Tetrahedron Letters 56 (2015) 6433-6435

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Asymmetric synthesis of (+)- and (–)-deoxyfebrifugine and deoxyhalofuginone

Raed K. Zaidan[†], Shaun Smullen, Paul Evans^{*}

Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin 4, Ireland

ARTICLE INFO

Article history: Received 31 August 2015 Revised 25 September 2015 Accepted 29 September 2015 Available online 20 October 2015

Keywords: Stereoselective carbon–carbon bond formation Natural product analogues Racemisation Muscle development

ABSTRACT

Both enantiomers of deoxyfebrifugine (**4**) and deoxyhalofuginone (**5**), analogues of the quinazolinonecontaining biologically active compounds febrifugine (**1**) and halofuginone (**3**), have been prepared in a six-step reaction sequence featuring an organocatalyzed Mannich reaction as the key stereo-inducing step. The compounds were isolated as their dihydrobromide salts in 29–42% overall yield and in 74–80% enantiomeric excess.

© 2015 Elsevier Ltd. All rights reserved.

Febrifugine (1) is a naturally occurring substance found in *Dichroa febrifuga* (Chinese quinine) and a species from the Hydrangea family of plants.¹ *Dichroa febrifuga* has been used for centuries in traditional Chinese medicine for the treatment of a variety of ailments and since the first scientific papers concerning the plantbased active ingredient appeared (approximately sixty years ago) febrifugine (1) and its analogues have received attention² from both a biological³ and a chemical standpoint.⁴ In relation to the latter, the precise structure of febrifugine (1) was only finally confirmed in 1999–partly due to its isomerisation into isofebrifugine (2) (Fig. 1).^{4b,5}

Despite potent antimalarial activity febrifugine (**1**) proved too toxic to develop as an antimalarial medicine and attempts to mitigate this produced halofuginone (**3**), an analogue in which the metabolically vulnerable aromatic protons are masked.⁶ This compound has been used as a racemate in veterinary medicine to cure protozoal infections in livestock (particularly poultry) and serendipitously the anti-fibrotic activity of this compound was also uncovered.⁷ Since this discovery a great deal of effort has been dedicated to investigating and understanding halofuginone's properties in animal models for numerous diseases.⁸ These studies have ultimately supported the development of **3** as a human drug candidate and racemic halofuginone, has been the subject of clinical trials associated with its anticancer activity and its ability to

* Corresponding author. Tel.: +353 1 7162291.

E-mail address: paul.evans@ucd.ie (P. Evans).

improve the clinical indications in Muscular Dystrophy patients.⁹ We have previously synthesised both (+)- and (-)-febrifugine (1) and halofuginone (3)^{4v} and were keen to investigate how the presence of the 3-hydroxyl group affected activity. In part this was because the epimerisation event, likely occurring via a *retro*-conjugate addition, is complicated by hemiketal formation to generate isofebrifugine (2).² 'Deoxyfebrifugine' (4) has previously been prepared in racemic form three times and in one report its antimalarial activity was compared with febrifugine itself.¹⁰ As yet there are no reports concerning the synthesis of deoxyhalofuginone (5). In this work we wish to report the first asymmetric synthesis of both enantiomers of deoxyfebrifugine (4)

3.2HBr

4: R = R' = H; 5: R = Br; R' = CI

CrossMark

[†] Department of Chemistry, College of Science, Basra University, Basra, Iraq.

and deoxyhalofuginone (**5**) as well as a preliminary racemisation study.

The asymmetric Mannich reaction between an imine and an enolizable ketone, proceeding via enamine-based organocatalysis,¹¹ has been reported.¹² Recently, the range of imines utilised in this type of process has been widened to incorporate Δ^1 -piperideine (**6**),¹³ which Bella and co-workers have demonstrated reacts with several methyl ketones in the presence of several secondary amines possessing a Brønsted acidic group.¹⁴ Proline itself performs well in this chemistry and in this manner unnatural pelletierine was prepared in good yield and enantioselectivity. Since the functionalisation and alkylation of a methyl ketone with quinazolin-4(3*H*)-one (4-hydroxyquinazoline) has been well-established in febrifugine synthesis^{4b,10b} we felt that the asymmetric Mannich chemistry would be ideally suited for the synthesis of deoxyfebrifugine and deoxyhalofuginone.

As Scheme 1 illustrates, at room temperature **6** undergoes a rapid Mannich reaction with L-proline and excess acetone in a DMSO–water mixture (8:1). The crude material obtained after aqueous work-up was directly converted into the corresponding carbamate in order to minimise the loss of enantiomeric purity of the β -amino ketone by a *retro*-conjugate addition process¹⁵ and (–)-**7** was isolated in reasonable to good yields with enantiomeric ratios ranging from 85:15 to 90:10.¹⁶ Use of D-proline provided (+)-**7** in an otherwise identical sequence.¹⁷

With the enantioenriched 2-substituted piperidines (-)- and (+)-7 in hand their conversion into deoxyfebrifugine and deoxyhalofuginone was considered. As shown in Scheme 2, the methyl group in (-)-7 was brominated using a two-step, one-pot procedure involving the formation of a trimethylsilyl enol ether. The crude bromide, obtained after work up, was then treated with quinazolin-4(3*H*)-one (10), or 7-bromo-6-chloroquinazolin-4 (3*H*)-one (11), to form (-)-8 and (-)-9 respectively. The efficiency of this sequence was improved by the inclusion of activated 4 Å molecular sieves during silyl enol ether formation. Chiral HPLC confirmed that no change in stereochemical integrity had occurred over the three-step reaction sequence and it should be mentioned that recrystallisation of (-)-9 from MeOH did not enhance its enantiomeric ratio.

Finally, the Cbz group was removed with HBr in acetic acid, providing either (+)-**4** or (+)-**5**, as their dihydrobromide salts, in yields of approximately 55% for the four steps. In the case of **8** this reaction was performed with DCM as a solvent, however, due to its poor solubility in this solvent the conversion of **9** into **5** was performed solely in neat HBr/AcOH. Similarly, (+)-Cbz protected pelletierine **7** was converted into the enantiomeric dihydrobromide salts of (-)-**4** and (-)-**5**.

Since the interconversion between **1** and **2** (Fig. 1) has both been reported (and indeed taken advantage of synthetically)^{2,4} and the epimerisation/racemisation of pelletierine (and related β -amino heterocycles like hygrine) is also well-known,¹⁵ the integrity of the stereogenic centre (in **4** and **5**) was of interest. This point was addressed following the Cbz-protection of **5** to again give **9** and then analysing HPLC data.

Initially, (+)-**5** was converted into (-)-**9** using Et₃N, CbzCl at 0 °C to room temperature in a water-dichloromethane solvent mixture. Chiral HPLC analysis of (-)-**9** prepared in this manner indicated that the enantiomeric ratio of the re-protected material was identical to that used for the original preparation of (+)-**5**, thereby, confirming that no erosion of enantiomeric purity had taken place over the deprotection sequence. Next, salt (-)-**5** was dissolved in water and left to stand for five days before treatment with a mixture of Et₃N and CbzCl in dichloromethane. Similarly, (+)-**9** prepared in this manner demonstrated that racemisation had not taken place. Finally, (-)-**5** was dissolved in water and then treated with Et₃N in dichloromethane and stirred for five days. The biphasic mixture, containing the free-base, was then treated with CbzCl. After purification, chiral HPLC indicated that racemisation had taken place.

In summary, we report the Mannich-based stereoselective synthesis of both enantiomers of deoxyfebrifugine (**4**) and deoxyhalofuginone (**5**). Following the short, telescoped reaction sequence (+)- and (-)-**4** as well as (+)- and (-)-**5** were accessed from Δ^1 -piperideine (**6**) in 29–42% overall yield and in 74–80% ee. We have shown that loss of stereochemical integrity does not readily take place when the secondary amine is stored as the corresponding ammonium salt. However, in solution the free-base does undergo racemisation. Studies concerning the enantiomer specific ability of deoxyfebrifugine and deoxyhalofuginone to

Scheme 1. Synthesis of (+)- and (-)-Cbz-protected pelletierine (7) via Bella's asymmetric Mannich reaction.

Scheme 2. Conversion of (+)- and (-)-Cbz-protected pelletierine (7) into (+)- and (-)-deoxyfebrifugine (4) and deoxyhalofuginone (5).

ameliorate the histopathology and muscle function in muscular dystrophies are currently underway.

Acknowledgments

We thank University College Dublin for financial support and the Ministry of Higher Education Iraq and Basra University Iraq for a postgraduate scholarship (R.K.Z.).

Supplementary data

Supplementary data (full experimental details, scanned proton and carbon spectra and HPLC traces) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. tetlet.2015.09.146.

References and notes

- (a) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem. Soc. 1837, 1947, 69; (b) Kuehl, F. A., Jr.; Spencer, C. F.; Folkers, K. J. Am. Chem. Soc. 1948, 70, 2091; (c) Koepfli, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem. Soc. 1949, 71, 1048; (d) Koepfli, J. B.; Brockman, J. A., Jr.; Moffat, J. J. Am. Chem. Soc. 1950, 72, 3323; (e) Ablondi, F.; Gordon, S.; Morton, J., II; Williams, J. H. J. Org. Chem. 1952, 17, 14.
 For reviews see: (a) Takeuchi, Y.; Harayama, T. Trends Hetero. Chem. 2001, 7, 65;
- (b) McLaughlin, N. P.; Evans, P.; Pines, M. *Bioorg. Med. Chem.* 1993, 2014, 22.
- 3. For selected examples of biological and medicinal chemistry see: (a) Kikuchi, H.; Tasaka, H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.; Hatakeyama, S.; Kim, H.-S.; Wataya, Y.; Oshima, Y. J. Med. Chem. 2002, 45, 2563; (b) Kikuchi, H.; Yamamoto, K.; Horoiwa, S.; Hirai, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. J. Med. Chem. 2006, 49, 4698; (c) Zhu, S.; Zhang, Q.; Gudise, C.; Wei, L.; Smith, E.; Zeng, Y. Bioorg. Med. Chem. 2009, 17, 4496; (d) Sundrud, M. S.; Koralov, S. B.; Feuerer, M.; Calado, D. P.; Kozhaya, A. E.; Rhule-Smith, A.; Lefebure, R. E.; Unutmaz, D.; Mazitschek, R.; Waldner, H.; Whitman, M.; Keller, T. L.; Rao, A. Science 2009, 324, 1334; (e) Keller, T. L.; Zocco, D.; Sundrud, M. S.; Hendrick, M.; Edenius, M.; Yum, J.; Kim, Y.-J.; Lee, H.-K.; Cortese, J. F.; Wirth, D. F.; Dignam, J. D.; Anjana Rao, A.; Yeo, C.-Y.; Mazitschek, R.; Whitman, M. Nat. Chem. Biol. 2012, 8, 311; (f) Derbyshire, E. R.; Mazitchek, R.; Clardy, J. ChemMedChem 2012, 7, 844; (g) Zhou, H.; Sun, L.; Yang, X.-L.; Schimmel, P. Nature 2013, 494, 121; (h) Son, J.; Lee, E. H.; Park, M.; Kim, J. H.; Kim, J.; Kim, S.; Jeon, Y. H.; Hwang, K. Y. Acta Cryst. 2013, D69, 2136; (i) Liang, J.; Zhang, B.; Shen, R. W.; Liu, J. B.; Gao, M. H.; Li, Y.; Li, Y. Y.; Zhang, W. PlOS One 2013, 8, e82232; (j) Bodanovsky, A.; Guttman, N.; Barzilai-Tutsch, H.; Genin, O.; Levy, O.; Pines, M.; Halevy, O. Biochim. Biophys. Acta-Mol. Cell Res. 2014, 1843, 1339; (k) Jin, M. L.; Park, S. Y.; Kim, Y. H.; Park, G.; Lee, S. J. Int. J. Oncol. **2014**, 44, 309; (1) Kikuchi, H.; Horoiwa, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. Eur. J. Med. Chem. 2014, 76, 10; (m) Mai, H. D. T.; Thanh, G. V.; Tran, V. H.; Vu, V. N.; Vu, V. L.; Truong, B. N.; Phi, T. D.; Chau, V. M.; Pham, V. C. Tetrahedron Lett. 2014, 55, 7226; (n) Jain, V.; Yogavel, M.; Oshima, Y.; Kikuchi, H.; Touquet, B.; Hakimi, M.-A.; Sharma, A. *Structure* **2015**, 23, 819.
- For syntheses of febrifugine 1 and isofebrifugine 2 see: (a) Burgess, L. E.; Gross, E. K. M.; Jurka, J. *Tetrahedron Lett.* **1996**, *37*, 3255; (b) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y. J. Org. Chem. **1999**, *64*, 6833; (c) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Harayama, T. Chem. Commun. **2000**, 1643; (d) Takeuchi, Y.; Azuma, K.; Abe, H.; Harayama, T. *Heterocycles* **2000**, 53, 2247; (e) Taniguchi, T.; Ogasawara, K. Org. Lett. **2000**, *2*, 3193; (f) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H.-S.; Wataya, Y.; Harayama, T. *Tetrahedron* **2001**, *57*, 1213; (g) Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. **2001**, *3*, 953; (h) Huang, P.-Q.; Wei, B.-G.; Ruan, Y.-P. Synlett **2003**, 1663; (i) Katoh, M.; Matsune, R.; Nagase, H.;

Honda, T. Tetrahedron Lett. 2004, 45, 6221; (j) Ashoorzadeh, A.; Caprio, V. Synlett 2005, 346; (k) Takeuchi, Y.; Oshige, M.; Azuma, K.; Abe, H.; Harayama, T. Chem. Pharm. Bull. 2005, 53, 868; (1) Katoh, M.; Matsune, R.; Honda, T. Heterocycles 2006, 67, 189; (m) Wee, A. G. H.; Fan, G.-J. Org. Lett. 2008, 10, 3869; (n) Sukemoto, S.; Oshige, M.; Sato, M.; Mimura, K.-I.; Nishioka, H.; Abe, H.; Harayama, T.; Takeuchi, Y. Synthesis 2008, 3081; (o) Sieng, B.; Ventura, O. L.; Bellosta, V.; Cossy, J. Synlett 2008, 1216; (p) Sudhakar, N.; Srinivasulu, G.; Rao, G. S.; Rao, B. V. Tetrahedron: Asymmetry 2008, 19, 2153; (q) Liu, R.-C.; Huang, W.; Ma, J.-Y.; Wei, B.-G.; Lin, G.-Q. Tetrahedron Lett. 2009, 50, 4046; (r) Wijdeven, M. A.; van den Berg, R. J. F.; Wijtmans, R.; Botman, P. N. M.; Blaauw, R. H.; Schoemaker, H. E.; van Delft, F. L.; Rutjes, F. P. J. T. Org. Biomol. Chem. 2009, 7, 2976; (s) Chen, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131, 12546; (t) Ashoorzadeh, A.; Archibald, G.; Caprio, V. Tetrahedron 2009, 65, 4671; (u) Emmanuvel, L.; Kamble, D. A.; Sudalai, A. Tetrahedron: Asymmetry 2009, 20, 84; (v) McLaughlin, N. P.; Evans, P. J. Org. Chem. 2010, 75, 518; (w) Pansare, S. V.; Paul, E. K. Synthesis 2013, 1863.

- Takeuchi, Y.; Azuma, K.; Oshige, M.; Abe, H.; Nishioka, H.; Sasaki, K.; Harayama, T. Tetrahedron 2003, 59, 1639.
- (a) Hirai, S.; Kikuchi, H.; Kim, H.-S.; Begum, K.; Wataya, Y.; Tasaka, H.; Miyazawa, Y.; Yamamoto, K.; Oshima, Y. J. Med. Chem. 2003, 46, 4351; (b) Jiang, S.; Zeng, Q.; Gettayacamin, M.; Tungtaeng, A.; Wannaying, S.; Lim, A.; Hansukjariya, P.; Okunji, C. O.; Zhu, S.; Fang, D. Antimicrob. Agents Chemother. 2005, 49, 1169; (c) Zhu, S.; Meng, L.; Zhang, Q.; Wei, L. Bioorg. Med. Chem. Lett. 1854, 2006, 16; (d) Linder, M. R.; Heckeroth, A. R.; Najdrowski, M.; Daugschies, A.; Schollmeyer, D.; Miculka, C. Bioorg. Med. Chem. Lett. 2007, 17, 4140.
- (a) Angel, S.; Weinberg, Z. G.; Polishuk, O.; Heit, M.; Plavnik; Bartov, I. Poultry Sci. 1985, 64, 294–296; (b) Granot, I.; Halevy, O.; Hurwitz, S.; Pines, M. Biochim. Biophys. Acta Gen. Subjects 1993, 1156, 107; (c) Halevy, O.; Nagler, A.; Levi-Schaffer, F.; Genina, O.; Pines, M. Biochem. Pharmacol. 1996, 52, 1057.
- (a) Bruck, R.; Genina, O.; Aeed, H.; Alexiev, R.; Nagler, A.; Avni, Y.; Pines, M. *Hepatology* **2001**, *33*, *379*; (b) Gavish, Z.; Pinthus, J. H.; Barak, V.; Ramon, J.; Nagler, A.; Eshhar, Z.; Pines, M. *Prostate* **2002**, *51*, *73*; (c) Pines, M.; Halevy, O. *Histol. Histopathol.* **2011**, *26*, 135; (d) Leiba, M.; Jakubikova, J.; Klippel, S.; Mitsiades, C. S.; Hideshima, T.; Tai, Y. T.; Leiba, A.; Pines, M.; Richardson, P. G.; Nagler, A.; Anderson, K. C. Br. J. Haematol. **2012**, *157*, 718; (e) Pines, M.; Spector, I. *Molecules* **2015**, *20*, 573.
- (a) de Jonge, M. J. A.; Dumez, H.; Verweij, J.; Yarkoni, S.; Snyder, D.; Lacombe, D.; Marréaud, S.; Yamaguchi, T.; Punt, C. J. A.; van Oosterom, A. Eur. J. Cancer 2006, 42, 1768; (b) Duchenne Muscular Dystrophy Trial (NCT01 847573). Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses of HT-100 in Duchenne Muscular Dystrophy. ClinicalTrialGov, A service of the U.S. National Institutes of Health.
- (a) Baker, B. R.; Querry, M. V.; Schaub, R. E.; Williams, J. H. J. Org. Chem. 1952, 17, 58; (b) Takeuchi, Y.; Tokuda, S.-I.; Takagi, T.; Koike, M.; Ahe, H.; Harayama, T.; Shihata, Y.; Kim, H.; Wataya, Y. Heterocycles 1869, 1999, 51; (c) Michael, J. P.; de Koning, C. B.; Pieraar, D. P. Synlett 2006, 383.
- 11. Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
- (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336; (b) Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C. F., III Tetrahedron Lett. 2001, 42, 199; (c) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827; (d) Itoh, T.; Yokoya, M.; Miyauchi, K.; Nagata, K.; Ohsawa, A. Org. Lett. 2003, 5, 4301.
- 13. Rouchaud, A.; Braekman, J. C. Eur. J. Org. Chem. 2009, 2666.
- 14. Monaco, M. R.; Renzi, P.; Scarpino Schietroma, D. M.; Bella, M. Org. Lett. 2011, 13, 4546.
- **15.** Prolonged handling of pelletierine as its free base led to a reduction in enantiomeric purity, presumably due to a *retro*-Michael process. See: (a) Yan, L.-H.; Dagorn, F.; Gravel, E.; Séon-Méniel, B.; Poupon, E. *Tetrahedron* **2012**, *68*, 6276; (b) Durant, A.; Hootelé, C. *Can. J. Chem.* **1992**, *70*, 2722.
- Performing the reaction at 5 °C, under otherwise identical conditions, led to the isolation of (-)-7 in 23% and 75% ee.
- 17. In Bella's report (Ref. 14) PhCN at -20 °C (0.7 M) for 7 days gave optimal enantioselectivity (up to 95% ee) for this process. However, the high boiling point of this solvent and the lengthy reaction period meant that we opted for the practical and scalable conditions reported herein.