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The chiral N-heterocyclic carbene-catalyzed [2+2+2] cyclo-

addition of ketenes and carbon disulfide was realized to give the

cycloadduct of 1,3-oxathian-6-ones in good yields with excellent

enantioselectivities.

Carbon disulfide is an attractive C1 building block for the

synthesis of sulfur-containing organic compounds.1 Parti-

cularly, the cycloadditions with carbon disulfide afford rapid

construction of sulfur-heterocycles.2 Although the Lewis

bases-catalyzed3 and organometallic compounds-catalyzed4

cycloadditions with carbon disulfide have been widely reported,

to the best of our knowledge, the enantioselective catalytic cyclo-

addition reaction with carbon disulfide remains unexplored.

Over the past two decades, N-heterocyclic carbenes (NHCs)5

have been successfully used as reagents for heterocycles,6

ligands for organometallic catalysts,7 and Lewis base organo-

catalysts.8–10 In the line of our NHC-catalyzed reactions, we

found that NHCs are efficient catalysts for the cycloaddition

reactions of ketenes.11–13 In this communication, we wish to

report an NHC-catalyzed cycloaddition of ketenes with carbon

disulfide. Although the formation of the stable NHC-CS2
adduct is well established,14 our report shows that the NHC-

catalyzed reaction with carbon disulfide is also feasible.

Firstly, the reaction of phenyl(ethyl)ketene (1a) with carbon

disulfide was investigated (Table 1). In the presence of catalytic

NHC 4a0, generated freshly from its precursor 4a and Cs2CO3,

the reaction gave the corresponding [2+2+2] cycloadduct of

1,3-oxathian-6-one 3a, which involving two molecules of

ketene 1a and one molecule of carbon disulfide, in 69% yield

with 95% ee (entry 1). A series of NHCs derived from

L-pyroglutamic acid were then screened (entries 2–8). NHCs

4b and 4c with diphenylmethyl group showed similar results as

NHC 4a (entries 2 and 3). NHC 4d with two bulky aryl groups

resulted in a dramatic decrease of enantioselectivity (entry 4).

NHCs 4e and 4f with a free hydroxy group gave cycloadduct

3a in moderate yields with varied ee values (entries 5 and 6).

It is unexpected that NHCs 4g and 4h derived from mesityl

hydrazine offered only trace cycloadduct 3a (entries 7 and 8)

with ketene dimer as the major byproduct. Further improve-

ment of the reaction was realized by carrying out the reaction

at �40 1C, which gave the cycloadduct 3a in 99% yield with

96% ee (entry 9). Reaction catalyzed by the tetracyclic carbene 50,

derived from aminoindanol, gave cycloadduct with 96% ee

albeit in 24% yield (entry 10).

With the optimum reaction conditions in hand,15 a variety

of ketenes were then tested for the [2+2+2] cycloaddition

reaction (Table 2). Aryl(alkyl)ketenes 1b and 1c with electron-

withdrawing groups (Ar = 4-Cl, 4-BrC6H4) worked well to

give the cycloadduct in good yields with excellent enantio-

selectivities (entries 2 and 3). Ketene 1d with p-methylphenyl

group afforded cycloadduct in 72% with 92% ee (entry 4).

Table 1 Screening of NHCs

Entry 4 (Ar1, Ar2, R) or 5a Yield (%)b ee (%)c

1 4a (Ph, Ph, TBS) 69 95
2 4b (Ph, 2-iPrC6H4, TBS) 67 96
3 4c (Ph, Bn, TBS) 45 97
4 4d (2-naphtyl, 2-iPrC6H4, TBS) 64 40
5 4e (Ph, Ph, H) 40 83
6 4f (3,5-(CF3)2C6H3, Ph, H) 49 99
7 4g (Ph, Mes, TMS) trace /
8 4h (3,5-(CF3)2C6H3, Mes, H) trace /
9d 4b 99 96
10 5 24 �96e
a NHC 40–50 was generated from the corresponding triazolium salt 4–5

in the presence of Cs2CO3 at room temperature for 1 h, and used

immediately. b Isolated yield. c Determined by chiral HPLC. d The

reaction was carried out at �40 1C. e The minus ee value indicates a

reversed enantioselectivity. Mes = mesityl.
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However ketene 1e with strong electron-donating group

(Ar = 4-MeOC6H4) gave only trace product at �40 1C, and

32% yield with 93% ee was observed at room temperature

(entry 5). While ketene 1f with m-chlorophenyl group worked

well, ketene 1g with o-chlorophenyl group did not (entries 6

and 7). The reaction of phenyl(alkyl)ketenes 1h, 1i, 1j with

different linear alkyl groups (R = Me, n-Pr or n-Bu) went

smoothly (entries 8–10), but aryl(isopropyl)ketene 1k afforded

no cycloadduct (entry 11).16

Several chemical transformations of 3a were summarized in

Scheme 1. It is interesting that the addition of methyl Grignard

reagent to cycloadduct 3a gave exclusive cyclic thioacetal 6 in

99% yield with 95% ee, without ring-opened corresponding

ketone or thioketone formed.17 Alcoholysis of 3a afforded

the corresponding ester-thioester 7 in 81% yield. Again,

selective methylation of 7 with Grignard reagent gave ester-

thioacetal 8. The b-hydroxy thioacetal 9 was obtained in 92%

yield with 96% ee by selective reduction of 8 with LiAlH4

in THF.

The structure of cycloadduct rac-3h,18 and the relative and

absolute configuration of cyclic thioacetal (+)-cis-6 were

unambiguous established by the X-ray analysis of their

crystals.19

Considering both reactions of NHC with ketenes and with

carbon disulfide have been reported,11,12,14 we tried to clarify

whether this catalytic cycloaddition is initiated by addition of

NHC to ketenes or carbon disulfide (Scheme 2). Although no

reaction of NHC 4b0 and carbon disulfide was observed at

�40 1C, the NHC-CS2 adduct 10 was isolated in 33% at room

temperature.20 However no reaction of NHC-CS2 adduct with

ketene 1a was observed at �40 1C or room temperature

(reaction a). We have reported that NHCs could catalyze the

dimerization of ketene 1a to give lactone 11.8b However, the

further reaction of lactone 11 with CS2 was found nonfeasible

(reaction b). It is interesting that when the reaction of ketene

1a and CS2 was catalyzed by DMAP, 10% yield of [2+2]

cycloadduct 12 was isolated along with 52% of the corres-

ponding [2+2+2] cycloadduct 3a. Furthermore, the cyclo-

adduct 12 could react with one more molecule of ketene 1a in

the presence of catalytic NHC 4b0 to give the cycloadduct 3a in

good yield (reactions c).

Based on those observations, we proposed that the catalytic

cycle is initiated by the addition of NHC to ketenes giving

intermediate A, which reacts with CS2 to afford intermediate B.

Cyclization of intermediate B furnishes [2+2] cycloadduct 12,

but 12 could also go back to intermediate B in the presence of

NHC. The reaction of one more molecule of ketene with

intermediate B gives intermediate C, which is ring-closed to

give final [2+2+2] cycloadduct 3 and regenerates the NHC

catalyst (Fig. 1).

In conclusion, a highly enantioselective N-heterocyclic

carbene-catalyzed [2+2+2] cycloaddition reaction of two

molecules of ketenes with one molecule of carbon disulfide

to give 1,3-oxathian-6-ones was developed. Control experi-

ments revealed that the catalytic reaction is initiated by the

addition of NHC to ketenes rather than carbon disulfide.

Table 2 Enantioselective NHC-catalyzed [2+2+2]cycloaddition
reaction of ketenes with carbon disulfide

Entry 1 (Ar, R) 3 yield (%)a ee (%)b

1 1a Ph, Et 3a 99 96
2 1b 4-ClC6H4, Et 3b 87 97
3 1c 4-BrC6H4, Et 3c 79 96
4 1d 4-MeC6H4, Et 3d 72 92
5 1e 4-MeOC6H4, Et 3e NR (32)c (93)c

6 1f 3-ClC6H4, Et 3f 71 94
7 1g 2-ClC6H4, Et 3g NR /
8 1h Ph, Me 3h 69 96
9 1i Ph, n-Pr 3i 94 92
10 1j Ph, n-Bu 3j 96 96
11 1k 4-ClC6H4, i-Pr 3k NR /

a Isolated yield. b Determined by chiral HPLC. c Reaction carried at

room temperature.

Scheme 1 Chemical transformations of 3a. Scheme 2 Control experiments for mechanism investigation.
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Fig. 1 Possible catalytic cycle.

Pu
bl

is
he

d 
on

 0
3 

Ju
ne

 2
01

1.
 D

ow
nl

oa
de

d 
by

 M
on

as
h 

U
ni

ve
rs

ity
 o

n 
25

/1
0/

20
14

 1
6:

42
:5

6.
 

View Article Online

http://dx.doi.org/10.1039/c1cc12316e

