Nickel(0)-Promoted Carboxylation of Allenamides with Carbon Dioxide via a Nickelalactone Intermediate

Nozomi Saito,*a Yasuyuki Sugimura,a Yoshihiro Sato*a,b

^a Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan Fax +81(11)7064982; E-mail: biyo@pharm.hokudai.ac.jp

^b ACT-C, Japan Science and Technology Agency (JST), Sapporo 060-0812, Japan

Received: 21.11.2013; Accepted after revision: 18.12.2013

Abstract: Nickel(0)-promoted carboxylation of *N*-allenylamides (allenamides) with carbon dioxide proceeded via a nickelalactone intermediate to give β -amino acid derivatives. It was also found that the regioselectivity at the oxidative addition stage was strongly affected by the substituents on the allene part.

Key words: nickel, allenamide, carbon dioxide, fixation, β -amino acid

Carbon dioxide (CO_2) is an abundant, ubiquitous, cheap, and relatively nontoxic one-carbon source in synthetic organic chemistry, and various methods for the incorporation of CO₂ into organic compounds have been demonstrated. Recently, transition-metal-promoted direct carboxylation of organic compounds has attracted much attention due to its high efficiency.^{1,2} In particular, the zero-valent nickel complex has been widely used for carboxylation of carbon-carbon unsaturated compounds (Scheme 1).³ The reaction proceeds via nickelalactone intermediate 2, which is generated by oxidative cycloaddition of unsaturated compound 1 and CO_2 to a nickel(0) complex, and hydrolysis of the nickelalactone affords the corresponding carboxylic acid 3. Thus, the nickelalactone can be regarded as a useful intermediate for the synthesis of various carboxylic acids in synthetic organic chemistry. From the viewpoint of development of a new synthetic methodology using an atmospheric pressure of CO₂, several synthetic utilizations of carboxylation via nickelalactone have recently been demonstrated using alkynes,⁴ 1,3dienes,⁵ allenes,⁶ and diynes⁷ as well as enynes⁸ as platforms.

Scheme 1 Synthesis of carboxylic acids from unsaturated compounds and CO_2 via a nickelalactone intermediate

SYNLETT 2014, 25, 0736–0740 Advanced online publication: 29.01.2014 DOI: 10.1055/s-0033-1340628; Art ID: ST-2013-U1076-L © Georg Thieme Verlag Stuttgart · New York *N*-Allenylamides (allenamides, Scheme 2, 4) have been recognized as versatile synthetic units in recent organic synthesis.⁹ Due to delocalization of lone-pair electrons of a nitrogen atom to a double bond of the allene moiety depicted as 4', the sp carbon atom of allenamide has a partial negative charge. Therefore, allenamide could act as a polarized allene, and various organic transformations of allenamide using its unique electronic property have been reported in the past decade.

Scheme 2 Structure of allenamide 4

In this context, we planned the nickel-promoted carboxylation of allenamides (Scheme 3). Thus, if oxidative cycloaddition of the allenamide 4 and CO_2 to a nickel(0) complex proceeds in a manner similar to that of previously reported carboxylation of allene,^{6,10} carbon–carbon bond formation would occur between the negatively polarized sp carbon atom of 4 and the positive sp carbon atom of CO_2 to give nickelalactone 5 or 7. Finally, hydrolysis of the nickelalactone could give β -amino acid derivative 6 or 8, the structure of which is often found in some important biologically active compounds.

To examine the feasibility of the plan, we set out to conduct condition screening of the carboxylation of allenamide (Table 1). According to previous reports on carboxylation of allene,⁶ tosylamide-derived terminal allenamide 4a was reacted with an atmospheric pressure of CO_2 in the presence of a stoichiometric amount of Ni(cod)₂ and two equivalents of DBU as a ligand (Table 1, entry 1). After acidic workup with 10% aqueous HCl solution followed by methylation by CH₂N₂, CO₂-incorporated compound 6a was produced in 76% yield as a single regio- and stereoisomer.¹¹ When the amount of DBU was increased to four equivalents, the yield of 6a increased to 89% (Table 1, entry 2). The use of 1,10-phen-1,2-bis(dicyclohexylphoshino)ethane anthroline and (DCPE) gave **6a** in low yields (Table 1, entries 3 and 4). Furthermore, TMEDA ligand was applicable to the carboxylation of 4a, giving 6a in 82% yield (Table 1, entry 5).

Scheme 3 Plan for carboxylation of allenamide with CO2 via nickelalactone intermediate

 Table 1
 Nickel-Promoted Carboxylation of Allenamide 4a^a

Ts N H Me 4a	1) Ni(cod) ₂ (1 equiv) ligand (x equiv) CO ₂ (1 atm) 2) HCI (10%) 3) CH ₂ N ₂	Ts Me 6a	
1	DBU (2)	2	76
2	DBU (4)	1	89
3	1,10-phenanthroline (1)	1	4
4	DCPE ^b (1)	1	trace
5	TMEDA (1)	1	82

^a The reaction was carried out in THF at 0 °C.

^b DCPE = 1,2-bis(dicyclohexylphosphino)ethane.

With optimal conditions in hand, carboxylation of other terminal allenamides was investigated (Scheme 4). Thus, oxazolidione-derived allenamide **4b** was reacted with CO_2 followed by methylation to give the corresponding **6b** in 51% yield (Scheme 4, eq. 1). On the other hand, the carboxylation of methylcarbamate-derived allenamide **4c** gave the desired **6c** in 21% yield, and its regioisomer **8c** was also produced in 6% yield (Scheme 4, eq. 2).

Scheme 4 Nickel-mediated carboxylation of carbamate-derived terminal allenamide

© Georg Thieme Verlag Stuttgart · New York

Next, we turned our attention to the carboxylation of allenamide bearing a *tert*-butyl group on the allene moiety (Scheme 5). Thus, the reaction of **4d** and CO_2 (1 atm) in the presence of Ni(cod)₂ and DBU followed by methylation gave **8d** in 88% yield as a mixture of geometrical isomers with respect to the alkene moiety.

Scheme 5 Carboxylation of tert-butyl group substituted allenamide 4d

Carboxylation of various substituted allenamides was investigated, and the results are shown in Table 2. The Boc group protected allenamide 4e could react with CO₂, and the desired carboxylation product 8e was obtained in 91% yield (Table 2, entry 1). Oxazolidinone-derived allenamide 4f was also applicable to the carboxylation, giving the corresponding coupling product 8f in 88% yield (Table 2, entry 2). Carboxylation of 2-pyridone derivative 4g proceeded to give 8g in good yield as a single isomer (Table 2, entry 3). Oxazolidinone-derived allenamide 4h having a benzyloxy group was reacted with CO₂ to give the desired CO₂-incorporated product 8h in 27% yield along with diene 9, which would be formed from 8h by debenzyloxylation (Table 2, entry 4). A similar result was obtained in the carboxylation of 4i, carboxylation compounds 8i and 9 being produced in a total yield of 42% (Table 2, entry 5). On the other hand, the reaction of siloxylethyl group substituted allenamide 4j with CO₂ followed by methylation afforded the corresponding product 8j in 68% yield as a single isomer (Table 2, entry 6). Carboxylation of allenamide having a methyl group 4k also gave 8k in 44% yield in a similar regio- and stereoselective manner to that of the carboxylation of tert-alkyl group substituted allenamides 4d-j (Table 2, entry 7). Trisubstituted allenamide 4I was applicable to the carboxylation, giving the corresponding CO₂-incorporated compound 81 in 59% yield in a highly regioselective manner (Table 2, entry 8).

Scheme 6 Acidic workup with DCl–D₂O

Table 2 Carboxylation of Various Substituted Allenamides^a

To gain insights into the reaction mechanism, a deuterium incorporation experiment was carried out (Scheme 6). Thus, after the reaction of terminal allenamide **4a** and CO_2 , acidic workup with 10% DCl–D₂O followed by methylation by CH_2N_2 was conducted (Scheme 6, eq. 1). As a result, compound **6a**-D, the allylic methyl group of which was deuterated, was obtained in 90% yield as a single regio- and stereoisomer. On the other hand, when allenamide **4d** having a *tert*-butyl group was treated under reaction conditions similar to those of **4a**, the allylic methylene position of **8d**-D was deuterated (Scheme 6, eq. 2).

Based on the above results, possible reaction mechanisms of the carboxylation of allenamides were considered (Scheme 7). When terminal allenamides $4 (R^2 = H)$ were

^a The reaction of allenamide **4** was carried out in the presence of Ni(cod)₂ (1 equiv) and DBU (4 equiv) in THF at 0 °C under CO₂ (1 atm). After acidic workup with 10% HCl, the crude product was treated with CH_2N_2 .

Scheme 7 Possible reaction course including origin of regio- and stereoselectivity

used, the less-hindered distal double bond of the allene part and CO₂ would coordinate to the nickel center to give 10 first, from which oxidative cycloaddition would proceed to afford nickelalactone 11. Hydrolysis of 11 followed by methylation would afford 6. On the other hand, in the reaction of allenamides having an alkyl group ($R^2 =$ Me or CMe_2R), the less-hindered nitrogen-substituted double bond of 4 would coordinate to the nickel center to give 12. In this step, two types of coordinated complex could be formed. That is, if oxidative cycloaddition of the re face of the nitrogen-substituted double bond of allenamide and CO₂ proceeded, nickelalactone 13 could be formed. On the other hand, oxidative cycloaddition of the si face of the double bond and CO₂ would give nickelalactone 14. Obviously, the formation of 14 from 12 seems to be less favorable than the formation of 13 because of steric repulsion between the alkyl group in the allenamide and CO2. Thus, nickelalactone 13 would be formed preferably as compared with 14, resulting in (E)-8 being obtained as a major product after hydrolysis followed by methylation.

In summary, we have demonstrated nickel-promoted carboxylation of allenamide with an atmospheric pressure of carbon dioxide. The reaction proceeds via a nickelalactone intermediate from allenamide and carbon dioxide to give the corresponding β -amino acid derivatives. It was also found that the regioselectivity at the oxidative addition stage was strongly affected by substituents on the allene part. Further studies including development of the carboxylation to a catalytic reaction are in progress.

Acknowledgment

This work was partly supported by a Grant-in-Aid for Young Scientists (B) (No. 24790002) and a Grant-in-Aid for Scientific Research (B) (No. 23390001) from JSPS and by a Grant-in-Aid for Scientific Research on Innovative Areas 'Molecular Activation Directed toward Straightforward Synthesis' (Nos. 23105501 and 25105701) from MEXT, Japan. N.S. acknowledges Takeda Science Foundation for financial support. **Supporting Information** for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

References and Notes

- (1) For reviews on transition-metal-promoted carboxylation, see: (a) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (b) Gibson, D. H. Chem. Rev. 1996, 96, 2063. (c) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27. (d) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (e) Hou, Z.; Ohishi, T. In Comprehensive Organometallic Chemistry III; Vol. 10; Crabtree, R. H.: Mingos, D. M. P.; Ojima, I., Eds.; Elsevier: Oxford, 2007, 537-555. (f) Correa, A.; Martín, R. Angew. Chem. Int. Ed. 2009, 48, 6201. (g) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347. (h) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. (i) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. (j) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50, 8510. (k) Martín, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259. (l) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. (m) Omae, I. Coord. Chem. Rev. 2012, 256, 1384.
- (2) For the most recent selected examples of transition-metal-promoted carboxylations, see: (a) Tran-Vu, H.; Daugulis, O. ACS Catal. 2013, 3, 2417. (b) Takimoto, M.; Hou, Z. Chem. Eur. J. 2013, 19, 11439. (c) Yu, B.; Diao, Z.-F.; Guo, C.-X.; Zhong, C.-L.; He, L.-N.; Zhao, Y.-N.; Song, Q.-W.; Liu, A.-H.; Wang, J.-Q. Green Chem. 2013, 15, 2401. (d) León, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221. (e) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2013, 135, 10954. (f) Feng, X.; Sun, A.; Zhang, S.; Yu, X.; Bao, M. Org. Lett. 2013, 15, 108. (g) Duong, H. A.; Huleatt, P. B.; Tan, Q.-W.; Shuying, E. L. Org. Lett. 2013, 15, 4034. (h) Hase, S.; Kayaki, Y.; Ikariya, T. Organometallics 2013, 32, 5285; see also ref. 11.
- (3) For a review on nickel-mediated or -catalyzed carboxylation via nickelalactone, see: Takimoto, M.; Mori, M. In *Modern Organonickel Chemistry*; Tamaru, Y., Ed.; Wiley-VCH: Weinheim, **2005**, 205–223.
- (4) (a) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. *J. Org. Chem.* **1999**, *64*, 3975. (b) Takimoto, M.; Shimizu, K.; Mori, M. *Org. Lett.* **2001**, *3*, 3345.
 (c) Shimizu, K.; Takimoto, M.; Mori, M. *Org. Lett.* **2003**, *5*, 2323. (d) Aoki, M.; Kaneko, M.; Izumi, S.; Ukai, K.; Iwasawa, N. *Chem. Commun.* **2004**, 2568. (e) Shimizu, K.;

Takimoto, M.; Sato, Y.; Mori, M. *Org. Lett.* **2005**, *7*, 195. (f) Langer, J.; Görls, H.; Walther, D. *Polyhedron* **2012**, *32*, 60.

- (5) (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2001, 123, 2895. (b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.
- (6) (a) Takimoto, M.; Kawamura, M.; Mori, M. Org. Lett. 2003, 5, 2599. (b) Takimoto, M.; Kawamura, M.; Mori, M. Synthesis 2004, 791. (c) Takimoto, M.; Kawamura, M.; Mori, M.; Sato, Y. Synlett 2005, 2019. (d) Aoki, M.; Izumi, S.; Kaneko, M.; Ukai, K.; Takaya, J.; Iwasawa, N. Org. Lett. 2007, 9, 1251. (e) Takimoto, M.; Kawamura, M.; Mori, M.; Sato, Y. Synlett 2011, 1423.
- (7) (a) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188. (b) Tekavec, T. N.; Arif, A. M.; Louie, J. Tetrahedron 2004, 60, 7431.

- (8) (a) Takimoto, M.; Mizuno, T.; Sato, Y.; Mori, M. *Tetrahedron Lett.* 2005, *46*, 5173. (b) Takimoto, M.; Mizuno, T.; Mori, M.; Sato, Y. *Tetrahedron* 2006, *62*, 7589.
 (c) Mizuno, T.; Oonishi, Y.; Takimoto, M.; Sato, Y. *Eur. J. Org. Chem.* 2011, 2606.
- (9) For leading reviews on the chemistry of allenamide, see:
 (a) Wei, L.-L.; Xiong, H.; Hsung, R. P. *Acc. Chem. Res.*2003, *36*, 773. (b) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. *Chem. Rev.* 2013, *113*, 4862.
- (10) It is known that oxidative cycloaddition of allene and a CO₂ to a zero-valent nickel center proceeded in a regioselective manner to give α-alkylidenenickelalactone, see: Hoberg, H.; Oster, B. W. J. Organomet. Chem. **1984**, 266, 321.
- (11) The regio- and stereochemistry of the carboxylation compound was determined by NOE experiments, see the Supporting Information.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.