagents were obtained from Sigma-Aldrich Chemical Company
Ltd and were handled under argon. All solvents were directly used
commercially except THF which was distilled from Na/benzophenone
prior to use. Petroleum ether (PE) refers to the fractions with bp 40–
60 °C. Air-sensitive reactions were carried out using oven-dried glass-
ware under N2 atmosphere. 1H NMR and 13C NMR were recorded at
400 MHz and 100 MHz respectively using a Bruker Avance 400 MHz
spectrometer as solutions in CDCl3. TLC analysis was carried out on
aluminium-backed silica plates, and plates were visualized by UV
light (254 nm) or vanillin stain.

Allene to 1,3-Diene Isomerization; General Procedure
To a solution of allene (1.00 mmol) in 1,4-dioxane (5.00 mL) was add-
ed boric acid (123 mg, 2.00 mmol) and Pd(PPh3)4 (116 mg, 0.10 mmol,
10 mol%) in one portion. The resultant mixture was stirred and heat-
ed to 75 °C under a N2 or argon atmosphere for 24 h. After this time,
the mixture was cooled, diluted with Et2O (50 mL), and transferred to
a separating funnel and washed with NaHCO3 (50 mL). The aqueous
layer was then extracted with Et2O (50 mL), and the combined organ-
ic layers washed with brine (50 mL), dried (MgSO4), and filtered, and
the solvent was removed under reduced pressure. The crude residue
was then purified by column chromatography.

1-[(E)-2-(Cyclohex-1-enyl)vinyl]-3-methoxybenzene (14a)12

Colourless oil; yield: 162 mg (76%); Rf = 0.54 (EtOAc/PE 1:10).
IR (neat): 3010, 2931, 1651, 1157, 771 cm–1.

Scheme 4  (a) Plausible mechanism for Pd0/B(OH)3-mediated allene to 1,3-diene rearrangements; (b) the detected palladium complexes by direct 
sample loop and flow injection ESI-HRMS analysis.
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1H NMR (400 MHz, CDCl3): δ = 7.23 (t, J = 8.0 Hz, 1 H), 6.99 (d, J = 16.0
Hz, 1 H), 6.93 (s, 1 H), 6.79–6.71 (m, 2 H), 6.39 (d, J = 16.0 Hz, 1 H),
5.91 (t, J = 4.4 Hz, 1 H), 3.81 (s, 3 H), 2.26–2.24 (m, 2 H), 2.19–2.18 (m,
2 H), 1.72–1.70 (m, 2 H), 1.64–1.61 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 159.9, 139.6, 135.9, 133.0, 131.2,
129.5, 124.6, 119.0, 112.6, 111.4, 55.3, 26.2, 24.6, 22.6, 22.6.
HRMS (ESI): m/z [M + H]+ calcd for C15H19O: 215.1430; found:
215.1436.

1-[(E)-2-(Cyclohex-1-enyl)vinyl]benzene (14b)11a

Colourless oil; yield: 133 mg (72%); Rf = 0.29 (PE).
IR (neat): 3082, 2933, 1641, 1493, 739 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.40–7.38 (m, 2 H), 7.31–7.24 (m, 2 H),
7.18 (t, J = 7.6 Hz, 1 H), 6.78 (d, J = 16.0 Hz, 1 H), 6.45 (d, J = 16.0 Hz, 1
H), 5.89 (t, J = 4.0 Hz, 1 H), 2.27–2.25 (m, 2 H), 2.19–2.18 (m, 2 H),
1.78–1.69 (m, 2 H), 1.69–1.60 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 137.7, 135.6, 132.7, 131.2, 128.6,
127.2, 126.2, 124.5, 26.5, 24.5, 22.6.
HRMS (ESI): m/z [M + H]+ calcd for C14H17: 185.1325; found: 185.1321

1-[(E)-2-(Cyclohex-1-enyl)vinyl]-3-methylbenzene (14c)12

Colourless oil; yield: 145 mg (73%); Rf = 0.45 (PE).
IR (neat): 3045, 2965, 1640, 732 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.20–7.16 (m, 3 H), 7.00 (d, J = 4.8 Hz, 1
H), 6.77 (d, J = 16.0 Hz, 1 H), 6.42 (d, J = 16.0 Hz, 1 H), 5.88 (t, J = 4.0
Hz, 1 H), 2.33 (s, 3 H), 2.30–2.21 (m, 2 H), 2.21–2.13 (m, 2 H), 1.78–
1.68 (m, 2 H), 1.65–1.61 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 138.4, 136.0, 132.5, 130.7, 128.7,
127.6, 127.0, 124.8, 123.1, 25.7, 24.8, 22.8, 21.5.
HRMS (ESI): m/z [M + H]+ calcd for C15H19: 199.1418; found:
199.1421.

2-[(E)-2-(Cyclohex-1-enyl)vinyl]furan (14e)12

Colourless oil; yield: 106 mg (62%); Rf = 0.85 (10% EtOAc/PE).
1H NMR (400 MHz, CDCl3): δ = 7.30 (d, J = 16.0 Hz, 1 H), 6.79 (d, J =
16.0 Hz, 1 H), 6.45–6.43 (m, 1 H), 6.21–6.18 (m, 1 H), 6.20–6.17 (m, 1
H), 5.88 (t, J = 3.2 Hz, 1 H), 2.16–2.12 (m, 4 H), 1.70–1.60 (m, 2 H),
1.60–1.54 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 154.0, 141.4, 135.5, 131.2, 131.0,
113.0, 111.4, 106.9, 26.2, 24.2, 22.6, 22.1.
HRMS (ESI): m/z [M – H]+ calcd for C12H13O: 173.0961; found:
173.0981.

1-[(E)-2-(Cyclopent-1-enyl)vinyl]benzene (14f)19a

Colourless oil; yield: 166 mg (98%); Rf = 0.29 (PE).
IR (neat): 3054, 2986, 1598, 1420, 738 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 8.0 Hz, 2 H), 7.32 (t, J = 5.6
Hz, 2 H), 7.20 (t, J = 7.6 Hz, 1 H), 7.02 (d, J = 16.0 Hz, 1 H), 6.42 (d, J =
16.0 Hz, 1 H), 5.86–5.84 (m, 1 H), 2.58–2.54 (m, 2 H), 2.50–2.46 (m, 2
H), 2.05–1.94 (m, 2 H).
13C NMR (100 MHz, CDCl3): δ = 142.9, 137.9, 132.2, 128.8, 128.7,
127.2, 126.3, 125.9, 33.2, 31.3, 23.3.
HRMS (ESI): m/z [M + H]+ calcd for C13H15: 171.1174; found:
171.1168.

1-[(E)-2-(Cyclohept-1-enyl)vinyl]-3-methylbenzene (14g)
Colourless oil; yield: 206 mg (98%); Rf = 0.46 (PE).
IR (neat): 3028, 2921, 1603, 1444, 1264 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.21–7.17 (m, 3 H), 7.00–6.98 (m, 1 H),
6.74 (d, J = 16.0 Hz, 1 H), 6.44 (d, J = 16.0 Hz, 1 H), 6.04–6.01 (m, 1 H),
2.44–2.41 (m, 2 H), 2.33 (s, 3 H), 2.30–2.23 (m, 2 H), 1.83–1.76 (m, 2
H), 1.57–1.50 (m, 4 H).
13C NMR (100 MHz, CDCl3): δ = 143.3, 138.1, 135.4, 133.2, 128.5,
127.7, 127.0, 124.9, 123.4, 32.4, 28.8, 27.3, 26.9, 26.4, 21.5.
HRMS (ESI): m/z [M + H]+ calcd for C16H21: 213.1643; found:
2213.1640.

1-[(E)-2-(Cycloocta-1-enyl)vinyl]-3-methylbenzene (14h)
Colourless oil; yield: 200 mg (89%); Rf = 0.46 (PE).
IR (neat): 3024, 2919, 1702, 1601, 1444 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.23–7.17 (m, 3 H), 7.01–6.99 (m, 1 H),
6.74 (d, J = 16.4 Hz, 1 H), 6.47–6.43 (d, J = 16.0 Hz, 1 H), 5.86 (t, J = 8.8
Hz, 1 H), 2.52–2.49 (m, 2 H), 2.33 (s, 3 H), 2.26–2.23 (m, 2 H), 1.62–
1.47 (m, 8 H).
13C NMR (100 MHz, CDCl3): δ = 139.5, 138.1, 138.1, 133.7, 132.1,
128.5, 128.0, 127.0, 125.3, 123.1, 30.6, 28.5, 27.5, 27.1, 26.4, 24.4,
21.5.
HRMS (ESI): m/z [M + H]+ calcd for C17H23: 227.1800; found:
227.1788.

1-Methoxy-3-[(1E)-3-methylbuta-1,3-dienyl]benzene (14i)
Colourless oil; yield: 88 mg (51%); Rf = 0.55 (5% EtOAc/PE).
IR (neat): 2939, 1603, 1464, 1156 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.25–7.21 (m, 1 H), 7.04–7.02 (m, 1 H),
6.96–6.94 (m, 1 H), 6.85 (d, J = 16.4 Hz, 1 H), 6.78–6.76 (m, 1 H), 6.49
(d, J = 16.4 Hz, 1 H), 5.11 (s, 1 H), 5.07 (s, 1 H), 3.81 (s, 3 H), 1.96 (s, 3
H).
13C NMR (100 MHz, CDCl3): δ = 159.9, 142.1, 138.9, 132.1, 129.6,
128.7, 119.3, 117.6, 113.3, 111.7, 55.3, 18.7.
HRMS (ESI): m/z [M + H]+ calcd for C12H15O: 175.1123; found:
175.1114.

1,3-Dimethyl-5-[(1E)-3-methylbuta-1,3-dienyl]benzene (14j)
Colourless oil; yield: 144 mg (84%); Rf = 0.56 (PE).
IR (neat): 2916, 1598, 1445, 1162, 840 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.05 (s, 2 H), 6.88 (s, 1 H), 6.85 (d, J =
16.0 Hz, 1 H), 6.48 (d, J = 16.0 Hz, 1 H), 5.10 (s, 1 H), 5.04 (s, 1 H), 2.30
(s, 6 H), 1.95 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 142.3, 138.1, 137.4, 131.4, 129.3,
128.9, 124.6, 124.5, 117.1, 21.4, 20.4, 18.7.
HRMS (ESI): m/z [M + H]+ calcd for C13H17: 173.1330; found:
173.1328.

1-Methyl-4-[(1E)-3-methylbuta-1,3-dienyl]benzene (14k)19b

Colourless oil; yield: 155 mg (98%); Rf = 0.56 (PE).
IR (neat): 2986, 1603, 1513, 1265, 908 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.34 (d, J = 3.6 Hz, 2 H), 7.14 (d, J = 8.0
Hz, 2 H), 6.85 (d, J = 16.0 Hz, 1 H), 6.50 (d, J = 16.0 Hz, 1 H), 5.10 (s, 1
H), 5.05 (s, 1 H), 2.34 (s, 3 H), 1.98 (s, 3 H).
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2018, 50, A–H
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13C NMR (100 MHz, CDCl3): δ = 142.3, 137.2, 134.9, 131.0, 129.4,
128.7, 126.1, 116.7, 21.3, 18.7.
HRMS (ESI): m/z [M + H]+ calcd for C12H15: 159.1174; found:
159.1163.

1-Methoxy-4-[(1E)-3-methylbuta-1,3-dienyl]benzene (14l)
Colourless oil; yield: 96 mg (55%); Rf = 0.55 (5% EtOAc/PE).
IR (neat): 2959, 1604, 1509, 1172, 827 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.39–7.37 (d, J = 8.0 Hz, 2 H), 6.85 (d,
J = 8.0 Hz, 2 H), 6.78 (d, J = 16.0 Hz, 1 H), 6.51 (d, J = 16.0 Hz, 1 H),
5.09–5.05 (m, 2 H), 3.81 (s, 3 H), 1.98 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 159.2, 142.6, 130.2, 129.7, 128.2,
127.7, 116.3, 114.1, 55.3, 18.7.
HRMS (ESI): m/z [M + H]+ calcd for C12H15O: 175.1123 found:
175.1119.

1-Methyl-3-[(1E)-3-methylbuta-1,3-dienyl]benzene (14m)
Colourless oil; yield: 138 mg (88%); Rf = 0.56 (PE).
IR (neat): 3022, 2919, 1605, 1449, 1264 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.26–7.21 (m, 3 H), 7.06–7.05 (m, 1 H),
6.87 (d, J = 16.0 Hz, 1 H), 6.50 (d, J = 16.0 Hz, 1 H), 5.11 (s, 1 H), 5.06 (s,
1 H), 2.33 (s, 3 H), 1.99 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 202.4, 138.1, 136.1, 128.3, 124.4,
105.3, 94.5, 27.3, 21.4, 19.0, 12.4.
HRMS (ESI): m/z [M + H]+ calcd for C12H15: 159.1174; found:
159.1171.

Methyl 4-[(1E)-3-Methylbuta-1,3-dienyl]benzoate (14n)
Colourless solid; yield: 198 mg (98%); mp 94.5–95.5 °C; Rf = 0.61 (5%
EtOAc/PE).
IR (neat): 2947, 1708, 1600, 1455, 1275 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J = 6.4 Hz, 2 H), 7.47 (d, J = 8.4
Hz, 2 H), 6.96 (d, J = 16.0 Hz, 1 H), 6.52 (d, J = 16.0 Hz, 1 H), 5.18 (s, 1
H), 5.12 (s, 1 H), 3.89 (s, 3 H), 1.97 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 167.0, 142.0, 141.84, 134.2, 130.0,
128.8, 127.7, 126.4, 119.1, 52.2, 18.6.
HRMS (ESI): m/z [M + H]+ calcd for C13H15O2: 203.1072; found:
203.1065.

3-Methyl-1-(3-methylphenyl)-1-phenylbuta-1,3-diene (14p)
Colourless oil; yield: 156 mg (67%); E/Z isomers approx. 1:1; Rf = 0.37
(PE).
IR (neat): 3021, 2914, 1599, 1489, 1180, 883 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.42–7.01 (m, 9 H), 6.67 (s, 1 H), 5.04–
4.98 (m, 2 H), 2.44 (s, 3 H), 2.36 (d, J = 14 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 141.7, 141.4, 138.3, 131.0, 130.4,
128.6, 128.2, 128.1, 128.0, 127.8, 127.2, 124.8, 124.3, 119.1, 22.1, 21.6.
HRMS (ESI): m/z [M + H]+ calcd for C18H19: 235.1487; found:
235.1486.

Isomerisation of 1-Methyl-3-(3-methylpenta-1,2-dienyl)benzene 
(16)
Compound 16 was isomerized using the general procedure giving a
mixture of three compounds 17a/17b/17c in a ratio of 4:2:1; 17a was
isolated as a single product, but 17b and 17c were isolated and subse-
quently characterized as a mixture:

1-Methyl-3-[(1E,3E)-3-methylpenta-1,3-dienyl]benzene (17a)
Colourless oil; yield: 100 mg (58%); Rf = 0.39 (PE).
IR (neat): 3025, 2980, 1640, 1442, 732 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.24–7.18 (m, 3 H), 7.01 (d, J = 6 Hz, 1
H), 6.81 (d, J = 16.4 Hz, 1 H), 6.43 (d, J = 16.0 Hz, 1 H), 5.71 (m, 1 H),
2.35 (s, 3 H), 1.85 (s, 3 H), 1.78 (d, J = 6.0 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 138.0, 138.0, 133.8, 128.3, 128.0,
127.8, 127.0, 125.0, 123.0, 21.8, 14.0, 12.0.
HRMS (ESI): m/z [M + H]+ calcd for C13H17: 173.1325; found:
173.1323.

1-Methyl-3-[(1E)-3-methylenepenta-1,3-dienyl]benzene (17b) 
and 1-Methyl-3-[(1E,3Z)-3-methylpenta-1,3-dienyl]benzene (17c)
Inseparable mixture of 17b and 17c; yield: 60 mg (35%).
IR (neat): 3025, 2980, 1640, 1442, 732 cm–1.

17b:
1H NMR (400 MHz, CDCl3): δ = 7.26–7.19 (m, 3 H), 7.03 (d, J = 8 Hz, 1
H), 6.82 (d, J = 16.0 Hz, 1 H), 6.56 (d, J = 16 Hz, 1 H), 5.10 (d, J = 2 Hz, 2
H), 2.36 (m, J = 6.8 Hz, 2 H), 2.38 (s, 3 H), 1.16 (m, 3 H).
13C NMR (100 MHz, CDCl3): δ = 147.8, 139.9, 128.5, 128.1, 127.1,
125.9, 123.6, 115.0, 24.8, 21.5, 18.8.

17c:
1H NMR (400 MHz, CDCl3): δ = 7.26–7.19 (m, 3 H), 7.03 (d, J = 8 Hz, 1
H), (d, J = 8 Hz, 1 H), 6.52 (d, J = 12 Hz, 1 H), 5.54 (m, 1 H), 2.36 (s, 3 H),
1.91 (s, 3 H), 1.84 (d, J = 6.8 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 138.2, 133.0, 131.2, 128.1, 127.1,
125.6, 123.6, 22.7, 13.3.
HRMS (ESI): m/z [M + H]+ calcd for C13H17: 173.1325; found:
173.1322.
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