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ABSTRACT: Chiral allenes are important structural motifs
frequently found in natural products, pharmaceuticals, and other
organic compounds. Asymmetric 1,4-difunctionalization of 1,3-
enynes is a promising strategy to construct axial chirality and
produce substituted chiral allenes from achiral substrates. However,
the previous state of the art in 1,4-difunctionalization of 1,3-enynes
focused on the allenyl anion pathway. Because of this, only
electrophiles can be introduced into the allene backbones in the
second functionalization step, consequently limiting the reaction
and allene product types. The development of asymmetric 1,4-
difunctionalization of 1,3-enynes via a radical pathway would complement previous methods and support expansion of the toolbox
for the synthesis of asymmetric allenes. Herein, we report the first radical enantioselective allene formation via a group transfer
pathway in the context of copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes. This method addresses a longstanding
unsolved problem in asymmetric radical chemistry, provides an important strategy for stereocontrol with free allenyl radicals, and
offers a novel approach to the valuable, but previously inaccessible, chiral allenes. This work should shed light on asymmetric radical
reactions and may lead to other enantioselective group transfer reactions.

■ INTRODUCTION

Chiral allenes are important structural motifs found frequently
in natural products, pharmaceuticals, and organic compounds.
They possess unique structural characteristics, biological
activities, and chemical reactivities.1,2 The development of
methods for catalytic asymmetric allene synthesis has attracted
increasing attention from the organic and medicinal chemistry
fields in the last two decades, and as a result, some classical
methods have been developed involving allenyl cations,3

allenyl anions,4−11 molecular rearrangements,12,13 deracemiza-
tion of racemic allenes,14 and other pathways.15−20 Among
these, the asymmetric 1,4-difunctionalization of 1,3-enynes
pioneered by Hayashi4 is considered to be one of the best ways
to construct chiral allenes, because this strategy utilizes achiral
starting materials and is more efficient because two
functionalities are installed in a single step (Figure 1A).
Recently, the groups of Hoveyda,8 Ge,10,21 Engle,9 and
Buchwald11 developed the Cu-catalyzed asymmetric 1,4-
hydroboration or semireduction of 1,3-enynes via Cu−H
chemistry, respectively. More recently, Liao et al. reported the
enantioselective 1,4-arylboration of 1,3-enynes through a
synergic catalysis by Cu/Pd.22 Despite such breakthroughs in
this area, all of the established asymmetric 1,4-difunctionaliza-
tions of 1,3-enynes proceed through an allenyl anion pathway
in which only electrophiles can be introduced into allene
backbones in the second functionalization step. Other useful
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Figure 1. Catalytic asymmetric 1,4-difunctionalization of 1,3-enynes:
(A) state of the art in asymmetric 1,4-difunctionalization of 1,3-
enynes and possible radical pathways for catalytic asymmetric allene
synthesis; (B) this work, enabling the enantioselective radical 1,4-
difunctionalization of 1,3-enynes via an outer-sphere pathway.
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functional groups such as CN, NR2, and OR cannot be
incorporated into allene backbones through this allenyl anion
pathway. This limited mechanism type restricts the successful
reaction types and thus limits the diversity of products. The
development of new enantioselective 1,4-difunctionalization of
1,3-enynes via other pathways and the corresponding new
stereocontrol models are highly desired, as these will
significantly expand the reaction types by trapping the reactive
allenyl intermediates not only with electrophiles but also with
nucleophiles and radicals.
Radical chemistry has seen much activity over the past two

decades. The newly developed radical reactions and classical
radical reactions have rendered chemistry with open-shell
intermediates even more powerful in organic synthesis.23,24

Among these, several radical 1,4-difunctionalizations of 1,3-
enynes to allene syntheses have been reported recently by
Liu,25,26 Wang27 and our group28 and have diversified the
allene syntheses. Notwithstanding the significant advances in
asymmetric radical reactions,29−67 the stereoselective forma-
tion of a new chemical bond on a free (untethered) and
unstrained radical is still extremely difficult. There are a few
examples of building center chirality on free radicals59−67 but
the enantioselective creation of allenyl axial chirality on a free
radical is still unknown. The asymmetric radical 1,4-
difunctionalization of 1,3-enynes which requires enantioselec-
tive installation of groups on the allenyl radical is likewise
unprecedented. The underlying reasons for this lack of
development are presumably due to the inherent high
reactivity of radicals, the structural characteristics of free
allenyl radicals, i.e., longer distance from C3 substituents, and
the absence of moderate/strong interactions between radicals
and catalysts. Despite these challenges, the development of

asymmetric radical 1,4-difuntionalization of 1,3-enynes is
highly sought after, as it could provide a novel approach to
the creation of axial chirality and ignite a fast expansion of the
toolbox for asymmetric allene synthesis to afford previously
inaccessible chiral allenes.
Previously, we reported the 1,4-carbocyanation of 1,3-

enynes via allenyl radical intermediates. An isocyanocopper(II)
species was identified as the key intermediate, and an outer-
sphere cyanation pathway (group transfer) was also demon-
strated (Figure 1B).28 It is noteworthy that the amination of
benzyl radicals employing Cu(II)NR2 species68,69 and
fluorination of alkyl radicals by Cu(II)F complexes70 have
also been established through an outer-sphere pathway.
Inspired by these reactions and the only example of
asymmetric radical atom transfer reaction of untethered radical
discovered by Ready et al.,63 we wondered whether an outer-
sphere radical 1,4-difunctionalized cyanation reaction could be
made enantioselective and, if so, how to control the
stereochemistry on the allenyl radical (Figure 2A). We have
conducted extensive studies to address these questions, and
here, we report the first radical enantioselective 1,4-oxy-
cyanation of 1,3-enynes, affording chiral allenes which
otherwise are not easily accessible (Figure 1B).28

■ RESULTS AND DISCUSSION

We chose the unprecedented 1,4-oxycyanation of 1,3-enynes as
the model reaction and initiated the studies with a conjugate
1,3-enyne (1a), benzoyl peroxide (2a, BPO), and trimethylsilyl
cyanide (3a, TMSCN). The combination of copper acetate
and a chiral bisoxazoline ligand (BOX) was chosen as an
asymmetric catalytic system. When the chiral BOX ligand was
switched from L1 to L4, a clear increase in enantioselectivity of

Figure 2. Rational initial design and ligand screening: (A) design of an outer-sphere asymmetric radical pathway; (B) initial studies; (C) discovery
of an oxazoline metal core plane; (D) further development of the results.
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Figure 3. Substrate scope, further transformations, and synthetic applications: (A) asymmetric allene synthesis with oxygen radicals, with products
4h,j,k,m processed with L7; (B) asymmetric allene synthesis with carbon radicals; (C) removal of the benzoyl group with ferric chloride; (D) axial
to central chirality transfers with N-iodo- and N-bromosuccinimide; (E) other racemic transformations of allenes.
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the product (4a) was observed, suggesting that the phenyl
group of the BOX ligand affects the stereochemistry (Figure
2B). When the reaction was performed with 7-chloro-2-
methylhept-1-en-3-yne (1x), which lacks an aryl substituent, a
product (5) was isolated with almost no enantiomeric excess.
These results suggest the possibility of a π−π interaction
between the allenyl radical and the aryl ring of the BOX ligand.
Consequently, we performed density functional theory (DFT)
calculations at the B3LYP-D3(SMD)/Def2-TZVP//B3LYP-
D3/Def2-SVP level of theory to examine the structures of
chiral catalysts (see more details in the Supporting
Information). Isocyanocopper(II) complexes with ligands L1
and L4 were selected as representatives containing alkyl and
aryl substituents, respectively.
The optimized structures of isocyanocopper(II) intermedi-

ates m1-[L1Cu(II)] and m1-[L4Cu(II)] with ligands L1 and
L4 are shown in Figure 2C. The planarities of the oxazoline
moiety in m1-[L1Cu(II)] and m1-[L4Cu(II)] are significantly
different. The dihedral angle between the two oxazoline rings
D(N1−C2−C2′−N1′) are 18.7 and 3.2° in m1-[L1Cu(II)]
and m1-[L4Cu(II)], respectively. These geometrical parame-
ters are similar to those in the relevant crystal structure of a
dichlorocopper(II) complex (cf. Table S10 and Figure S1).71

We hypothesized that this planarity of the oxazoline−metal
complex is critical in the stereocontrolling step and that a
variation of the substituents on the oxazolines might further
improve the enantioselectivity. Therefore, we carried out
further DFT calculations on some isocyanocopper(II)
complexes and found that m1-[L5Cu(II)], which bears two
aryl substituents, has the smallest dihedral angle (2.5°). A
reaction with ligand L5 was conducted. The enantioselectivity
was indeed drastically improved to er = 94:6. Ligands L6 and
L7 were also tested, and similar enantioselectivities and lower
yields were observed (Figure 2D). L5 was therefore chosen for
further investigation. These results of the planarity correlated
to the enantioselectivity fit to the strategy of a quantitative
structure selective relationship (QSSR), which is a useful tool
in the development of asymmetric catalytic reactions.72

The substrate scope of conjugate 1,3-enynes in the reaction
was examined under the optimized conditions (Figure 3A).
Electron-rich alkyl-substituted aryl groups with primary and
tertiary alkyl groups afforded the corresponding products in
good yields with a high er, and substrates bearing halogenated
aromatic substituents were compatible with the reaction
conditions. The long alkyl chain in the 1,3-enyne substrates
can be replaced by short alkyl chains or haloalkyl chains, a free
alcohol group, a cyclopropyl group, or an ester group. Due to
the utilization of (4S,4′S,5R,5′R)-L7, which has the opposite
absolute configuration in comparison to L5 and L6, the
opposite enantiomer for products 4h,j,k,m can be obtained.
The absolute configuration of the products (R forms of 4l,p)
was confirmed by X-ray single-crystal diffraction. The
successful preparation of highly enantioenriched tetrasubsti-
tuted allenes with the established catalytic system prompted us
to study the use of other peroxides. For phenyl-substituted
peroxides, both electron-donating and electron-withdrawing
phenyl groups were tolerated under the standard reaction
conditions, affording the corresponding chiral allenes in high
yields and enantioselectivities. This enantioselective radical
1,4-difunctionalization of 1,3-enynes can also be successfully
achieved with carbon-centered radicals. As shown in Figure 3B,
perfluoroalkyl iodides, ethyl difluoroiodoacetate, and cyclo-
hexanecarboxylic peroxyanhydride engaged in the asymmetric

radical 1,4-carbocyanation of 1,3-enynes, affording the
corresponding allenes in good yields and with high er.
Although some racemic allenyl cyanides have been

synthesized previously, the generation of enantioenriched
allenyl cyanides and their stereoselective transformations has
not been reported. Accordingly, we explored their stereo-
selective transformations and synthetic utility (Figure 3C,D).
The construction of chiral quaternary carbon centers is a major
challenge in synthetic chemistry, and the development of
methods for the formation of such chiral centers is an
important goal. In the presence of FeCl3, the benzoyloxy group
of 4a can be easily converted into a free alcohol group and the
allenyl alcohol (8) can be produced quantitatively without loss
of enantiomeric excess (Figure 3C).
The transfer of axial chirality to central chirality was also

studied. For example, the chiral allenyl cyanide 4u smoothly
reacted with N-iodosuccinimide (NIS) or N-bromosuccini-
mide (NBS) to produce the enantioenriched 3,6-dihydro-2H-
pyrans 9 and 10 with a chiral quaternary carbon center via a
cyclization process (Figure 3D). Moreover, E/Z selective
transformations corresponding to the E-selective vinyl cyanides
(E)-11 and (E)-12 were accessed upon treatment of the
racemic allene 4a under basic or acidic reaction conditions
(Figure 3E). Treatment of the allenyl cyanide 13 with NIS led
to a practical synthesis of the highly substituted conjugated
cyanide 14, which is a versatile building block.
Control experiments were conducted to further probe the

mechanism of this radical reaction (Figure 4). The addition of
the radical scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) or butylated hydroxytoluene (BHT) inhibited the
formation of the desired product, suggesting that the reaction
could involve a radical pathway (Figure 4A). The observation
of the BHT·OBz adduct supports the formation of a
benzoyloxyl radical, and the detection of trimethylsilyl
benzoate indicates an interaction of the benzoyloxyl group
with TMSCN (see the Supporting Information). On the other
hand, the CH3OH adduct 15, whose appearance would suggest
the formation of the allenyl cation, was not observed (Figure
4B). The presence of the radical adduct and the absence of
cation adducts indicate that the allenyl radical pathway is more
likely to be adopted rather than the allenyl cation pathway.
Although only a low yield was obtained, the formation of the
cyclized product 17 strongly suggests that an allenyl radical is
indeed generated in situ (Figure 4C). A linear correlation
between the ee of ligand L5 and the ee of 4a was observed
(Figure 4D), indicating that the active catalytic species is a
monomeric copper complex bearing a single chiral ligand.
DFT calculations on the asymmetric radical 1,4-oxy-

cyanation of 1,3-enynes were performed to elucidate the key
factors of stereocontrol in this reaction. The mechanism is
similar to that in our previous case.28 In addition, an inner-
sphere pathway via Cu(III) intermediates has also been
considered, but no transition states for reductive elimination
could be located, which is similar to the very recent study by
Lin, Liu, et al.73 Therefore, we focused on the enantiode-
termining step.
With a comprehensive conformational search of radical

trapping transition states (TSs), TS-L5-R1 and TS-L5-S1 were
found to be the lowest enthalpic conformers leading to the
products of R and S enantiomers, respectively (Figure 4E; see
the Supporting Information for more computational details of
the conformational search). TS-L5-R1 is preferred with an
enthalpy difference of 1.7 kcal/mol, consistent with exper-
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imental observations that the R enantiomer is preferred. As
reflected from the dihedral angles (2.5 and 20.0°), a π−π
interaction between the aromatic substituent with the plane of
the oxazoline-metal complex was found in TS-L5-R1 but not
in TS-L5-S1. An analysis of noncovalent interactions (NCI)
between the allenyl radical and the ligated catalyst74 also
supported the stronger π−π interactions in TS-L5-R1. The
π−π interactions in TS-L5-S1 were weakened to avoid steric
repulsion with the phenyl groups of the ligand, and the

distances of the π−π interaction plane are 3.47 and 4.07 Å in
TS-L5-R1 and TS-L5-S1, respectively. A further distortion/
interaction analysis also revealed that the repulsion between
the substituent of the allenyl radical and the phenyl ring on the
oxazoline disturbs the π−π interaction, consequently decreas-
ing the interaction energy (see Figure S4). On the basis of
these experimental and theoretical studies, the π−π interaction
may account for the observed enantioselective control on the
allenyl radical. With this model, the low enantioselectivity in
the cases with the ligands L1−L3 and the substrate 1x, in
which a proper π−π interaction is absent, can be understood.

■ CONCLUSION
In conclusion, we have developed a copper-catalyzed
asymmetric radical 1,4-oxycyanation of 1,3-enynes under
mild reaction conditions. This hitherto unknown method
offers an efficient approach to the synthesis of a range of axially
chiral allenes. Experimental and theoretical studies support that
the cyanation reaction proceeds by an allenyl radical pathway
rather than an allenyl cation pathway. This work may shed
some light on the study of asymmetric radical reactions.
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