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cells. Molecular modeling studies indicated the structural 
determinants underlying the biological activity of the most 
potent compounds. These results provide new insights into 
the structural requirements that must be present in fatty acids 
so as to enhance their inhibitory potential towards HIV-RT.
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Abbreviations
ABTS	� 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sul-

fonic acid)
DIG	� Digoxigenin
DMSO	� Dimethyl sulfoxide
DTT	� Dithiothreitol
FA	� Fatty acids
GC-MS	� Gas chromatography-mass spectrometry
HAART	� Highly active-antiretroviral therapy
HIV	� Human immunodeficiency virus
IC50	� Inhibitory concentration for half-life maximal 

inhibition
NA	� Nervonic acid
NNRTI	� Non-nucleoside reverse transcriptase inhibitors
NRTI	� Nucleoside reverse transcriptase inhibitors
PBMC	� Peripheral blood mononuclear cells
PDC	� Pyridinium dichromate
p-TSA	� p-Toluenesulfonic acid
RT	� Reverse transcriptase
THF	� Tetrahydrofuran

Introduction

The potential of fatty acids to combat infectious dis-
eases such as malaria, tuberculosis, and fungal infections 

Abstract  The natural fatty acids (5Z)-5-pentacosenoic and 
(9Z)-9-pentacosenoic acids were synthesized for the first 
time in eight steps starting from either 4-bromo-1-butanol or 
8-bromo-1-butanol and in 20–58 % overall yields, while the 
novel fatty acids 5-pentacosynoic and 9-pentacosynoic acids 
were also synthesized in six steps and in 34–43  % overall 
yields. The ∆5 acids displayed the best IC50’s (24–38  µM) 
against the HIV-1 reverse transcriptase (RT) enzyme, com-
parable to nervonic acid (IC50 = 12 µM). The ∆9 acids were 
not as effective towards HIV-RT with the (9Z)-9-pentacose-
noic acid displaying an IC50 = 54 µM and the 9-pentacosy-
noic acid not inhibiting the enzyme at all. Fatty acid chain 
length and position of the unsaturation was important for the 
observed inhibition. None of the synthesized fatty acids were 
toxic (IC50 > 500 µM) towards peripheral blood mononuclear 

Electronic supplementary material  The online version of this 
article (doi:10.1007/s11745-015-4064-2) contains supplementary 
material, which is available to authorized users.

 *	 Néstor M. Carballeira 
	 nestor.carballeira1@upr.edu

1	 Department of Chemistry, University of Puerto Rico, Rio 
Piedras Campus, PO Box 23346, San Juan, PR 00931‑3346, 
USA

2	 Laboratório de Química Medicinal e Computacional, Centro 
de Pesquisa e Inovação em Biodiversidade e Fármacos, 
Instituto de Física de São Carlos, Universidade de São Paulo, 
Avenida João Dagnone 1100, Jardim Santa Angelina, São 
Carlos, SP 13563‑120, Brazil

3	 Department of Microbiology and Immunology, Universidad 
Central del Caribe School of Medicine, PO Box 60327, 
Bayamón, PR 00960, USA

4	 Faculty of Science and Technology, Inter American 
University of Puerto Rico, Metropolitan Campus, PO 
Box 191293, San Juan, PR 00919, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11745-015-4064-2&domain=pdf
http://dx.doi.org/10.1007/s11745-015-4064-2


	 Lipids

1 3

continues to be a focus of recent research activity [1]. Fatty 
acids are important in a diversity of pathological condi-
tions and have been postulated as possible drug candi-
dates against viruses, bacteria, fungi, and cancerous cells 
by inducing death responses [1–6]. Numerous fatty acids, 
mainly of bacterial origin, also inhibit DNA polymerase 
and topoisomerase I, and display antimalarial and antiviral 
activity [1, 7–11].

The World Health Organization (WHO) considers the 
human immunodeficiency virus (HIV) infection pan-
demic [12]. In 2012 alone, around 2.3 million adults 
and children were infected with HIV, bringing the total 
population living with HIV to 35.3 million, mostly on the 
African continent [12, 13]. Even after more than twenty 
years of research, a HIV vaccine has yet to be discovered 
and current research focuses on the search for novel anti-
HIV agents [14]. There are more than twenty antiretro-
viral drugs approved for clinical use today [15], but due 
to their long-term use in drug therapies these drugs must 
be relatively nontoxic [16]. This implies that our present 
arsenal to combat the disease is limited due to adverse 
effects and toxicities that normally arise from long-term 
use coupled to the emergence of drug resistance [14]. 
Since HIV-1 can acquire drug resistance to any single 
inhibitor quite easily, multiple drugs are typically used 
simultaneously [14].

The reverse transcriptase (RT) is a multifunctional 
enzyme that plays a key role in HIV-1 replication [16–
22]. It possesses distinct DNA polymerase and RNase 
H activities, which are used to convert the viral RNA 
genome into double-stranded linear proviral DNA that 
are subsequently integrated into the host genome [16–
24]. Since RT inhibitors prevent the RNA-DNA conver-
sion, a vital role of the viral life cycle, it is no wonder 
that more than half the currently approved HIV-1 antiret-
rovirals are RT inhibitors [21]. There are two classes 
of RT inhibitors, namely nucleoside/nucleotide reverse 
transcriptase inhibitors (NRTI) and non-nucleoside 
reverse transcriptase inhibitors (NNRTI) [15, 25–27]. 
Together they are the backbone of the highly active-
antiretroviral therapy (HAART) regime [24], the stand-
ard treatment that usually combines two NRTI with one 
NNRTI or with one protease inhibitor (PI) [14, 16, 24]. 
However, over the years, NNRTI have become more 
popular than the PI [21].

Even though the NNRTI are a chemically heterogene-
ous group of compounds, they possess a common mode 
of binding and they all bind to the same site on the RT 
enzyme [28, 29]. This binding site is located in the palm 
sub-domain between two beta-sheets of the p66 subunit 
about 10 Å away from the DNA polymerase catalytic site 
and approximately 60 Å from the RNase H active site of 
the p66 subunit [24, 28, 30].

The HAART regime currently used is not potent enough 
to completely suppress virus replication to the point of 
eradication due to the development of drug-resistance 
[13, 25]. It is still necessary to develop new less cytotoxic 
antiretrovirals for the treatment of this disease. Natural 
products from various marine sources have been known 
to possess diverse biological activities including antiviral 
activity [11, 31].

Nervonic acid (NA) is a cis-15-tetracosenoic acid found 
in the sphingolipids of white matter in human brain where 
it plays an important role in the biosynthesis of nerve cell 
myelin [32]. NA is also abundantly found in the spotted 
seal, king salmon and beluga whale. NA is used to treat 
adrenoleukodystrophy and multiple sclerosis where the 
decreased level of nervonic acid in sphingolipids causes 
demyelination [32]. This FA possesses great inhibitory 
activity against several enzymes involved in replication 
[33–36]. Mizushina and co-workers discovered that NA 
was a potent non-competitive inhibitor of HIV-1 RT with 
an IC50 of 4.8 μM and almost complete inhibition (more 
than 80  %) at 8  μM [36]. Modification of the carboxyl 
group of NA to a carboxyl ester results in the loss of inhibi-
tory activity thus indicating that the carboxyl group in NA 
is important for RT inhibition [33]. Therefore, the carboxyl 
group and length of the alkyl chain in NA play crucial roles 
in HIV-RT inhibition.

Since nervonic acid is a potent HIV-1 RT inhibitor, other 
monounsaturated long chain fatty acids could be poten-
tial HIV-1 RT inhibitors as well. The pentacosenoic acids 
are a minor class of lipids found in a wide range of organ-
isms including bacteria and marine sponges [37]. The (5Z)-
5-pentacosenoic acid (2a) is naturally found in the marine 
sponge Pseudaxinella cf. lunaecharta and in the bacterium 
Mycobacterium tuberculosis [38, 39]. On the other hand, 
the (9Z)-9-pentacosenoic acid (2b), which is more ubiqui-
tous, was identified in various sponges including the marine 
sponges Dysidea fragilis, Desmapsamma anchorata, Geod-
inella robusta, Spheciospongia cuspidifera and Hymeniaci-
don sanguinea as well as in the bacterium Mycobacterium 
tuberculosis [38, 40–44]. These long-chain monounsaturated 
fatty acids have the potential to be RT inhibitors and our aim 
was to explore them as such. However, since the isolation and 
purification of these lipids from natural sources, in reasonable 
quantities, is an extremely difficult task, they must be synthe-
sized if we are to explore their full biological potential.

In this work, we synthesized, for the first time, the natu-
rally occurring fatty acids 2a and 2b as well as the alkynoic 
analogs 5-pentacosynoic (1a), 9-pentacosynoic (1b), and 
2-pentacosynoic acids. Their HIV-RT inhibitory activity 
was determined and compared to other shorter chain ana-
logs. Molecular modeling studies indicated the structural 
basis underlying the inhibitory activities of the most potent 
compounds.
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Materials and Methods

Synthesis of the Fatty Acids

The synthetic experimental procedures, the analytical and 
the spectral data of the products are presented in the sup-
porting information.

Reverse Transcriptase Colorimetric Assay

The Reverse Transcriptase Colorimetric Assay Kit was 
purchased from the Roche Diagnostics Corporation, Indi-
anapolis, Indiana. The assay was carried out according to 
the procedure described in Roche’s Reverse Transcriptase 
Colorimetric Assay Kit manual with some minor modifica-
tions [45, 46]. First a 1000-μM stock solution of each of 
the fatty acids in dimethyl sulfoxide (DMSO) was prepared 
(final concentration of DMSO = 1 %). The stock solutions 
were sonicated for 1  h, and then each stock solution was 
further diluted to final concentrations of 100, 10, 1, 0.1 and 
0.01  μM with Lysis buffer. The recombinant HIV-1-RT 
was briefly dissolved in Tris-buffer solution [50 mM Tris, 
80 mM KCl, 2.5 mM DTT, 0.75 mM EDTA and 0.5 % Tri-
ton X-100, pH 7.8] to reach a final concentration of 2 ng/
μL. The HIV-1-RT enzyme solutions with the experimen-
tal agents were incubated for 60  min at 37  °C. A 20 µL 
aliquot of a reaction mixture [incubation buffer: 50  mM 
Tris-buffer, containing 319  mM KCl, 33  mM magnesium 
chloride, and 11 mM DTT; nucleotides: 50 mM Tris–HCl 
at pH 7.8 with DIG-dUTP, biotin-dUTP and dTTP; and 
template: template/primer hybrid poly (A) × oligo (dT)15] 
was added and incubated for 60 min at 37 °C. The reactions 
were transferred to microplate modules coated with strepta-
vidin and incubated for 60 min at 37 °C. After the incuba-
tion the plate was washed 5 times with the kit’s washing 
buffer followed by the addition of 200 μL of peroxidase-
labeled antibody against digoxigenin (anti-DIG-POD) and 
incubated for 60 min at 37  °C. After that, the wells were 
washed five times with the kit’s 250  µL washing buffer 
and incubated with 200 µL of ABTS substrate solution for 
about 10 min at rt (25 °C) at 250 rpm. The absorbance was 
taken at 405 nm (with reference wavelength at 490 nm) on 
a microplate reader (MRX II; Dynex Technologies, Chan-
tilly, VA). The IC50 values were calculated using the Prism 
Software (Graphpad, San Diego, CA) from titration curves 
generated from the experimental values.

Molecular Modeling

The 3D structures of the inhibitors 1a and 2a were con-
structed using standard geometric parameters provided 
by the molecular modeling software package SYBYL 

8.0. Single optimized conformation of each molecule 
was energetically minimized employing the Tripos force 
field [47] and the Powell conjugate gradient algorithm 
[48] with a convergence criterion of 0.05  kcal/mol/Å and 
Gasteiger–Hückel charges [49]. Molecular docking and 
scoring protocols were carried out with GOLD 5.1 (Cam-
bridge Crystallographic Data Centre, Cambridge, UK) 
[50]. To investigate the binding mode of 1a and 2a GOLD 
5.1 default parameters were used. The coordinates for 
HIV-1 RT solved at 2.8 Å (PDB ID 2HMI) [51] were used 
during the molecular modeling investigation. Hydrogen 
atoms were added in standard geometry using the GOLD 
5.1 wizard. Histidine, glutamine, and asparagine residues 
within the binding site were manually checked for possible 
flipped orientation, protonation, and tautomeric states by 
the GOLD side chain wizard. The binding cavity of HIV-1 
RT was defined as all the amino acid residues encompassed 
within a 20 Å radius sphere centered on the three dimen-
sional coordinates (−4.029; 122.631; 11.880) of the side 
chain OH of Tyr188 in the p51 subunit. For each ligand the 
docking protocols were repeated twenty-five times. The 
ASP (Astex Statistical Potential) scoring function and vis-
ual inspection were employed to select the representative 
conformation for each inhibitor.

Cytotoxicity

The cytotoxicity of the unsaturated fatty acids against 
peripheral blood mononuclear cells (PBMC) was tested 
as described by Sanabria-Ríos et al. [52]. Briefly, PBMC 
were cultured in a culture medium supplemented with 
interleukin-2 (IL-2). These cells were seeded into a 96-well 
microplate (20,000 cells/200 µL/well) and fatty acids were 
added to the cell cultures. The final concentrations of fatty 
acids ranged from 5 to 500 µM. The cells were incubated 
at 37 °C for 3 days in a humidified 5 % CO2 incubator. The 
cytotoxicity of the cells was evaluated by the MTT assay.

Results and Discussion

Synthesis

The 5- and 9-pentacosynoic acids 1a and 1b were pre-
pared according to Scheme 1. The synthesis of 1a and 1b 
started with the protection of either commercially avail-
able 4-bromo-1-butanol (3a) or 8-bromo-1-octanol (3b) 
utilizing 3,4-dihydro-2H-pyran (DHP) in chloroform with 
catalytic amounts of p-toluenesulfonic acid (p-TSA) at rt 
for 3 h, affording 4a or 4b in 93–99 % yields. The alkyne 
coupling of 4a or 4b with (trimethylsilyl)acetylene using 
n-BuLi in THF-HMPA at −78  °C, afforded silanes 5a or 
5b in 92–94  % yields. The removal of the trimethylsilyl 
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protecting group in 5a or 5b was achieved with tetrabu-
tylammonium fluoride (TBAF) in THF, which resulted in 
the terminal alkynes 6a or 6b in 98–99  % yields. A sec-
ond acetylenic coupling of 6a with 1-bromononadecane 
or 6b with 1-bromopentadecane using n-BuLi in THF-
HMPA at −78 to 0  °C (the temperature was increased in 
order to increase the solubility of the bromo alkane which 
was added slowly for a period of 1  h) resulted in the 
alkynes 7a or 7b in 60–81  % yields. The deprotection of 
either 7a or 7b with p-TSA in methanol at 45 °C yielded 
the desired 5-pentacosyn-1-ol (8a) or 9-pentacosyn-1-ol 
(8b) in 83–99  % yields. Subsequent oxidation of 8a or 
8b with pyridinium dichromate (PDC) in dimethylforma-
mide (DMF) afforded the 5-pentacosynoic acid (1a) or the 
9-pentacosynoic acid (1b) in 59–80 % yields. The overall 
yields for these six-step syntheses were 43  % for 1a and 
34 % for 1b.

The natural products (5Z)-5-pentacosenoic acid (2a) 
and (9Z)-9-pentacosenoic acid (2b) were also synthesized 
as described in Scheme 1. This divergent synthetic proce-
dure used the corresponding alkynols 8a and 8b obtained 
in the previous synthesis as starting points. Therefore, the 
synthesis of 2a or 2b started from the previously synthe-
sized 8a or 8b, which were hydrogenated utilizing Lind-
lar’s conditions (hydrogen gas, 10 % Pd/C and quinoline 
in hexane) in order to obtain the (5Z)-5-pentacosen-1-ol 
(9a) or the (9Z)-9-pentacosen-1-ol (9b) in 70–97 % yields. 
The pentacosenols 9a or 9b were oxidized with PDC in 
DMF at rt resulting in either 2a in an 83 % yield or in 2b 

in a 66 % yield. The synthesis of 2a was completed with 
an overall yield of 58 % for the 8 steps (last two steps hav-
ing a combined yield of 81 %), while the synthesis of 2b 
was completed with an overall yield of 20 %. This is the 
first total synthesis for either 2a or 2b, which permits the 
full characterization of these fatty acids that were previ-
ously identified in nature by only gas chromatographic 
means [38–44].

HIV‑RT Inhibitory Studies

As mentioned above our goal was to assess the natural fatty 
acids 2a and 2b, as well as their acetylenic analogs 1a and 
1b as potential inhibitors of the DNA polymerase, reverse 
transcriptase (RT). In this regard, we modified an existing 
protocol for screening fatty acid candidates using a non-
radioactive colorimetric assay method, which assesses the 
activity of HIV-1 RT [45, 46]. The colorimetric enzyme 
immunoassay quantitatively determines the retroviral 
reverse transcriptase activity by measuring the incorpora-
tion of digoxigenin- and biotin-labeled dUTP into DNA. 
The DNA molecule labeled with biotin nucleotides binds 
to the streptavidin coated MP module, followed by the 
binding of the peroxidase-labeled digoxigenin antibody 
molecule to the DNA molecule. Then, the 2,2′-azino-bis(3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS) is added. The 
peroxidase catalyzes the cleavage of ABTS resulting in a 
colored product. The absorbance is directly correlated to 

Scheme 1   Synthesis of the pentacosynoic acids 1a and 1b, and the 
pentacosenoic acids 2a and 2b. (i) DHP, p-TSA, CHCl3, 3  h; (ii) 
n-BuLi, (trimethylsilyl)acetylene, HMPA, THF, −78 °C; (iii) TBAF, 
THF, 0 °C; (iv) 1-bromononadecane or 1-bromopentadecane, n-BuLi, 

HMPA, THF, −78 °C to 0 °C, 24 h; (v) p-TSA, MeOH, 45 °C, 3 h; 
(vi) PDC, DMF, rt, 24  h; (vii) H2, Pd/C (10  %), quinoline, hexane; 
(viii) PDC, DMF, rt, 24 h
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the amount of DNA synthesized, thus it is proportional to 
the level of RT activity.

In this study, RT inhibitory assays were performed in 
duplicate in a range of 0.01–1000 μM for each acid along 
with a positive control (no inhibitor of HIV-1 RT), negative 
control (no HIV-1-RT enzyme), inhibitor control (nervonic 
acid instead of experimental agent) and solvent control 
(DMSO instead of experimental agent). Our results first 
confirmed that DMSO can be used as solvent for the exper-
imental agents at maximal and final concentration of 2 % 
with no effect on the activity of the HIV-1 RT. The results 
of the experimental agents were compared with a positive 
control, nervonic acid (NA), which according to our results 
displayed an IC50 of 12 ± 1 μM. The latter result supports 
previous studies indicating that NA inhibits HIV-1 RT in 
the micromolar range [36].

As starting point for our fatty acid structural studies, we 
used commercially available palmitic acid (16:0) as well 
as pentacosanoic acid (25:0). Our results revealed that the 
saturated (C16 or C25) as well as other shorter chain ∆6 
acetylenic fatty acids (C17 or C20) were the least potent of 
the acids tested (IC50 > 1000 μM). Among the acetylenic 
fatty acids evaluated (Table 1), acid 1a was the best inhibi-
tor of HIV-1 RT with an IC50 of 24 ± 1 μM. Surprisingly, 
in our hands, acid 1b was not inhibitory towards the HIV-
RT enzyme. When the position of the triple bond in the C25 
acyl chain was changed from ∆5 to ∆2, a decrease in the 
inhibitory activity towards HIV-1 RT was also observed, as 
exemplified by an IC50 of 566 ±  1 μM displayed by the 
2-pentacosynoic acid. Moreover, when a shorter chain (C17 

or C20) ∆
6 acetylenic fatty acid was tested, as exempli-

fied by the natural fatty acids 6-heptadecynoic or 6-icosy-
noic acids [53], no inhibition of the HIV-1 RT enzyme was 
observed. Therefore, we can say that both fatty acid chain 
length and the triple bond position are directly related to 
the effectiveness of inhibition against the HIV-1 RT.

In the case of the monoenoic fatty acids 2a and 2b, 
changing the position of the double bonds from ∆5 to ∆9 
in the C25 acyl chain had only some minor effect on the 
inhibitory activity towards HIV-RT (Table 1). For example, 
acid 2a displayed an IC50 of 38 ± 1 μM against HIV-1 RT, 
while acid 2b displayed an IC50 of 54 ±  1  µM. It seems 
that the olefinic acid 2b sits better into the HIV-RT active 
site than the acetylenic acid 1b, being the cis double bond 
stereochemistry critical for the inhibition.

It is known that the degree of unsaturation in fatty acids 
affects its inhibitory activity towards DNA polymerase 
enzymes, such as the DNA polymerase β [33–35]. Since 
HIV-1 RT shares structural similarities with the DNA pol 
β enzyme [36], this would imply, as we have shown, that 
the unsaturation should also affect the inhibitory activity of 
fatty acids towards the RT enzyme. Our results do reveal 
a dependency between the degree and site of unsaturation 
and the inhibitory activity of these fatty acids, e.g., ∆5-
25:1 versus 25:0. Moreover, the position of the triple bond 
unsaturation was also important for the inhibition since a 
triple bond at C-5 was more effective than a triple bond at 
either C-2 or C-9. Our results also show that the longer the 
fatty acid chain length (C25 vs. either C20 or C17) the greater 
its inhibitory activity. This coincides with previous studies 
with the HIV-1 RT as well as with DNA pol β, where the 
long-chain fatty acids had greater inhibitory activity against 
these enzymes [33].

Molecular Modeling Studies

To better understand the relationships between fatty acid 
chain length, degree of unsaturation and inhibitory activ-
ity, we modeled the binding modes of acids 1a and 2a to 
the p51 subunit of HIV-1 RT. Both fatty acids tested herein 
have similar molecular interactions in the HIV-RT binding 
pocket as those exhibited by nervonic acid [36] (Fig. 1a, b). 
The carboxylate group of these fatty acids interacts with 
key amino acids such as Lys65, Lys66, Lys220 and Tyr232, 
while their long alkyl chain establishes attractive hydro-
phobic interactions with the side chain of Lys104, Ile195, 
and His235. The modeling studies also indicated that 
shorter carbon chains would not be capable of stabilizing 
the molecule within the binding site. An ideal length of 25 
carbons is required to fulfill the binding site, thereby inhib-
iting the enzymatic activity. Furthermore, the small differ-
ence in the inhibitory activities between 1a and 2a might be 
due to the cis-configuration of acid 2a preventing it from 

Table 1   The reverse transcriptase (RT) inhibitory activity of the 
tested fatty acids

a  RT inhibitory assays were performed in duplicate. The IC50 values 
were calculated using Prism Software (Graphpad, San Diego, CA) 
from titration curves generated from the experimental values
b  The synthesis of the shorter-chain ∆6 acetylenic fatty acids was 
previously described [53]
c  Obtained from the reaction of 1-tetracosyne with CO2 using n-BuLi 
in THF

Experimental agents IC50 (μM)a

Palmitic acid (16:0) >1000

6-Heptadecynoic acid (17:1)b >1000

6-Icosynoic acid (20:1)b >1000

2-Pentacosynoic acidc 566 ± 1

5-Pentacosynoic acid (1a) 24 ± 1

9-Pentacosynoic acid (1b) >1000

(5Z)-5-Pentacosenoic acid (2a) 38 ± 1

(9Z)-9-Pentacosenoic acid (2b) 54 ± 1

Nervonic acid (NA) 12 ± 1

Pentacosanoic acid (25:0) >1000

2 % DMSO >1000
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fully occupying the HIV-RT hydrophobic cavity formed by 
Lys104, Ile195 and His235 (Fig.  1c, d). It is also impor-
tant to note that the unsaturations constrain the alkyl chain 
degrees of freedom, thereby orienting the carbon chain 
toward the hydrophobic pocket close to Ile195, Lys104 and 
His235. The latter can explain the fact that pentacosanoic 
acid does not inhibit HIV-1 RT at all.

Cytotoxicity

The cytotoxicities of 1a, 1b, 2a, 2b as well as nervonic 
acid were tested against peripheral blood mononuclear 
cells (PBMC) isolated from healthy volunteers following a 
methodology previously described by us [52]. In this assay 
none of the synthetic fatty acids tested, including nervonic 
acid, displayed significant toxicity at concentrations higher 
than 500  µM. Comparing these results with the effective 

dose necessary for HIV-1 RT inhibition, both acids 1a and 
2a would not be cytotoxic at their optimum inhibitory dose 
concentrations of 24 and 38 μM, respectively.

Conclusions

In summary, we have shown that 2a, as well as its acety-
lenic analogue 1a, are inhibitors of the HIV-1 RT enzyme. 
While other modes of action could be envisaged for acids 
1a and 2a, the one presented herein was consistent with the 
enzymatic inhibitory studies. These results open the door 
to the synthesis of other structurally related analogs, which 
can combine in a single molecule, favorable structural fea-
tures of both NA and 1a for a more efficient HIV-RT inhi-
bition. The first total synthesis for the naturally occurring 
fatty acids 2a and 2b was also accomplished.

Fig. 1   Modeled binding modes of the fatty acids 1a (green) and 2a 
(orange) in the p51 subunit of HIV-1 RT. a, b Inhibitors and residues 
involved in the ligand-receptor binding are indicated as stick models, 
protein structure is indicated as cartoon and electrostatic interactions 

as yellow dashed lines. c, d View of the fatty acid binding site indicat-
ing the solvent accessible surface of p51 subunit and the spatial com-
plementarity of the inhibitors (sphere model) (color figure online)
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