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ABSTRACT: An oxy-palladation, formal Wagner−Meerwein rearrangement and fluorination cascade has been established for
generating fluorinated oxazolidine-2,4-diones and oxazolidin-2-ones. The reaction has a broad substrate scope in which both aryl
and alkyl groups can be utilized as efficient migrating groups. Experimental evidence suggests that the reaction is initiated by anti-
oxy-palladation of the olefin, followed by oxidative generation of an alkyl PdIV intermediate and a concerted migration−fluorination.

The Wacker process, reported in 1959, inspired an era
of research in palladium catalysis which demonstrated

the powerful utility of Pd0/PdII catalysis in organometallic
chemistry.1 In the past decade, processes mediated by high-
valent palladium2 have emerged as flexible protocols that com-
plement the traditional low-valent reactions. Benefiting from the
fundamental studies on high-valent palladium complexes, the
enhanced reductive elimination3,4 and inhibited β-elimination
features5 are now well understood and have been widely applied
to a number of challenging reactions, such as the formation of
C−halogen (heavy),6 C−F,7 and C−CF3

8 bonds.
A survey of the literature on palladium chemistry reveals an

interesting variation of the Wacker process, the Pd0/PdII cycle
(Scheme 1).9 For the olefin substrate containing a strained ring,
the Wacker intermediate A undergoes a 1,2-migration process to

produce ring-expanded ketone product in good yield. Also, in an
isolated case, 1,1-diphenylethylene undergoes a similar migration
process benefiting from the anchimeric assistance to produce
benzyl phenyl ketone in low yield.9,10 No further study on
this topic has been subsequently reported probably due to the
intrinsic limitation of Pd0/PdII catalytic efficiency.
We speculated that under strong oxidative conditions

(PdII/PdIV cycle, Scheme 1) the Wacker intermediate A could
be converted to the PdIV intermediate B. The enhanced posi-
tive charge at the α-carbon to palladium would facilitate the
Wagner−Meerwein-type migration process and allow more
efficient migration of versatile Rm groups without the additional
driving force gained by releasing strained rings or anchimeric
assistance. The challenges lie in the competition with the facile
reductive elimination pathway of the PdIV complex, which
has been demonstrated frequently in olefin difunctionalization
reactions11 and the potential C−H activation pathways involving
PdIV intermediates.12

To our delight, compound 1a with a phenyl ring as the
migrating group did react as anticipated with Pd(OAc)2 as
catalyst and Selectfluor (F-1) as oxidant in acetonitrile (Table 1).
Fluorination occurred following the migration, providing com-
pound 2a in 70% yield. The structure was confirmed unambi-
gously by X-ray analysis. The direct C−F reductive elimination
process was successfully suppressed to produce the regioisomer
2a′ in a 2a′/2a ratio of 1/13 (entry 1). PdCl2, Pd(OTFA)2, or
Pd(OPiv)2 provided either diminished yield or poor selectivity
(entries 2−4). Neither 2a nor 2a′ is observed in the absence
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Scheme 1. Formal Wagner−Meerwein Rearrangement in
Wacker−Tsuji Oxidation
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of the Pd catalyst (entry 5). A control experiment with a
stoichiometric quantity of the Pd catalyst and no oxidant resulted
in almost no reaction apart from slight decomposition of the Boc
group (entry 6). It indicates that a Pd0/PdII catalytic cycle is
unlikely to work. Common N-σ-donor ligands such as pyridine
and oxazoline derivatives basically inhibit the reaction (entry 7).
When the oxidant is changed from Selectfluor to NFSI (F-2), a
fluoropyridinium reagent (F-3), an iodonium reagent (F-4), or
PhI(OAc)2 with fluorine anion produced only a trace amount of
product 2a (entry 8). Solvent screening showed that acetonitrile
was the only solvent that could efficiently facilitate this reaction
(entry 9). Surprisingly, we found that a methyl group, which
cannot participate in anchimeric assistance, can migrate in the
reaction to produce the target product with even higher yield
(78% yield, entry 10).
Encouraged by these results, we sought to investigate the

scope of substrates. As shown in Scheme 2, variously substituted
phenyl groups on nitrogen were examined (2b−l). Both
electron-donating and -withdrawing groups were well tolerated,
giving good to high yields. A wide range of functional groups
were compatible with this reaction, such as halogens (2f,g,j),
an ester (2k), and a nitro group (2l). Interestingly, bulky sub-
stituents at the ortho position of the phenyl ring resulted in
limited rotation of the aryl C−N bond, which led to the axial
chirality. Diastereomers were observed for substrates with o-ethyl
(2c), o-methoxyl (2d), and o-tert-butyl (2e) groups on the
phenyl ring. In addition to the aryl groups, alkyl groups (2m,n)

also performed well in this process. The scope of migrating group
Rm was also investigated (Scheme 2). Encouragingly, ethyl (2o),
benzyl (2q), octyl (2r), and even cyclopropylmethylene (2s)
groups all migrate efficiently, producing the isomeric difunction-
alized products. But the bulkier iPr migrating group gave a
significantly lower yield (2p). Aryl migrating groups were also
examined (2a,t−y) and led to considerably reduced yields
resulting from formation of byproduct 2′. This pathway was
attributed not only to the direct C−F reductive elimination
but also to the regioselectivity associated with the nucleophilic
opening of the phenonium intermediate,13 showing the signifi-
cant dependence on the electronic nature of the aryl migrating
groups. Electron-donating substituents, such as methyl (2t,v),
methoxyl (2u), and the π-electron-donating 4-fluoro (2w)
group, gave diminished regioselectivity, while electron-with-
drawing substituents, such as COOEt (2x) and CHO (2y)
groups at the para-position, resulted in high regioselectivity.
Instead of tert-butyl carbamates, isopropyl methacryloyl-
(phenyl)carbamate was used as the substrate, and the yield of
2b dropped to 55%.
During the investigation, we found that compound 3a, an

unactivated olefin, was also compatible with this catalytic system
to afford product 4a in 58% yield with excellent regioselectivity
with respect to 4a′ (Scheme 3). This is particularly interesting
because a background reaction exists without Pd catalyst, which
leads to the formation of 4a′ predominantly.14 A brief investi-
gation of substrate 3 was conducted (Scheme 3). A lower yield
was obtained with 2-ethylphenyl substituents on nitrogen (4b).
Phenyl rings with electron-withdrawing groups, such as
4-nitro (4c), 4-CN (4d), and perfluoro (4e) groups, all provided
acceptable yields. Ts and Boc substituents were also tolerated
well under the present catalytic system (4f,g). Further investiga-
tion showed that ethyl (4h) and benzyl (4i) groups are efficient
migrating groups, affording the products in slightly lower yields.
A phenyl migrating group led to poor regioselectivity due to the

Table 1. Selected Results of Condition Optimization

aStandard conditions: substrate 1 (0.1 mmol), Pd(OAc)2 (10 mol %),
Selectfluor (1.3 equiv), MeCN (2 mL), 35 °C, 24 h. bNMR yield with
N,N′-dimethylacetamide as internal standard; ratio of 2:2′ is given in
parentheses. cIsolated yield of compound 2. dStarting material 1a was
recovered. eL-1, L-2, L-3, and L-4 were screened. fF-2, F-3, and F-4
were screened. gA combination of 1 equiv of PhI(OAc)2 and 1 equiv of
AgF (or CsF) was screened. hDCM, water, EtOH, EtOAc, MeNO2,
and DMF were screened.

Scheme 2. Substrate Scope of Activated Olefina

aReaction conditions: substrate 1 (0.1 mmol), Pd(OAc)2 (10 mol %),
Selectfluor (1.3 equiv), MeCN (2 mL), 35 °C, 24 h. bIsolated yield of
2, ratio of 2:2′ given in parentheses as determined by 19FNMR or
1HNMR analysis of the crude products. des-Boc product and poly-
merization product were responsible for the low yield. cDiastereomeric
ratio 50/50. dDiastereomeric ratio 65/35. eDiastereomeric ratio 79/21.
fReaction was conducted at 50 °C.
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strong background reaction in the absence of Pd catalyst (4j).14

In addition, when a homoallylic amine derivative, such as
tert-butyl (3-methylbut-3-en-1-yl) phenylcarbamate, was used as
substrate, no desired 6-membered cyclic product was observed.
Substrate 3k, containing an aryl ring and a methyl substituent,
both of which are potential migrating groups, afforded com-
pound 4k as the major product.15 Compound 4k′ was observed
as the major byproduct, but no methyl migration product was
detected. This result suggested that migration of the phenyl
group is much more favorable than migration of the methyl
group.16 The lower yields observed for substrates with aryl
migrating groups are probably due to side reactions.
The major reaction pathway varies with different substrates

(Scheme 4). For example, the reaction with substrate 5 could

afford a spiro compound (6) via a C−H activation pathway
(Scheme 4a).17 With substrate 7, a direct C−F reductive
elimination product (8) (Scheme 4b) was isolated as the major
product along with some β-hydrogen elimination byproduct (9).
Both of these examples were rationalized in terms of the
formation of a common PdIV intermediate. Kinetic issues are
probably the reason for the different reaction pathways: for com-
pound 5, an intramolecular 6-membered-ring C−H activation
is more likely to occur; for compound 7, the positive charge
stability and steric hindrance at α-carbon in intermediate I slow
down the migration process leading to the direct reductive
elimination product. The configuration of compound 8, assigned

unambiguously by X-ray structural analysis (see the Supporting
Information (SI)), shows that an anti-oxy-palladation18 followed
by C−F bond-forming reductive elimination with retention of
configuration is operating in the reaction.19

In order to reveal some details of the catalytic mechanism, CD3
substituted compound 1b-D3 was prepared and examined, show-
ing that the CD3 group migrated. In addition, when competitive
experiments of 1a vs 1i and 1a vs 1v were conducted, no
scrambling was observed (Schemes S14 and S15).
On the basis of these results, a working mechanism for

the reaction is proposed in Scheme 5. First, coordination of the

substrate to the palladium catalyst generates a PdII complex
(III).20 Then oxy-palladation and oxidation probably occurred to
generate a possible key PdIV intermediate (IV). The enhanced
positive charge at the α-carbon to palladium may induce the
Wagner−Meerwein rearrangement-type migration.21 Trapping
of the resulting intermediate (V) with a fluorine anion22 pro-
duces the final product (2b) (path a). Alternatively, a concerted
migration−fluorination process furnishing the catalytic cycle
could also be envisaged (path b). Although the β-carbon elimi-
nation mechanism is thought to proceed in the Pd0/PdII catalytic
cycle, it is usually suppressed in PdIV complexes (path c).5,23

To probe the possibility of the existence of the two pathways
(paths a and b) after the formation of intermediate IV, deu-
terated substrate (Z)-1b-D was prepared and subjected to the
catalysis (eq 1). The resulting compound 2b-D was observed

with a diastereomeric ratio of 78:22 and noH−D scrambling. It is
very likely that both pathways are competing and the concerted
process is dominant (path b). Otherwise, the alternative stepwise
pathway (path a) via intermediate V-D would presumably result
in a significant loss of stereochemical information from the com-
plex IV-D. The configuration of the major diastereomer was
determined by NMR analysis and is in accord with the structure
assigned from mechanism analysis (see the SI).
In summary, an oxy-palladation and formal Wagner−Meerwein

rearrangement cascade has been discovered and can be used
for the construction of fluorinated oxazolidine-2,4-diones and
oxazolidine-2-ones. Both aryl and alkyl groups were found to be
capable of migration during the catalytic process. The reaction is

Scheme 3. Substrate Scope of Unactivated Olefina

aReaction conditions: substrate 3 (0.1 mmol), Pd(OAc)2 (10 mol %),
Selectfluor (2.0 equiv), MeCN (2 mL), rt, 24 h. bIsolated yield
of 4. Ratio of 4:4′ was given in parentheses and was determined by
19F NMR analysis. des-Boc product and polymerization product were
responsible for the low yield. cReaction was conducted at 0 °C for 24 h
then at rt for 24 h.

Scheme 4. Substrate-Controlled Reaction Pathways

Scheme 5. Proposed Mechanisms for the Isomeric
Difunctionalization Reaction
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proposed to occur through a PdII/PdIV catalytic cycle involving a
concerted migration−fluorination process to furnish the final
product. Further mechanistic research is in progress by our group
to examine details of the reaction.
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