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Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Phosphoric 
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Abstract: A novel chiral phosphoric acid bearing a biphenol back-
bone was synthesized and its catalytic activity was investigated in
the enantioselective Mannich-type reaction of ketene silyl acetals
with aldimines.
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The development of efficient chiral catalysts continues to
be one of the most challenging topics in synthetic organic
chemistry.1 A number of organocatalysts2 as well as met-
al-based catalysts have been reported. We focused on
stronger Brønsted acid catalysts and synthesized a cyclic
phosphoric acid 1, using (R)-BINOL as the starting mate-
rial. Phosphoric acid 1a (Ar = 4-O2NC6H4) exhibited ex-
cellent catalytic activity as a chiral Brønsted acid catalyst
for the Mannich-type reaction of silyl enolate with aldi-
mines,3 which is a useful method for the preparation of b-
amino carbonyl compounds.4 We also demonstrated that
phosphoric acid 1 worked as a bifunctional chiral catalyst
bearing a Lewis basic site and a Brønsted acidic site (Fig-
ure 1).5 Recently, chiral phosphoric acid has drawn much
attention as an efficient chiral catalyst.6–8 A number of
phosphoric acids have been synthesized from BINOL and
their catalytic activities investigated. In contrast, other
backbones for chiral phosphoric acid have been little stud-
ied. For example, we synthesized a phosphoric acid bear-
ing a TADDOL scaffold and investigated its catalytic
activity in the Mannich-type reaction.9 Antilla and co-
workers developed a phosphoric acid starting from VA-
POL, bearing the biphenyl framework.10 We report herein
the preparation of a novel phosphoric acid bearing the bi-
phenol backbone and its application as a chiral Brønsted
acid in the Mannich-type reaction of silyl enolate with
aldimines.

We selected chiral (S)-biphenol derivative 3 as the chiral
scaffold11 and synthesized novel phosphoric acid 2a, bear-
ing the (S)-biphenol backbone in six steps. (Scheme 1)
These steps involved Lewis acid promoted dealkylation,
followed by protection of the OH group with MOM ether,
o-lithiation and introduction of boronic ester, and subse-
quent Suzuki–Miyaura coupling to install p-nitrophenyl

group at 3,3¢-position. Acid-promoted cleavage of the
MOM group followed by phosphorylation gave 2a (Fig-
ure 2).12

At the outset, the Mannich-type reaction of aldimines with
a ketene silyl acetal, derived from ethyl isobutyrate, was
studied by means of 10 mol% of 2a, and the results are
shown in Table 1. Corresponding b-amino esters were ob-
tained in excellent chemical yields with high enantio-
selectivities.13 It was found that 2a exhibited comparable
catalytic activity to 1a bearing the binaphthyl backbone.14

Next, the Mannich-type reaction of aldimines with a silyl
enolate that was derived from ethyl propionate was inves-
tigated and the results are shown in Table 2. Aldimines
derived from substituted benzaldehyde and cinnamalde-
hyde gave corresponding b-amino-2-methylpropionates
with high syn selectivity and high to excellent enantio-
selectivities: the enantioselectivity of the syn isomer was
as high as 93% (entry 5). It was found that 2a exhibited
higher enantioselectivities than 1a in entries 2, 4, and 5.15

The present Mannich-type reaction is considered to pro-
ceed via a nine-membered transition state, as shown in
Figure 3. Phosphoric acid 1 played two roles: (1) phos-
phoric acid hydrogen activated aldimine by acting as a
Brønsted acid, and (2) phosphoryl oxygen formed a hy-
drogen bond with o-hydroxy group by acting as a Lewis
base, thereby fixing the transition state. Hence, the phos-

Figure 1 Functional chiral catalyst
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Figure 2 Design of a novel chiral Brønsted acid catalyst
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phoric acid 1 worked as a bifunctional catalyst16 bearing
both Brønsted acidic and Lewis basic sites.

In summary, we have synthesized a novel phosphoric acid
bearing the (S)-biphenol backbone and demonstrated its
catalytic activity in the Mannich-type reaction of ketene
silyl acetal with aldimines. The corresponding b-amino

esters were obtained with high to excellent enantioselec-
tivities.

Typical Experimental Procedure for the Mannich-Type Reac-
tion
Ketene silyl acetal was added dropwise over 1 min to a soln of aldi-
mine (0.15 mmol) and phosphoric acid (0.015 mmol) in toluene (1
mL) at –78 °C. The reaction was stirred at this temperature. The
mixture was quenched by the addition of sat. NaHCO3 and KF at
–78 °C. After filtration over Celite, the filtrate was extracted with
EtOAc. The conbined organic layers were washed successively
washed with 10% aq HCl and brine, dried over anhyd Na2SO4, and
concentrated to dryness. The remaining solid was purified by TLC
(SiO2, hexane–EtOAc = 3:1) to give b-amino ester in high yield.
The ee was determined on a Daicel Chiralpak AS-H, AD-H or IA
column.
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Table 1 Results of the Mannich-Type Reactions

Entry Ar Time (h) Yield (%) ee (%)

1 Ph 13 100 87

2 4-MeC6H4 47 90 86

3 4-FC6H4 13 86 77
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Table 2 Results of the Mannich-Type Reactions

Entry Ar Yield (%) syn/anti ee (%)b

1 Ph 100 86:14 90

2 4-MeC6H4 87 81:19 87

3 4-MeOC6H4 100 87:13 82

4 4-FC6H4 93 86:14 90

5 PhCH=CH 94 94:6 93

a Ketene silyl acetal E/Z = 91:9.
b Of the syn-isomer.
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Figure 3 Proposed transition state
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