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2-Methylpropane and 2-methylpropene, in the presence of

the W(H)3/Al2O3 catalyst, are unexpectedly transformed to

2,3-dimethylbutane and 2,3-dimethylbutenes, respectively, with

high selectivity; in case of 2-methylpropane, this reaction

represents the first example of the transfer of two carbons in

alkane metathesis.

The transformation of lower alkanes into higher homologues

remains a great challenge in chemistry, in particular for

branched alkanes in view of fuel needs.1–3 Using a ‘‘single site

approach’’, we reported in 1997 the discovery of a new

reaction, the alkane metathesis where a highly electrophilic

tantalum hydride supported on silica, [(RSiO)2Ta–H] 1a,

could catalytically transform at moderate temperatures any

light alkane into its lower and higher homologues.2 This

reaction consists mainly in the transfer of a single carbon

from one chain to another, by both cleavage and formation of

C–H and C–C bonds (Scheme 1).

Typically propane gives mainly ethane (45–50%) and

butanes (30–35%) along with methane and higher C5+

alkanes. Ethylbenzene and methane can also be obtained

by cross-metathesis between toluene and ethane.4 In all

experiments carried out so far, the selectivity for the formation

of the Cn+1 product proved to be higher than that of the Cn+2

one, in agreement with the previously proposed mechanism.5

In fact, kinetic studies on propane metathesis, carried out at

extremely low contact time in a continuous flow reactor,

revealed the primary products of the reaction, namely olefins

and H2. This observation as well as elementary steps known in

tantalum organometallic chemistry led us to propose a

mechanism based on the following key steps: (i) paraffin

dehydrogenation via C–H bond activation leading to a

metal-alkyl with subsequent formation of an olefin and a

metal-hydride; (ii) olefin metathesis on a metallocarbene formed

in parallel via a-H elimination from the metal-alkyl; and

(iii) hydrogenation of the new olefins on the metal-hydride.5

Recently, we have developed a W(H)3/Al2O3–500 catalyst,

1b, giving higher turnover numbers (TON) and having a much

greater stability than Ta hydrides.6–9 The peculiarity of

both systems lies in the fact that Ta or W hydrides are

‘‘multifunctional–single site’’ catalysts (alkane dehydrogenation,

olefin metathesis and olefin hydrogenation). Herein, we report

that 2-methylpropane, in the presence of the W(H)3/Al2O3–500

catalyst, 1b, is unexpectedly transformed to 2,3-dimethylbutane

(2,3-DMB) with a high selectivity.10 This metathesis reaction

of an iso-Cn paraffin leading to an iso-Cn+2 product instead

of an iso-Cn+1, involves formally the selective transfer of

two carbons, which is unexpected in view of the classical

mechanism previously proposed for this reaction (see ESI

Scheme S1w).5 Interestingly, 2,3-DMB exhibits the highest

octane number (RON = 104) among the hexane isomers.11

Similarly, the W(H)3/Al2O3–500 catalyst, 1b, also unexpectedly

transforms 2-methylpropene to 2,3-dimethylbutenes (2,3-DMB=)

with a good selectivity which is the first case of productive

metathesis of 2-methylpropene12,13 and again fits with the role

of 2-methylpropene as a primary product for the metathesis of

2-methylpropane.

Typically, when 2-methylpropane was passed over the

alumina-supported tungsten hydride, W(H)3/Al2O3–500, 1b,

(Pi-C4H10 = 1 bar, T = 150 1C, flow rate 4 mL min�1 or

volume hourly space velocity (VHSV) 260 h�1) its conversion

reached a maximum at 8% and approximately 37 TON were

achieved over 43 h (Fig. 1(a)). At the pseudo-steady state, the

observed selectivities in 2-methylpropane metathesis are

2,3-DMB (41.7%), ethane (41.3%), 2-methylbutane (5.3%),

propane (5.2%), methane (1.5%), heptanes (1.0%) and

2-methylpropene (3.1%) (Fig. 1(b)). The higher homo-

logues can be ordered as follows: Cn+2 c Cn+1 4 Cn+3.

These results are quite different from those obtained with

W(H)3/Al2O3–500 in metathesis of linear alkanes, where the

selectivities always follow the order: Cn+1 4 Cn+2 c Cn+3.
6–8

Interestingly the ratio of selectivities of 2,3-DMB/ethane and

2-methylbutane/propane are close to unity.

2-Methylpropene was observed (up to 3.1%) among the

products of 2-methylpropane metathesis and therefore, its

metathesis was also checked over 1b in a continuous flow

reactor (Pi-C4H8 = 1 bar, T= 150 1C, flow rate 4 mL min�1 or

volume hourly space velocity (VHSV) 260 h�1) (Fig. 2). The

reaction presented an initial maximal conversion rate of

0.61 moli-C4H8 molW
�1 min�1 before reaching a pseudo-plateau

Scheme 1
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of 0.22 moli-C4H8 molW
�1 min�1, with an overall turnover

number (TON) of 235 after 16 h (Fig. 2(a)). At the pseudo-

steady state, the product selectivities were 2,3-dimethylbutenes

50%, ethylene 30%; 2,4,4-trimethylpentenes 12%, neohexene

9%, isopentene 3% and propene 1% (Fig. 2(b)).

2,4,4-Trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene

are likely formed by dimerisation of 2-methylpropene on

the acidic sites of alumina dehydroxylated at 500 1C13,14

while the presence of neohexene can be explained by a

cross-metathesis between 2,4,4-trimethylpentenes and ethylene.

In summary, whereas the metathesis of 2-methylpropene is

usually known as a degenerate process with the classical olefin

metathesis catalysts,12,13 W(H)3/Al2O3–500 also proves to be

the first compound capable of catalyzing the productive

self-metathesis of 2-methylpropene into 2,3-dimethylbutene.

Interestingly, 2,3-dimethylbutene has the same carbon

skeleton as the major product formed during the metathesis

of 2-methylpropane i.e. 2,3-DMB. These observations confirm

that 2-methylpropene is a primary product which leads to a

specific mechanistic pathway for 2-methylpropane metathesis

as explicated hereafter.

The initiation steps of both 2-methylpropane and 2-methyl-

propene, respectively by C–H bond activation or CQC

double bond insertion in 1b are expected to lead to the same

tris(isobutyl)tungsten intermediate 2 (Scheme 2); in the first

case hydrogen is also evolved which is likely consumed via

hydrogenolysis of 2-methylpropane leading to the sharp initial

peaks of methane and propane (Fig. 1(b)), as 1b is known to

catalyze such a reaction.6–8

The trisisobutyl tungsten complex 2, [W(CH2CH(CH3)2)3]/

Al2O3–500, resulting from the initiation steps, can undergo an

a-H transfer to form 3, [W(CH2CH(CH3)2)-

(QCHCH(CH3)2)]/Al2O3–500, which further leads to the

carbene-hydride 4, [W(H)(QCHCH(CH3)2)]/Al2O3–500 by

b-H elimination (Scheme 3).9

As known in the classical olefin metathesis mechanism15 and

also proposed for alkane metathesis,5 the 2-methylpropene used

as a reactant (2-methylpropene metathesis) or released from any

isobutyl tungsten species by b-H elimination (2-methylpropane

metathesis), can react with the hydrido-tungsta-carbene 4.

Depending on the two coordinative approaches of

2-methylpropene, two possible tungstacyclobutanes 5a and 5b,

are obtained, which have gem-methyl and -isopropyl substituents

in either the [1,2] or [1,3]-positions (Scheme 4a and c). These

two tungstacycles will further undergo metathetical cleavages:

(i) 5a giving 3-methyl-1-butene and the new hydrido-

tungsta-carbene 6a, [W(H)(=C(CH3)2)]/Al2O3–500, (ii) 5b giving

2,4-dimethyl-2-pentene and the hydrido-tungsta-carbene 6b,

[W(H)(QCH2)]/Al2O3–500.

The hydrido-tungsta-carbenes 6a and 6b can also react

further with 2-methylpropene giving the corresponding

tungstacyclobutanes intermediates 7a and 7b (Scheme 4b).

Again, these two tungstacycles can undergo metathetical

cleavage, 7a giving 2,3-dimethyl-2-butene and the

hydrido-tungsta-carbene 6b, 7b giving ethylene and the hydrido-

tungsta-carbene 6a (Scheme 4b).

Paradoxically, 7a is a priori the less thermodynamically

favored intermediate, compared to 5b and particularly 5a, since

it has gem-methyl substituents in the [1,2]-positions generating a

sterically encumbered tungstacyclobutane intermediate.5,16 Two

other intermediates 7a0 and 7b0 could be formed from the

reverse favored approach of 2-methylpropene on 6a and

6b but they lead to degenerate metathesis (Scheme S2w).
Productive metathesis of 2-methylpropene involving 7a is thus

disfavored for steric reasons which accounts for the fact that it

was not reported previously12,13 and a moderate activity is

observed with W(H)3/Al2O3–500 by comparison with metathesis

of linear alkenes, such as propylene.17 From the various

catalytic cycles (a), (b), (c), the 2-methylpropane metathesis

process proceeds with the insertion of all the released olefins

into tungsten-hydride species such as 4, 6a or 6b. The resulting

tungsten alkyl groups can be further cleaved by H2

(Scheme S1w), affording the liberation of ethane, 2-methylbutane,

2,3-DMB and 2,4-dimethylpentane.5 The alkyl groups could

Fig. 2 Metathesis of 2-methylpropene catalyzed by (W(H)3/Al2O3, 1b

(3.86 wt% W): (a) conversion of 2-methylpropene (E) and TON (m);

(b) selectivities: (J) ethylene, (’) propene; (m) 2-methylbutene; (&)

neohexene, (K) 2,3-dimethylbutene (2,3-DMB=); (E) 2,4,4-trimethyl-

1-pentene and 2,4,4-trimethyl-2-pentene.

Scheme 3

Scheme 2

Fig. 1 Metathesis of 2-methylpropane catalyzed by (W(H)3/Al2O3,

1b (3.86 wt% W): (a) conversion of 2-methylpropane (K) and TON

(m); (b) selectivities: (E) methane, (J) ethane, (’) propane; (*)

2-methylpropene; (&) 2-methylbutane; (K) 2,3-dimethylbutane

(2,3-DMB); (+) 2,4-dimethylpentane; (�) octanes.
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also be displaced via s-bond metathesis, by the incoming

2-methylpropane present in excess. The excess of 2-methylbutane

(5%) over 2,4-dimethylpentane (0.5%) can be understood on

the basis of the stability of the key metallacyclobutanes or of

the facility of their formation (5a 4 5b), which both depends

on the interaction between the substituents in the [1,2] or

[1,3]-positions as proposed for olefin metathesis.16

Alternatively, although unfavorably, the hydrido-tungsta-

carbenes 6a and 6b could undergo the migration of the hydride

onto the carbene ligands involving the formation of

WIV(–CH(CH3)2) 8a and WIV(–CH3) 8b but also a concomitant

disfavored reduction of WVI to WIV.18 The resulting alkyl

groups could again be displaced by H2 or the incoming alkane

reactant via s-bond metathesis giving propane and methane in

minor amounts (Scheme 4a and 1c). Finally, it should be

mentioned here that 2,3-DMB, which is of interest for its high

octane number (RON = 104),11 is currently obtained by

paraffin isomerisation with the use of two major commercial

bifunctional catalysts: Pt on highly chlorinated alumina, and

Pt on mordenite; however, the selectivity remains low around

8% and both catalysts are deactivated by coke formation.19

In conclusion, tungsten hydride supported on alumina

W(H)3/Al2O3–500 catalyzes both 2-methylpropene and

2-methylpropane metathesis with a common core mechanistic

scheme affording the main formation of 2,3-DMB= and

2,3-DMB. A new mechanistic pathway is proposed based on

two key hydrido-tungsta-carbenes 4 and 6a which accounts for

the formation and the selectivities of all the products observed.
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