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The Diels–Alder reaction of coumalic acid and methyl coumalate with unactivated alkenes
provides only para-substituted adducts in good yield.

1. Introduction

The development of new, cost-competitive processes that utilize
renewable resources as feedstocks is important for a sustainable
economy. The introduction of such processes not only avoids
the use of petroleum, but also has the potential to provide
substantial energy savings and reduce greenhouse gas emissions.
Although biobased syntheses of certain commercially significant
compounds, such as 1,3-propanediol, have been reported,1

there are comparatively few reported biobased approaches2 to
aromatic chemicals such as terephthalic acid. As part of a
collaborative effort to produce biorenewable chemicals using
enzyme catalysis followed by chemical catalysis,3 we describe
herein an environmentally benign synthesis of alkyl benzoates,
useful intermediates for synthetic surfactants and for oxidation
to terephthalic acid. The dimerization of malic acid, a natural
product, with sulfuric acid produces coumalic acid.5

The Diels–Alder reaction of pyrones with activated
alkynes (A = electron-withdrawing group) has good litera-
ture precedent.4,5 As shown in Scheme 1, the reaction with
methyl coumalate (1) involves a cycloaddition to produce
bicyclo[2.2.2]octadiene intermediate 2, which loses carbon diox-
ide to directly form the substituted benzene. Delaney et al.
have utilized this reaction to produce aromatic systems.6 The
reaction of activated alkenes with methyl coumalate produces
a bicyclic lactone, 3, that cannot transform directly into an
aromatic ring by loss of carbon dioxide. One way to construct
aromatic rings via this intermediate is to dehydrogenate adduct
3 under conditions that lead to the loss of carbon dioxide.7

2. Results and discussion

We studied the reaction of methyl coumalate and coumalic acid
with unactivated terminal alkenes. To the best of our knowledge,
such terminal alkenes have not previously been reported to react

Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
E-mail: gakraus@iastate.edu; Fax: +1 515-294-0105; Tel: +1
515-294-7794

Scheme 1 Diels–Alder reactions with activated alkenes.

Scheme 2 Possible products of a Diels–Alder reaction.

with coumalic acid. Matsushita and co-workers have reported
the reactions of substituted styrenes with pyrones.7 In order to
generate the requisite bicyclo[2.2.2]octadiene intermediate, we
conducted the Diels–Alder reaction in the presence of catalytic
amounts of 10% Pd/C. Because we are employing unactivated
alkenes in the Diels–Alder reaction, both 4 and 5 could be
produced as shown in Scheme 2.

As the results in Table 1 indicate, only the para-substituted
adducts, 4, were produced, as evidenced by 1H NMR spec-
troscopy. In Table 1, entry 4, the structure of 4d was confirmed
by comparison with an authentic sample.8 Aromatic ethers and
aliphatic ethers are compatible with the reaction conditions.

The Diels–Alder reactions were also examined using coumalic
acid. Although it was less soluble than methyl coumalate at
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Table 1 The reaction of methyl coumalate with alkenes

Entry Substrate Yield (%) R group Product

1 1-Nonene 52 –(CH2)6CH3 4a
2 1-Decene 70 –(CH2)7CH3 4b
3 1-Undecene 63 –(CH2)8CH3 4c
4 Allyl benzene 83 –CH2Ph 4d
5 Allyl phenyl ether 61 –CH2OPh 4e
6 Allyl heptyl ether 51 –CH2O(CH2)6CH3 4f

Table 2 The reaction of coumalic acid with alkenes

Entry Substrate Yield (%) R group Product

1 1-Heptene 85 –(CH2)6CH3 8a
2 1-Decene 72 –(CH2)7CH3 8b
3 1-Undecene 69 –(CH2)8CH3 8c
4 Allyl benzene 79 –CH2Ph 8d
5 Allyl phenyl ether 65 –CH2OPh 8e
6 Allyl heptyl ether 66 –CH2O(CH2)6CH3 8f

ambient temperature, the reaction became homogeneous at
around 140 ◦C. The results are shown in Table 2.

The rationale for the remarkable regioselectivity is unclear.
The result may simply be due to non-bonded steric interactions
favoring the formation of adduct 6. However, we cannot rule out
the production of both 6 and 7 in equilibrium with the starting
materials, followed by the selective oxidation by Pd/C of 6.

3. Experimental

All starting materials were commercially available unless other-
wise noted. Methyl coumalate was prepared via the methylation
of coumalic acid.9 Allyl heptyl ether was prepared from 1-
heptanol and allyl bromide.10

Typical reaction procedure: Methyl coumalate (200 mg),
olefin (5 equiv.) and 50 mg 10% Pd/C were dissolved in 7 mL
mesitylene. The reaction was heated in a sealable tube in an oil
bath at 200 ◦C for 12–16 h. The reaction vessel was then cooled
to rt, the catalyst removed by filtering through a pad of Celite R©
and washed with ether. The filtrate was then concentrated
and purified by silica gel chromatography (10 : 1 hexanes/ethyl
acetate).

Methyl 4-heptylbenzoate (4a). 1H NMR (300 MHz, CDCl3):
d 7.95 (d, J = 7 Hz, 2H), 7.23 (d, J = 7 Hz, 2H), 3.90 (s, 3H), 2.65
(m, 2H), 1.59–1.26 (m), 0.88; 13C NMR (400 MHz, CDCl3): d
167.4, 144.3, 129.9, 128.9, 127.3, 52.3, 32.1, 30.0, 29.2, 26.4, 22.9,
14.3; HRMS (FAB) m/z exact mass calc. for C15H22O2 235.1693
(MH+), found 235.1699.

Methyl 4-octylbenzoate (4b). 1H NMR (300 MHz, CDCl3):
d 7.94 (d, J = 7 Hz, 2H), 7.24 (d, J = 7 Hz, 2H), 3.90 (s, 3H),
2.63 (m, 2H), 1.59–1.26 (m), 0.88; 13C NMR (400 MHz, CDCl3):
d; 167.4, 148.7, 129.8, 128.6, 127.4, 52.1, 36.2, 32.1, 31.4, 29.8,
29.7, 29.5, 22.9, 14.3; HRMS (FAB) m/z exact mass calc. for
C16H24O2 249.1849 (MH+), found 249.1815.

Methyl 4-nonylbenzoate (4c). 1H NMR (300 MHz, CDCl3):
d 7.96 (d, J = 7 Hz, 2H), 7.24 (d, J = 7 Hz, 2H), 3.90 (s, 3H),
2.64 (m, 2H), 1.59–1.26 (m), 0.88; 13C NMR (400 MHz, CDCl3):
d 167.5, 148.7, 129.8, 128.6, 127.4, 52.1, 36.3, 32.1, 31.4, 29.8,

29.7, 29.6, 29.5, 23.5, 14.4; HRMS (FAB) m/z exact mass calc.
for C17H26O2 (MH+) 263.2006, found 263.2005.

Methyl 4-benzylbenzoate (4d). Spectral data matches that in
the literature.8

Mehyl 4-(phenoxymethyl)benzoate (4e). 1H NMR
(300 MHz, CDCl3): d 8.05 (d, J = 7 Hz, 2H), 7.51 (d,
J = 7 Hz, 2H), 7.31–6.91 (m, 5H), 5.13 (s, 2H), 3.92 (s, 3H); 13C
NMR (400 MHz, CDCl3): d 167.1, 158.6, 142.5, 129.1, 128.9,
127.2, 121.4, 115.0, 69.5, 52.4; HRMS (FAB) m/z exact mass
calc. for C15H14O3 243.1016 (MH+), found 243.1009.

Methyl 4-(heptyloxymethyl)benzoate (4f). 1H NMR
(300 MHz, CDCl3): d 8.03 (d, J = 7 Hz, 2H), 7.39 (d, J = 7 Hz,
2H), 4.55 (s, 2H), 3.75 (m, 2H), 1.53–1.28 (m), 0.88; 13C NMR
(400 MHz, CDCl3): d 167.2, 144.3, 130.3, 128.9, 127.8, 72.0,
70.7, 52.3, 32.1, 29.9, 29.4, 26.4, 22.9, 14.3; HRMS (FAB) m/z
exact mass calc. for C16H24O3 265.1798 (MH+), found 265.1804.

4-Pentylbenzoic acid (8a). 1H NMR (400 MHz, CDCl3): d
12.06–11.6 (br, 1 H), 8.05 (d, J = 7 Hz, 2H), 7.29 (d, J = 7 Hz, 2H)
2.70 (t, J = 7 Hz, 2H), 1.73–1.53 (m, 2H) 1.53–1.22 (m, 4H), 0.93
(t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3): d 172.8, 149.8,
130.5, 128.8, 127.1, 36.3, 31.7, 31.1, 22.8, 14.3; HRMS (QTOF)
m/z exact mass calc. for C12H16O2 192.115, found 191.1078 (M–
H)-.

4-Octylbenzoic acid (8b). 1H NMR (300 MHz, CDCl3): d
12.54–12.12 (br, 1 H), 8.02 (d, J = 7 Hz, 2H), 7.27 (d, J = 7 Hz,
2H), 2.67 (t, J = 7 Hz, 2H), 1.70–1.51 (m, 2H), 1.37–1.17 (m,
10H), 0.88 (t, J = 7 Hz); 13C NMR (100 MHz, CDCl3): d 178.7,
149.8, 130.5, 128.8, 115.6, 36.4, 32.1, 31.4, 29.9, 29.7, 29.5, 22.9,
14.4; HRMS (QTOF) m/z exact mass calc. for C15H22O2 234.162,
found 233.1547 (M–H)-.

4-Nonylbenzoic acid (8c). 1H NMR (300 MHz, CDCl3): d
12.42–11.99 (br, 1 H), 8.03 (d, J = 7 Hz, 2H), 7.27 (d, J = 7 Hz,
2H), 2.67 (t, J = 7 Hz, 2H), 1.70–1.55 (m, 2H), 1.40–1.20 (m,
12H), 0.89 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3):
d 172.8, 149.8, 130.5, 128.8, 127.1, 36.4, 32.2, 31.4, 29.9, 29.7,
29.6, 29.5, 22.9, 14.4; HRMS (QTOF) m/z exact mass calc. for
C16H24O2 248.1776, found 247.1704 (M–H)-.

4-Benzylbenzoic acid (8d). 1H NMR (300 MHz, CDCl3): d
12.3–11.2 (br, 1H), 8.05 (d, J = 7 Hz, 2H), 7.40–7.21 (m, 7H),
4.06 (s, 2H); 13C NMR (100 MHz, CDCl3): d 172.5, 147.8, 140.2,
129.2, 129.1, 128.8, 128.3, 127.5, 126.7, 42.3; HRMS (QTOF)
m/z exact mass calc. for C14H12O2 212.0837, found 211.0765
(M–H)-.

4-(Phenoxymethyl)benzoic acid (8e). 1H NMR (300 MHz,
CDCl3): d 9.94 (br, 1H), 7.36–7.25 (m, 6H), 7.12–6.80 (m, 6H),
5.16 (s, 2H); 13C NMR (100 MHz, CDCl3): d 172.0, 152.6, 141.0,
130.5, 130.0, 129.7, 127.6, 121.1, 115.6, 69.3; HRMS (QTOF)
m/z exact mass calc. for C14H12O3 228.0789, found 227.0714
(M–H)-.

4-(Heptyloxy)methyl)benzoic acid (8f). 1H NMR (300 MHz,
CDCl3): d 9.93 (br, 1H), 8.05 (d, J = 7 Hz, 2H), 7.43 (d, J = 7 Hz,
2H), 4.56 (s, 2H), 3.63 (d, J = 7 Hz, 2H), 1,64–1.15 (m, 10 H), 0.87
(t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3): d 171.9, 145.1,
128.8, 128.0, 127.5, 71.5, 71.1, 32.1, 29.9, 29.4, 26.5, 22.9, 14.3;

This journal is © The Royal Society of Chemistry 2011 Green Chem., 2011, 13, 2734–2736 | 2735
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HRMS (QTOF) m/z exact mass calc. for C15H22O3 250.1569,
found 250.1576.
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