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A B S T R A C T   

A series of novel 3-indolinone-thiazolidinones and oxazolidinones 4a-k was synthesized via molecular hybridi
zation approach and sequentially evaluated to explore its cytotoxic activity. The cytotoxicity screening pointed 
toward the N-cyclohexyl thiazolidinone derivative 4f that revealed promising renal cytotoxicity against CAKI-1 
and UO-31 renal cancer cell lines with IC50 values 4.74 and 3.99 µM, respectively, which were comparable to 
those of sunitinib along with good safety threshold against normal renal cells. Further emphasis on compound 4f 
renal cytotoxicity was achieved via different enzyme assays and CAKI-1 and UO-31 cell cycle analysis. The results 
were supported by in silico studies to explore its physicochemical, pharmacokinetic and drug-likeness properties. 
Finally, compound 4f was subjected to an in vivo pharmacokinetic study through two different routes of 
administration showing excellent oral bioavailability. This research represents compound 4f as a promising 
candidate against renal cell carcinoma.   

1. Introduction 

Cancer describes a condition where cellular changes cause the un
controlled growth and division of cells with more than 1.9 million ex
pected new cases in 2021 [1]. Kidney cancer represents the third tumor 
of the urinary tract most frequently diagnosed in adults [2]. Renal cell 
carcinoma (RCC) is the most common type of kidney cancer. It is highly 
aggressive in nature and is the most lethal type among the urologic 
malignancies with estimated 13.780 deaths in 2021 [1]. The patho
genesis of RCC involves alteration in genes associated with angiogenesis 
and consequently this type of tumor is usually rich in vasculature [3,4]. 
Accordingly, current RCC treatments rely on tyrosine kinase inhibitors 
that target the VEGF signaling axis associated with angiogenesis process 
and consequently, inhibitors of VEFGR (vascular endothelial growth 
factor receptor) and PDGFR (platelet-derived growth factor receptor) 
became the glowing hope as first line treatment of RCC [5]. 

In 2006, the indolinone-based drug sunitinib I was the first anti
angiogenic drug approved by the US FDA for the treatment of imatinib- 
resistant advanced RCC [6,7]. Sunitinib is considered as multi inhibitor 
of tyrosine kinases including VEGFR, PDGFR and c-KIT [8] and hence, it 
is considered as the first-line standard treatment for RCC displacing the 
traditional immunotherapy technique [9–11]. Unfortunately, several 

researches reported sunitinib therapy resistance which necessitates 
further emphasis on other potential candidates for treating RCC 
[12–20]. 

Accordingly, it deemed of interest to focus on other anti-VEGF 3- 
substituted indolinone drugs as semaxanib II [21,22], nintedanib III 
[23] and orantinib IV [24] with pronounced inhibitory activity. In 
addition to the above mentioned facts, 1H-indole-2,3-dione (isatin) de
rivatives are valuable precursors with variable biological activities 
[25,26] and pronounced anticancer activity with different mechanisms 
[27–33] against variable types of tumors as exemplified by compounds 
V-IX with potent antitumor activity such as renal carcinoma [34], 
metastatic advanced solid tumors [35], liver carcinoma [36] and colon 
carcinoma [37,38]. These mentioned data pointed toward this class of 
compounds as promising antitumor scaffolds (Fig. 1). In the same vein, 
hybridization of indolinone moiety with other five or six membered 
heterocycles would augment the expected antitumor activity 
[28,38–40]. 

In the light of the aforementioned findings, it seemed beneficial to 
incorporate the indolinone ring together with suitable 5-membered 
heterocycles. Accordingly, the aim of this work was to design and syn
thesize different indolinone-N-substituted thiazolidinone/oxazolidinone 
hybrids with promising anticancer activity and efficient 
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pharmacokinetic profile that would be better or comparable to sunitinib 
that is currently developing resistance against RCC. 

2. Results and discussion 

2.1. Chemistry 

The indolinone-based compounds 4a-k were synthesized according 
to Scheme 1 where firstly, different isocyanates/thiocyanates were 
reacted with hydrazine hydrate to form semi/thiosemicarbazide de
rivatives 1a-k that were found to be in accordance with their reported 
data [41–46]. The formed intermediates 1a-k were then reacted with 
the key compound isatin 2 in absolute ethanol in presence of few drops 
of glacial acetic acid [47] to obtain different hydrazine carboxamide/ 
thioamide intermediates 3a-k [47–52]. Finally, cyclization of the open 
structures 3a-k was achieved via the reaction with chloroacetic acid in 
glacial acetic acid and fused sodium acetate to get the final compounds 
4a-k. Interestingly, the structure of the 5-membered ring obtained var
ied according to the reaction conditions, where conducting the reaction 
in glacial acetic acid afforded the thiazolidinone 4a-g and oxazolidinone 
4h-k derivatives [53,54] while performing the reaction under basic 
conditions such as pyridine [55] or potassium hydroxide [56] afforded 
the thioxoimidazolidinone/imidazolidinedione derivatives. 

The IR spectra of compounds 4a-k revealed additional C––O 
stretching band along with that of indolinone in the range of 1666–1747 
cm− 1. 1H NMR spectra of all the final compounds 4a-k displayed a 
singlet signal corresponding to the two protons of CH2 group of the 
thiazolidinone/oxazolidinone ring at 4.0–4.37 ppm confirming the 
cyclization process, in addition to the appearance of aliphatic signals 
matching the expected pattern of CH3, C2H5, butyl, and chloroethyl 

groups in compounds 4b-d and 4i, and the characteristic pattern of the 
allylic protons in compound 4e. In the same vein, multiplet signals in
tegrated for the ten cyclohexyl protons were observed in the range of 
1.25–2.40 and 1.13–3.56 ppm in compounds 4f and 4j, respectively. 
Meanwhile, an increase in the integration of the aromatic protons 
confirmed the additional phenyl rings in compounds 4 g and 4 k. 13C 
NMR of all the compounds were in accordance with their proposed 
carbon skeleton confirming the cyclization step showing the signal of the 
CH2 carbon at 30.2–38.4 ppm and the added carbonyl carbon in the 
range of 169.0–174.4 ppm. 

2.2. Biological evaluation: 

2.2.1. Antiproliferative activity 

2.2.1.1. In vitro anticancer activity as primary single high dose (10 µM) 
screening. Initially, all the final synthesized compounds 4a-k were 
selected to be screened at a single high dose (10 µM) against a panel of 
sixty cancer cell lines by the NCI Developmental Therapeutic Program 
(www.dtp.nci.nih.gov) to evaluate their cytotoxicity at concentration 
10 µM against sixty cancer cell lines, for more information see Table S1 
(Appendix A). 

The examination of the growth inhibition results revealed that 
generally the thiazolidinone derivatives (4a-g) showed a broader spec
trum than the oxazolidinone derivatives (4 h-k) which exhibited weak 
growth inhibition % (GI %). All the compounds demonstrated cytotox
ic behavior activity against the ovarian and renal cell lines with com
pound 4f exhibiting the broadest spectrum cytotoxic activity among all 
the screened compounds, with different degrees of GI % against nearly 
all the screened tumor cell types. This compound displayed a focused 

Fig. 1. Structure of indolinone-based antitumor drugs (I-IV) and compounds V-IX.  
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activity against colon KM12, melanoma UACC-62 and ovarian IGROV1 
and SK-OV-3 cancer cell lines with GI %= 84.9, 60, 65.9, 74.1, respec
tively, for more information, see Table S1 (Appendix A). Moreover, 
compound 4f demonstrated significant clustered cytotoxic activity 
against 5 renal cancer cell lines namely A498, ACHN, CAKI-1, RXF393 
and UO-31 with GI % = 69.5, 59.6, 77.7, 78.4 and 61.4, respectively 
(For more information see Figure S1, See Appendix A). In addition, 
Compounds 4d and 4 g showed moderate GI % against 11 and 9 cancer 
cell lines in the range of 30 – 56 % and 31–50%, respectively. 

2.2.1.2. SAR studies. The structure–activity relationship of the synthe
sized final compounds was investigated for A498, ACHN, CAKI-1, 
RXF393 and UO-31 renal cell lines, since the inhibition effect of most 

of these compounds was well noticeable on the growth of these cell lines, 
(Table 1). 

Generally, the cytotoxic activity is significantly increased by isosteric 
replacement of the oxygen atom in the oxazolidinone derivatives (4 h-k) 
(GI %= 5.87–11.65) with a sulfur atom in the thiazolidinone derivatives 
(4a-g) (GI %= 16.61–69.38). Comparing the derivatives substituted 
with an aliphatic side chain, it was observed that its elongation to four 
carbons as in 4d (GI %= 23.94–47.31) afforded more enhanced activity 
than two carbons as in 4c (GI %= 17.58–40.98), more than one carbon 
as in 4b (GI %= 1.08–33.56). On the other side, incorporation of a 
double bond in the aliphatic side chain generally decreased the cytotoxic 
activity as shown in the thiazolidinone derivative (4e) (GI %=

20.21–35.30). In addition, it was noticed that alicyclic substitution 

Scheme 1. Reaction conditions: (a) Hydrazine hydrate 85%, ethanol, stir, room temperature, 30 min., (b) Absolute ethanol, glacial acetic acid, reflux, 2-44 h, (c) 
Chloroacetic acid, glacial acetic acid, fused sodium acetate, reflux, 6-35 h. 

Table 1 
Growth inhibition % (GI %) of compounds 4a-k on A498, ACHN, CAKI-1, RXF393 and UO-31 renal cell lines.  

Compound X R A498 ACHN CAKI-1 RXF 393 UO-31 Mean 

4a S H NTa 16.940 23.980 0 40.299 20.305 
4b S CH3 12.239 13.209 22.989 1.083 33.557 16.615 
4c S C2H5 17.580 23.099 40.980 23.477 39.488 28.925 
4d S C4H9 35.894 24.823 44.043 23.943 47.315 35.204 
4e S CH2CH––CH2 22.476 20.207 35.297 28.772 32.844 27.919 
4f S 69.556 59.687 77.748 78.464 61.444 69.380 

4g S 27.854 31.254 50.388 31.801 44.632 37.186 

4h O H NTa 0 8.280 3.540 34.790 11.652 
4i O -CH2CH2Cl 4.426 0 10.911 0 14.000 5.867 
4j O 15.073 3.988 15.758 2.948 10.296 9.613 

4k O 10.528 0 17.070 6.292 14.976 9.773  

a NT = not tested. 
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exhibited a pronounced growth inhibition in the thiazolidinone deriv
ative (4f) (GI %= 59.69–78.46) much more than its oxazolidinone iso
stere (4j) (% GI = 2.95–15.76). This effect is moderately decreased by 
ring aromatization as shown in the thiazolidinone derivative 4 g (GI %=

27.85–50.39) when compared to the cyclohexyl substituted derivative 
(4f); an effect that is not well observed with the oxazolidinone derivative 
(4 k) (GI %= 0–17.07). 

2.2.1.3. In vitro cytotoxic activity and selectivity against five renal cancer 
cell lines. The most active compound 4f was further evaluated for its 
inhibition activity against five renal cancer lines as well as normal renal 
cells. The previous NCI screening at a single compound dose pointed 
toward the clustered renal cytotoxicity of compound 4f. Accordingly, 
IC50 values for compound 4f were calculated against the most vulnerable 
renal cancer cell lines namely A498, ACHN, CAKI-1, RXF393 and UO-31 
as well as the corresponding RPTEC/TERT1 normal renal cells normal 
with respect to the reference drug, sunitinib, adopting an MTT colori
metric screening assay [57] to explore both its potential toxicity and 
selectivity. Sunitinib was the best choice here not only because of its 
nucleus structural similarity to compound 4f but also for its prominent 
renal cytotoxicity. (Tables 2 and 3). 

Clearly, the given results in Table 2 showed that the IC50 values of 
compound 4f were all significantly different than those of sunitinib in 
the five renal cancer cell lines. In addition, the results revealed the su
perior cytotoxic activity of compound 4f against CAKI-1 and UO-31 
renal cancer cell lines compared to the rest of the investigated cell 
lines with IC50 values = 4.74 and 3.99 µM compared to sunitinib IC50 
values = 5.51 and 2.94 µM, respectively corresponding to 0.86 and 1.35- 
folds relative to sunitinib. In addition, the results in Table 3 indicated 
that the best selectivity indices were against CAKI-1 and UO-31 renal 
cancer cells with 6.09 and 7.24-fold selectivity among the five-screened 
compounds with selectivity 1.54-fold lower than sunitinib in the normal 
renal cell line. 

2.2.1.4. Antiangiogenic activity preliminary study. Angiogenesis is the 
physiological process of the growth of new blood vessels from preex
isting ones under normal condition [58]. Likewise, the progression and 
metastasis of any tumor depends on the development of new blood 
vessels in and around the tumor where they could supply adequate ox
ygen and nutrition to the tumor cells [59–62]. The strong correlation 
between RCC and angiogenesis is well established [62–64] where mis
coding of VHL, the tumor suppressor gene, usually results in enhanced 
expression of certain growth factors such as vascular endothelial growth 
factor (VEGF) and platelet derived growth factor (PDGF) [65] and 
consequently promoting abundant vascularization and aberrant activa
tion of signaling pathways leading to cell proliferation and inhibition of 
apoptosis [66]. It’s worth mentioning that despite the fact that activa
tion of both PDGFR isomers evoke mitogenic signals but it was proved 
that stimulation of PDGFRα inhibits chemotaxis of fibroblasts and 
smooth muscle cells while PDGFRβ activation potently stimulates 
fibroblast chemotaxis [67,68]. Therefore, the pronounced renal cyto
toxicity of compound 4f can be rationalized by proving its significant 
antiangiogenic activity against PDGFRß isoform with IC50 value com
parable to the well-known antiangiogenic reference drug sunitinib 
[68–71]. (Table 4) 

2.2.1.5. Cell cycle analysis and apoptosis study:. The promising IC50 
values of compound 4f against CAKI-1 and UO-31 renal cancer cell lines 
urged us to conduct its cell cycle analysis on both CAKI-1 and UO-31 
renal cancer cell lines as well as an apoptotic study by Annexin V- 
based flow cytometric analysis. 

2.2.1.6. Cell cycle analysis on CAKI-1 and UO-31 renal cancer cell lines. 
In this part, the effect of compound 4f on different cell cycle phases of 
CAKI-1 and UO-31 renal cancer cell lines was investigated by treating 
the cells with concentration equals to its IC50 value (5.03 and 4.39 µM, 
respectively). Fig. 2 clarified that exposure of CAKI-1 and UO-31 renal 
cancer cells to compound 4f resulted in significant cell cycle arrest at 
G2/M and pre-G1 phases with increase by 3.17 and 8.6 folds and by 9.51 
and 13.86 folds, respectively. This was accompanied with concurrent 
reduction in the percentage of cells at G0-G1 and S phases by approxi
mately 0.49 and 0.46 folds and at the S phase by approximately 0.71 and 
0.97 folds, respectively compared to the renal cancer cell without any 
treatment [72,73]. 

2.2.1.7. Annexin-V FTIC apoptotic study. The apoptotic effect of com
pound 4f was studied using Annexin-V FTIC/PI dual staining assay at its 
IC50 concentration on CAKI-1 and UO-31 renal cancer cell lines. The 
results revealed the apoptotic impact of compound 4f displaying a 
pronounced increase in the percentage of positive apoptotic cells in 
(Upper Right + Lower Right) quadrants from 1.52% to 18.2% and from 
1.52% to 23.97%, respectively in CAKI-1 and UO-31 renal cell lines 
which comprises 11.97- and 15.76- fold increase with respect to the 
control, respectively. In the same context, compound 4f caused 2.94- 
and 6-fold increase in its necrotic ability compared to the control, 
(Fig. 3). 

2.2.1.8. In vitro CDK inhibitory activity:. Cyclin-dependent kinases 
(CDKs) play crucial roles as regulators of cell progression through 
different phases of the cell cycle and are regulated by phosphorylation 
and activated by their association with cyclins [74]. Cyclin-dependent 
kinase 1 enzyme (CDK1) is considered as central cell cycle regulator 
that drives cells through G2 phase and mitosis [75,76] while the role of 
CDK2 enzyme in G1 to S checkpoint activation is well documented [77]. 
Simultaneously, the cell cycle analysis results of compound 4f together 
with its renal cytotoxicity pathed the road to explore its CDK inhibitory 
activity in its different isoforms; CDK1/cyclin A, CDK1/cyclin B and 
CDK2/ cyclin A enzymes using the well-known CDK inhibitor, roscovi
tine as the reference drug. The IC50 values were calculated using 
nonlinear regression analysis of their inhibition curves as shown in 

Table 2 
IC50 values (µM) of compound 4f and sunitinib against five renal cancer cell 
lines.  

Compound A498 ACHN CAKI-1 RXF393 UO-31 

4f 8.1 ±
0.31* 

17.47 ±
0.46* 

4.74 ±
0.19* 

23.57 ±
0.71* 

3.99 ±
0.11* 

Sunitinib 5.24 ±
0.18 

5.42 ±
0.22 

5.51 ±
0.26 

10.55 ±
0.32 

2.94 ±
0.10  

* IC50 is significantly different from that of sunitinib at P < 0.05. 

Table 3 
Selectivity index of compound 4f toward normal renal cell line against five renal 
cancer lines.  

Compound RPTEC/TERT1 
(IC50, µM) 

Selectivity Index a 

A498 ACHN CAKI-1 RXF393 UO-31 

4f 28.89 ± 2.22* 3.57 1.65 6.09 1.23 7.24 
Sunitinib 18.78 ± 0.69 3.58 3.46 3.41 1.78 6.39 

* IC50 is significantly different from that of sunitinib at P < 0.05. 
a Selectivity index = IC50 on normal cells/IC50 on tumor cells. 

Table 4 
IC50 values (nM) of compound 4f and sunitinib against angiogenesis promoting 
enzymes VEGFR2, PDGFRα and PDGFRß.  

Compound VEGFR2 
IC50 [nM] 

PDGFRα 
IC50 [nM] 

PDGFRß 
IC50 [nM] 

4f 452.53 ± 10.81* 280.916 ± 17.10* 45.013 ± 2.10* 
Sunitinib 38 ± 3.92 69 ± 13.92 55 ± 1.61 

*IC50 is significantly different from that of sunitinib at P < 0.05. 
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Table 5. Closer look on the results located in the nM range indicates that 
compound 4f exhibited 6.1, 0.19 and 1.64-fold inhibitory potency to
ward CDK1/cyclin A, CDK1/cyclin B and CDK2/cyclin A enzymes, 
respectively compared to the corresponding value of roscovitine with 
significant statistical difference at P < 0.05. These results support the 
previous results of the apoptotic study with the marked increase in the 
percentage of positive apoptotic cells and complements its previous 
antiangiogenic activity against PDGFRß isoform in comparison to 
sunitinib. 

2.3. In silico studies 

2.3.1. Drug likeness profile 
Physicochemical properties are important aspects to consider in drug 

design and drug development [78]. They affect both pharmacokinetics 
and pharmacological properties leading ultimately to modification in 
the biological activity. In this context, the physicochemical properties as 
well as the drug-like nature profile of compound 4f were computed 
using SwissADME online web tool provided by the Swiss Institute of 
Bioinformatics (SIB) [79]. A summary of these predictions is shown in 
Table 6. The compound exhibits a predicted logPo/w in a range of 
1.65–3.31, moderate water solubility without blood brain barrier 
permeability (BBB) and thus no anticipated CNS side effects. A probable 
high gastrointestinal absorption is predicted, as confirmed later in the in 
vivo pharmacokinetic results. In addition, it is not expected to be a 
substrate of the p-glycoprotein, so it is not disposed drug-resistance due 
to its efflux mechanism used by many tumor cells [80]. Another 
important fact that could be concluded from table 6 is that out of the five 
predicted CYPs, compound 4f inhibited three isoforms namely CYP2C9, 
CYPIA2 and CYP2C19 while it wasn’t able to inhibit two isoforms 
namely CYP2D6 and CYP3A4. It is worth mentioning that CYP2C9 has 
great impact on the metabolism of important drug families as NSAIDs 
[81], antihypertensives [82] and some CNS neurotransmitters as sero
tonin [83] while CYP2C19 inhibition could lead to alterations in the 

metabolism of arachidonic acid, [84] which together with the inhibition 
of CYP1A2 can generate problems in the metabolism of hormones [85] 
and cholesterol synthesis [86,87]. 

Finally, compound 4f complies with the drug-likeness properties 
with no violation of Lipinski (Pfizer), [88] Ghose, [89] Veber (GSK), 
[90] Egan (Pharmacia) [91] and Muegge (Bayer) [92] filters specified by 
the major pharmaceutical companies. In addition, this compound ex
hibits high drug-likeness and bioavailability scores. One alert for Brenk 
problematic fragments [93] and for Pan Assay Interfering substances 
(PAINS) [94] were reported due to the presence of the imine fragment. 
Accordingly, compound 4f is not only with promising biological efficacy 
but also with encouraging pharmacokinetic and physicochemical 
properties (Table 6). 

2.3.1.1. Molecular docking study. By searching the protein data bank 
(PDB), a co-crystallized PDGFRβ protein structure with an inhibitor was 
not available. The only available proteins were apoprotein structures for 
PDGFRβ transmembrane segment and in complex with PDGF without 
inhibitor (PDB ID 2L6W [95] and 3MJG [96], respectively). On the other 
hand, a co-crystallized of PDGFRα with an inhibitor was available in the 
protein data bank [97]. It was reported in literature that the tyrosine 
kinase domain of PDGFRα and the tyrosine kinase domain of PDGFRβ 
share strong sequence homology [98] and this was also confirmed using 
UniProt (https://www.uniprot.org/) [99,100] by aligning the two pro
teins with the code P16234 for human PDGFRα and P09619 for human 
PDGFRβ resulting in 43.226% identity, 485 identical positions and 323 
similar positions, For more information, (Appendix A). Accordingly, it 
was suggested to use the available co-crystallized PDGFRα as surrogate 
for PDGFRβ in order to highlight the possible interactions that could 
possibly be the reason behind the activity of compound 4f and to vali
date the ability of the synthesized compound to fit in the kinase domain. 
Molecular docking simulations were performed to study the binding 
pattern of compound 4f in the active site of PDGFRα and this pattern was 
compared to that of the marketed indolinone derivative, sunitinib I. X- 

Fig. 2. Flow cytometric analysis of CAKI-1 and UO-31 renal cancer cell lines untreated and treated with compound 4f.  
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ray crystal structure of PDGFRα (PDB ID: 5GRN, resolution 1.87 Å) [97] 
that is in complex with an inhibitor, WQ-C-159, was downloaded from 
the Protein Data Bank. First, the molecular docking setup was validated 
by carrying out re-docking of the ligand, WQ-C-159, in the vicinity of the 
PDGFRα active site. The applied docking protocol demonstrated to be 
suitable for the presented docking study by reproducing the same 

binding interactions of the co-crystallized ligand, as confirmed by the 
obtained RMSD (1.11 Å) between the native ligand and the docked one. 
As shown in Figs. 4 and 5, the amine and the carbonyl groups of the 
sunitinib indole form two hydrogen bonds with the carbonyl group and 
the NH group of the third hinge residue, Cys677, respectively. It also 
interacts hydrophobically with the residues near the ceiling of the 
adenine pocket including Leu599 and Val607 [101,102]. Similarly, 
compound 4f forms one hydrogen bond with the NH group of Cys677 
through the carbonyl group of the indolinone moiety, in addition to a 
hydrophobic interaction with two amino acids: Leu599 and Gly680. 
These similar interactions are reflected in the comparable docking 
scores of the new indolinone derivative, 4f (-14.13445 kcal/mol), which 
displayed potent PDGFRα inhibitory activity comparable to sunitinib 
(-15.09492 kcal/mol). According to the sequence homology between the 
two isoforms of PDGFR, it can be concluded that the higher inhibition 
activity of compound 4f towards PDGFRβ more than PDGFRα might be 

Fig. 3. Apoptotic effect of compound 4f on CAKI-1 and UO-31 renal cancer cell lines via Annexin V-FTIC positive staining technique. The four quadrants are known 
as (LL: viable, LR: early apoptosis, UR: late apoptosis, UL: necrosis). 

Table 5 
IC50 values (nM) of compound 4f and roscovitine against the three CDK 
isoforms.  

Compound CDK1/cyclin A 
IC50 [nM] 

CDK1/cyclin B 
IC50 [nM] 

CDK2/cyclin A 
IC50 [nM] 

4f 61.014 ± 2.20* 3424.048 ± 54.09* 316.402 ± 7.35* 
Roscovitine 372 ± 5.79 650 ± 16.4 520 ± 4.99 

*IC50 is significantly different from that of roscovitine at P < 0.05. 

Table 6 
Molecular properties of compound 4f predicted using SwissADME website.  

Parameter Result Parameter Result Parameter Result 

Consensus Log P 2.51 CYP2C9 inhibitor Yes Muegge #violations 0 
ESOL, Ali and Silicos-IT Class Moderately soluble CYP2D6 inhibitor No Bioavailability Score 0.55 
GI absorption High CYP3A4 inhibitor No PAINS #alerts 1 
BBB permeant No Lipinski #violations 0 Brenk #alerts 1 
P-gp substrate No Ghose #violations 0 Leadlikeness #violations 0 
CYP1A2 inhibitor Yes Veber #violations 0 Synthetic Accessibility 3.41 
CYP2C19 inhibitor Yes Egan #violations 0    
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Fig. 4. 2D Diagram of the interaction of the docked (A) sunitinib and (B) 4f in the active site of PDGFRα (PDB ID: 5GRN) using Molecular Operating Environment 
(MOE, 10.2008) software. 
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justified by certain extra interactions than those shown in this molecular 
docking analysis with certain amino acid residues present in PDGFRβ 
only (Figs. 4 and 5). 

2.4. In vivo PK profile of compound 4f 

Pharmacokinetic parameters of the most potent compound 4f was 
determined in male Sprague-Dawley rats, Table 7 and Fig. 6. The com
pound was administered intravenously (i.v.) at 5 mg/kg or orally (p.o.) 
at 15 mg/kg. Comparing the two routes of administration, it was found 
that compound 4f demonstrated a longer half-life (t1/2) of 18.6 h after i. 
v. administration than that after oral dosing (7.9 h) and this can be 
correlated to the difference in the two values of volume of distribution 
(Vd) following i.v. and oral administration (12767.7 and 4686.533 mL/ 
kg, respectively). Comparable plasma clearance (CL) values were ob
tained following the two routes of administration (476.6 mL/h.kg after i. 
v. administration and 413.2 mL/h.kg after oral administration). 
Importantly, compound 4f possessed an excellent oral bioavailability (F) 
of ~ 100% leading to a good oral exposure showed by AUC of 36305.6 
ng.h/mL and a high maximum plasma concentration (Cmax) of 6095.9 
ng/mL after oral dosing. These results confirmed the high gastrointes
tinal absorption as predicted using the SwissADME web tool. The rat 
plasma 4f concentration h (126.57 and 307.14 ng/mL for i.v. and p.o., 

respectively), was higher than the IC90 value required for the cytotoxic 
activity against CAKI-1 and UO-31 renal cancer cell line even after 24 h, 
as shown in Fig. 6. These important findings showed that after oral 
dosing in rats, compound 4f has not only an outstanding cytotoxic ac
tivity but also good pharmacokinetic properties with excellent oral 
bioavailability. 

3. Conclusion 

In conclusion, compound 4f is a potent scaffold against renal carci
noma with excellent physiochemical, pharmacokinetic profile and 
interesting PDGFR/CDK inhibition activity. Accordingly, compound 4f 
could be considered as a promising candidate for further preclinical and 
clinical studies as an anticancer agent for treatment of renal cell 
carcinoma. 

4. Experimental 

4.1. Chemistry 

4.1.1. General 
All solvents and reagents were commercially available and used 

without further purification. Compounds 1a-k [41–46], 3a-h [47–51], 
3k [52], 4a [39] were prepared as reported in the literature. For more 
information, (Appendix A). 

4.1.2. General procedure for preparation of compounds 3i and 3j 
To a hot solution of isatin 2 (0.7 g, 5 mmol) in absolute ethanol (10 

mL) containing few drops of glacial acetic acid either the semicarbazide 
derivative 1i or 1j (5 mmol) dissolved in absolute ethanol (10 mL) was 

Fig. 5. 3D Representation of the interaction of the docked (A) sunitinib and (B) 
4f in the active site of PDGFRα (PDB ID: 5GRN) using Molecular Operating 
Environment (MOE, 10.2008) software. 

Table 7 
Sprague-Dawley rat pharmacokinetic profile for compound 4f after oral and 
intravenous administration.  

Parameter p.o. i.v. 

Rat no. 6 6 
Dose level (mg/kg) 15 5 
t1/2 (h) 7.862 18.569 
Tmax (h) 2 – 
Cmax (ng/mL) 6095.899 2281.052 
AUC0-t (ng.h/mL) 32821.686 7100.526 
AUC0-∞ (ng.h/mL) 36305.602 10491.398 
Vd (mL/kg) 4686.533 12767.714 
CL (mL/h.kg) 413.159 476.581 
F (%) 115.353%   
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Fig. 6. Time-dependent plasma concentrations of 4f after oral and intravenous 
administration to male Sprague-Dawley rats. 
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added. After then, the reaction mixture was heated to reflux for 2 h and 
the crystalline solid formed was collected by filtration, washed with hot 
ethanol then by ether to give to give both compounds in a pure form. 

4.1.2.1. N-(2-Chloroethyl)-2-(2-indolinone-3-ylidene) hydrazine-1- 
carboxamide (3i):. Buff powder, (yield 78%), m.p. 246–247 ◦C; reac
tion time 31 h; IR (KBr, ν cm− 1): 3325, br. 3213 (NHs), 3097 (CH aro
matic), 2939 (CH aliphatic), 1670, 1654 (2C = O); 1H NMR (DMSO‑d6, 
400 MHz) δ ppm: 3.80 (t, 2H, CH2, J = 6.2), 4.90 (t, 2H, CH2, J = 6.1), 
6.65 (s, 1H, NH, D2O exchangeable), 7.21–7.81 (m, 4H, indoline-H), 
10.55 (s, 1H, NH, D2O exchangeable), 11.35 (s, 1H, NH, D2O 
exchangeable); 13C NMR (DMSO‑d6) δ ppm: 41.7, 44.1, 111.3, 112.9, 
126.9, 127.3, 128.7, 134.9, 139.8, 152.8, 158.9 2 (C––O); Anal. Calcd. 
for C11H11ClN4O2 (266.69): C, 49.54; H, 4.16; N, 21.01%; Found: C, 
49.81; H, 4.40; N, 20.87%. 

4.1.2.2. N-Cyclohexyl-2-(2-oxoindolin-3-ylidene)hydrazine-1-carbox
amide (3j). Bright yellow powder, (yield 69%), m.p. 229–231 ◦C; re
action time 31 hr; IR (KBr, ν cm− 1) : 3325 (2 NH), 3032 (CH aromatic), 
2927 (CH aliphatic), 1620 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ 
ppm: 1.27–1.34 (m, 5H, cyclohexyl-H), 1.55–1.72 (m, 5H, cyclohexyl- 
H), 1.83–1.85 (m, 1H, cyclohexyl-H), 6.90 (d, 1H, H7-indoline, J =
7.8), 7.03 (t,1H, H5-indoline, J = 7.6), 7.32–7.39 (m, 2H, H6-indoline +
NH, D2O exchangeable), 8.19 (d, 1H, H4-indoline, J = 7.6), 10.30 (s, 1H, 
NH, D2O exchangeable), 10.74 (s, 1H, NH, D2O exchangeable). Anal. 
Calcd. for C15H18N4O2 (286.33): C, 63.16; H, 6.52; N, 19.34%; Found: C, 
63.01; H, 6.28; N, 19.65%. 

4.1.3. General procedure for preparation of compounds (4a-k) 
An equimolar mixture of 3a-k (0.01 mol) and monochloroacetic acid 

(0.49 g, 0.01 mol) with anhydrous sodium acetate (0.82 g, 0.01 mol) in 
glacial acetic acid (20 mL) was refluxed for 6–35 h. Then, the reaction 
mixture was allowed to cool to room temperature and poured into ice 
water. The solid was filtered, washed with water and finally recrystal
lized from ethanol to give compounds 4a-k. 

4.1.3.1. 2-[(2-Oxoindolin-3-ylidene)hydrazono]thiazolidin-4-one (4a) 
[39]. Dark orange powder, (yield 60%), m.p. 208–210 ; reaction time 6 
h; IR (KBr, ν cm− 1): 3417, 3174 (2 NH), 3028 (CH aromatic), 2889 (CH 
aliphatic), 1716 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 4.01 
(s, 2H, CH2), 6.88 (d, 1H, H7-indoline, J = 7.6), 7.04 (t, 1H, H5-indoline, 
J = 7.4), 7.35 (t, 1H, H6-indoline, J = 7.6), 8.22 (d, 1H, H4-indoline, J =
7.8), 10.71 (s, 1H, NH, D2O exchangeable), 11.18 (s, 1H, NH, D2O 
exchangeable); 13C NMR (DMSO‑d6) δ ppm: 34.0 (CH2), 110.8, 117.5, 
122.4, 128.4, 132.4, 133.6, 144.9, 165.1, 173.2, 174.4 (2C = O); Anal. 
Calcd. for C11H8N4O2S (260.27): C, 50.76; H, 3.10; N, 21.53%; Found: C, 
51.02; H, 3.36; N, 21.31%. 

4.1.3.2. 3-Methyl-2-[(2-oxoindolin-3-ylidene)hydrazono]thiazolidin-4- 
one (4b). Dark orange powder, (yield 64%), m.p. > 300; reaction time 9 
h; IR (KBr, ν cm− 1): 3159 (NH), 3062 (CH aromatic), 2970 (CH 
aliphatic), 1732,1716 (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 
3.32 (s, 3H, CH3), 4.06 (s, 2H, CH2), 6.88 (d, 1H, H7-indoline, J = 7.7), 
7.04 (t, 1H, H5-indoline, J = 7.5), 7.37 (t, 1H, H6-indoline, J = 7.6), 8.17 
(d, 1H, H4-indoline, J = 7.5), 10.75 (s, 1H, NH, D2O exchangeable); 13C 
NMR (DMSO‑d6) δ ppm: 30.2 (CH3), 33.0 (CH2), 110.9, 117.4, 122.6, 
129.0, 133.3, 144.7, 149.2, 165.2, 172.9, 173.0 (2C = O); Anal. Calcd. 
for C12H10N4O2S (274.30): C, 52.55; H, 3.67; N, 20.43%; Found: C, 
52.81; H, 3.90; N; 20.19%. 

4.1.3.3. 3-Ethyl-2-[(2-oxoindolin-3-ylidene)hydrazono]thiazolidin-4-one 
(4c). Light orange powder, (yield 66%), m.p. > 300 ◦C ; reaction time 9 
h; IR (KBr, ν cm− 1): 3429 (NH), 3082 (CH aromatic), 2970 (CH 
aliphatic), 1732, 1705 (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 
1.27 (t, 3H, CH3, J = 7.0), 3.90 (q, 2H, CH2, J = 6.9), 4.07 (s, 2H, CH2), 

6.89 (d, 1H, H7-indoline, J = 7.8), 7.04 (t, 1H, H5-indoline, J = 7.5), 7.37 
(t, 1H, H6-indoline, J = 7.6), 8.13 (d, 1H, H4-indoline, J = 7.5), 10.75 (s, 
1H, NH, D2O exchangeable), 13C NMR (DMSO‑d6) δ ppm: 12.3 (CH3), 
21.3 (CH2), 32.9 (COCH2), 111.1, 117.1, 123.1, 128.5, 133.6, 144.0, 
148.9, 165.6, 172.9, 173.1 (2C = O), Anal. Calcd. for C13H12N4O2S 
(288.33): C, 54.16; H, 4.20; N, 19.43%; Found: C, 54.37; H, 4.38; N, 
19.62%. 

4.1.3.4. 3-Butyl-2-[(2-oxoindolin-3-ylidene)hydrazono]thiazolidin-4-one 
(4d). Brown powder, (yield 65%), m.p. 246–248 ◦C; reaction time 31 h; 
IR (KBr, ν cm− 1): 3182 (NH), 3089 (CH aromatic), 2958 (CH aliphatic), 
1732 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 0.93 (t, 3H, 
CH3, J = 7.3), 1.35–1.41 (m, 2H, CH2), 1.68–1.71 (m, 2H, CH2), 3.86 (t, 
2H, CH2, J = 7.3), 4.08 (s, 2H, CH2), 6.89 (d, 1H, H7-indoline, J = 7.8), 
7.01 (t, 1H, H5-indoline, J = 7.5), 7.37 (t, 1H, H6-indoline, J = 7.2), 8.12 
(d, 1H, H4-indoline, J = 7.5), 10.75 (s, 1H, NH, D2O exchangeable); 13C 
NMR (DMSO‑d6) δ ppm: 14.0 (CH3), 20.0 (CH2), 28.9 (CH2), 32.9 
(COCH2), 43.5 (CH2), 111.0, 117.4, 122.4, 128.4, 133.4, 144.7, 149.1, 
165.2, 172.8, 172.9 (2C = O), Anal. Calcd. for C15H16N4O2S (316.38): C, 
56.95; H, 5.10; N, 17.71%; Found C, 57.11; H, 5.34; N, 17.58%. 

4.1.3.5. 3-Allyl-2-[(2-oxoindolin-3-ylidene)hydrazono]thiazolidin-4-one 
(4e). Dark green powder, (yield 75%), m.p. 254–256 ◦C; reaction time 
35 h; IR (KBr, ν cm− 1): 3429 (NH), 3086 (CH aromatic), 2981 (CH 
aliphatic), 1732 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 4.13 
(s, 2H, CH2), 4.48 (d, 2H, CH2, J = 4.6), 5.22 (d, 1H, =CH2, J = 10.5), 
5.26 (d, 1H, =CH2, J = 17.4), 5.89–5.98 (m, 1H, CH), 6.88 (d, 1H, 
H7-indoline, J = 7.7), 7.02 (t,1H, H5-indoline, J = 7.6), 7.36 (t, 1H, 
H6-indoline, J = 7.6), 8.11 (d, 1H, H4-indoline, J = 7.6), 10.74 (s, 1H, 
NH, D2O exchangeable); 13C NMR (DMSO‑d6) δ ppm: 32.9 (N-CH2), 45.6 
(CH2), 110.9, 117.3, 117.7, 122.6, 128.8, 131.4, 133.4, 144.7, 149.3, 
165.2, 172.1, 172.6 (2C = O), Anal. Calcd. for C14H12N4O2S (300.34): C, 
55.99; H, 4.03; N, 18.66%; Found C, 56.13; H, 4.29; N, 18.53%. 

4.1.3.6. 3-Cyclohexyl-2-[(2-oxoindolin-3-ylidene)hydrazono]thiazolidin- 
4-one (4f). Orange powder, (yield 89%), m.p. 288–290 ◦C; reaction time 
35 h; IR (KBr, ν cm− 1): 3414 (NH), 3086 (CH aromatic), 2931 (CH 
aliphatic), 1728 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 
1.25–1.40 (m, 4H, cyclohexyl-H), 1.71–1.74 (m, 4H, cyclohexyl-H), 
1.87–1.91 (m, 2H, cyclohexyl-H), 2.34–2.40 (m, 1H, cyclohexyl-H), 
4.03 (s, 2H, CH2), 6.91 (d, 2H, H7-indoline, J = 7.8), 7.04 (t, 1H, 
H5-indoline, J = 7.3), 7.39 (t, 1H, H6-indoline, J = 7.9), 8.19 (d, 1H, 
H4-indoline, J = 7.5), 10.77 (s, 1H, NH, D2O exchangeable); 13C NMR 
(DMSO‑d6) δ ppm: 25.3, 26.0, 28.05, 32.6 (CH2), 56.3, 111.3, 117.2, 
122.4, 127.8, 133.5, 144.7, 148.6, 165.3, 173.1, 173.8 (2C = O), MS (m/ 
z %): 342 (M+, 82.35%), Anal. Calcd. for C17H18N4O2S (342.42): C, 
59.63; H, 5.30; N, 16.36%; Found: C, 59.85; H, 5.41; N, 16.59%. 

4.1.3.7. 2-[(2-Oxoindolin-3-ylidene)hydrazono]-3-phenylthiazolidin-4- 
one (4g). Brownish orange powder, (yield 87%), m.p. >300 ◦C ; reaction 
time 24 h; IR (KBr, ν cm− 1): 3186 (NH), 3086 (CH aromatic), 2981 
(aliphatic CH), 1728 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 
4.22 (s, 2H, CH2), 6.65 (t, 1H, Ar-H, J = 7.8), 6.80 (d, 2H, Ar-H, J = 7.7), 
7.22–7.27 (m, 3H, 2Ar-H + H7-indoline), 7.49 (d, 1H, H5-indoline, J =
7.2), 7.54–7.66 (m, 2H, H4+ H6-indoline), 10.69 (s, 1H, NH, D2O 
exchangeable); 13C NMR (DMSO‑d6) δ ppm: 33.4 (COCH2), 110.9, 
117.1, 122.1, 128.5, 129.5, 129.6, 133.4, 135.4, 144.5, 149.8, 165.2, 
172.4, 172.9 (2C = O), Anal. Calcd. for C17H12N4O2S (336.37): C, 60.70; 
H, 3.60; N, 16.66%; Found: C, 60.89; H, 3.76; N, 16.90%. 

4.1.3.8. 2-[(2-Oxoindolin-3-ylidene)hydrazono]oxazolidin-4-one (4h). 
Reddish brown powder, (yield 67%), m.p. >300; reaction time 33 h; IR 
(KBr, ν cm− 1): 3178, 3143 (2 NH), 3082 (CH aromatic), 2962 (CH 
aliphatic), 1693, 1666 (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ ppm: 
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4.05 (s, 2H, CH2), 6.84 (d, 1H, H7-indoline, J = 7.6), 6.97 (t,1H, 
H5-indoline, J = 7.6), 7.34 (t, 1H, H6-indoline, J = 7.4), 9.06 (d, 1H, 
H4-indoline, J = 7.9), 10.88 (s, 2H, 2NH, D2O exchangeable); 13C NMR 
(DMSO‑d6) δ ppm: 35.5 (CH2), 110.0, 121.6, 122.1, 129.7, 133.0, 133.8, 
144.5, 169.4 (2C = O), Anal. Calcd. for C11H8N4O3 (244.21): C, 54.10; 
H, 3.30; N, 22.94%; Found: C, 53.89; H, 3.47; N, 22.82%. 

4.1.3.9. 3-(2-Chloroethyl)-2-[(2-oxoindolin-3-ylidene)hydrazono]oxazoli
din-4-one (4i). White powder, (yield 60%), m.p. 225 ◦C; reaction time 
12 h; IR (KBr, ν cm− 1): 3305 (NH), 3097 (CH aromatic), 2943 (CH 
aliphatic), 1747, 1666 (2C = O); 1H NMR (DMSO‑d6 400 MHz) δ ppm: 
3.57 (t, 2H, CH2, J = 6.5), 3.98 (t, 2H, CH2, J = 5.8), 4.37 (s, 2H, CH2), 
6.49–6.63 (m, 2H, H5-indoline and H7-indoline), 7.70–7.81 (m, 2H, 
H4-indoline and H6-indoline), 8.8 (1H, NH, D2O exchangeable); 13C NMR 
(DMSO‑d6) δ ppm: 38.4 (COCH2), 44.1 (CH2), 64.1 (CH2), 118.5, 127.0, 
137.3, 145.2, 158.4, 158.7, 159.0, 159.1, 167.7, 170.8 (2C = O), Anal. 
Calcd. for C13H11ClN4O3 (306.71): C, 50.91; H, 3.62; N, 18.27%, Found: 
C, 51.23; H, 3.86; N, 18.49%. 

4.1.3.10. 3-Cyclohexyl-2-[(2-oxoindolin-3-ylidene)hydrazono]oxazolidin- 
4-one (4j). Bright yellow powder, (yield 94%), m.p. 226–227 ◦C; reac
tion time 9 h; IR (KBr, ν cm− 1): 3170 (NH), 3093 (CH aromatic), 2931 
(aliphatic CH), 1716, 1693 (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ 
ppm: 1.13–1.35 (m, 6H, cyclohexyl H), 1.58–1.81 (m, 4H, cyclohexyl 
H), 3.55–3.56 (m, 1H, cyclohexyl H), 4.07 (s, 2H, CH2), 6.93 (d, 1H, 
H7-indoline, J = 7.7), 7.08 (t, 1H, H5-indoline, J = 7.5), 7.32 (t, 1H, 
H6-indoline, J = 7.6), 7.63 (d, 1H, H4-indoline, J = 7.3), 11.88 (s, 1H, 
NH, D2O exchangeable); 13C NMR (DMSO‑d6) δ ppm: 25.2, 25.5, 33.0 
(COCH2), 49.1, 111.2, 120.7, 120.8, 122.7, 130.8, 131.5, 141.7, 153.5, 
163.1 (2C = O), Anal. Calcd. for C17H18N4O3 (326.36): C, 62.57; H, 5.56; 
N, 17.17%; Found: C, 62.34; H, 5.70; N, 17.43%. 

4.1.3.11. 3-(4-Fluorophenyl)-2-[(2-oxoindolin-3-ylidene)hydrazono]oxa
zolidin-4-one (4k). Light yellow powder, (yield 77%), m.p. 263–265 ◦C; 
reaction time 6 h; IR (KBr, ν cm− 1): 3294 (NH), 3093 (CH aromatic), 
2912 (aliphatic CH), 1670 br. (2C = O); 1H NMR (DMSO‑d6, 400 MHz) δ 
ppm: 4.0 (s, 2H, CH2), 7.07–7.11 (m, 3H, 2 Ar-H + H7-indoline), 
7.44–7.54 (m, 3H, 2 Ar-H + H5-indoline), 7.95–8.05 (m, 1H, H6-indo
line), 8.68 (s, 1H, NH, D2O exchangeable), 8.82–8.86 (m, 1H, H4-indo
line). 13C NMR (DMSO‑d6) δ ppm: 34.3 (COCH2), 115.4, 115.6, 115.8, 
120.5, 120.6, 120.7, 120.8, 136.4, 136.43, 153.2, 156.62, 156.66, 
159.0, 169.0 (2C = O), Anal. Calcd. for C17H11FN4O3 (338.30): C, 60.36; 
H, 3.28; N, 16.56%; Found: C, 60.48; H, 3.39; N, 16.80%. 

4.2. Biological evaluation 

4.2.1. Antiproliferative activity 

4.2.1.1. In vitro anticancer activity as primary single high dose (10 µM) 
screening. The preliminary cytotoxicity study for the synthesized com
pounds 4a-k was determined as described in the protocol of the National 
Cancer Institute (NCI), Bethesda, USA against a panel of 60 cell lines 
[103,104]. Cell lines was exposed to the compounds for 48 h using 
sulforhodamine B (SRB) protein assay [105] and then cell viability and 
growth was determined, as previously described [103,104]. 

4.2.1.2. MTT assay for cytotoxicity. The assay was performed at the 
Egyptian company for the production of vaccines, sera, and drugs 
VACSERA, Giza, EGYPT. Standard MTT colorimetric method was used to 
test the IC50 of compound 4f against five renal cancer cell lines, A498, 
ACHN, CAKI-1, RXF393 and UO-31 and one normal renal cell line, 
RPTEC/TERT1, which were obtained from the American Type Culture 
Collection (ATCC) (Rockville, MD). Cell lines were incubated in RPMI- 
1640 medium with 10% fetal bovine serum at 37 ◦C. The cells were 
incubated with different concentration of the compound (0.39 – 100 

μM) for 24 h. The reported methodology of MTT colorimetric assay was 
then applied [57]. 

4.2.2. Antiangiogenic activity preliminary study 
The enzyme inhibition assay of compound 4f against VEGFR2, 

PDGFRα and PDGFRß was performed at the Egyptian company for the 
production of vaccines, sera, and drugs VACSERA, Giza, EGYPT. This 
was carried out using BPS Bioscience® VEGFR2 (KDR) Kinase and 
PDGFRα (D842I) Assay Kits with PDGFRα (D842I), GST-Tag (BPS 
Bioscience) or Recombinant Human PDGFRß, GST-tagged (Creative 
BioMart) according to the manufacturer’s manual. The assay was carried 
at concentrations 10–10000 nM for VEGFR2 and PDGFRα, and at 
1–1000 nM for PDGFRß using 20 μL of the diluted enzyme (1 ng/μL). 
(For more information, see Appendix A) 

4.2.3. Cell cycle analysis and apoptosis study 
Cell cycle analysis of compound 4f was achieved using propidium 

iodide (PI) flow cytomertric analysis according to the reported proced
ure [106,107]. An apoptotic study using the Annexin V-FITC Apoptosis 
Detection Kit (K101-25, BioVision®, Mountain View, Canada), was 
performed on compound 4f at the Egyptian company for the production 
of vaccines, sera, and drugs VACSERA, Giza, EGYPT. The assay was 
measured at its IC50 concentration value on both CAKI-1 and UO-31 
renal cells after 24 h in three successive steps; according to the manu
facturer’s instructions. 

4.2.4. In vitro CDK inhibitory activity 
IC50 values of compound 4f were estimated using enzyme-linked 

immunosorbent assay kits for CDK1a (Cloud clone prob.®), CDK1b 
(Cell signaling Technology®) and CDK2a (Bioscience.com) at the 
Egyptian company for the production of vaccines, sera, and drugs 
VACSERA, Giza, EGYPT following the kits suppliers protocols. The assay 
was carried at concentrations 10–10000 nM for CDK1b and CDK2a using 
enzyme concentration (~5 ng/μL) and at 1–1000 nM for CDK1a using 
enzyme concentration (~3.5 ng/μL). (For more information, see Ap
pendix A) 

4.3. In silico studies 

4.3.1. Drug likeness profile 
The pharmacokinetic and physicochemical data of compound 4f was 

calculated using the free online web tool swissADME (http://swissadme. 
ch/index.php#undefined) [108]. 

4.3.2. Docking study 
Molecular docking studies were performed using the Molecular 

Operating Environment (MOE, 10.2008) software. Minimization was 
done with MOE until an RMSD gradient of 0.05 kcal∙mol− 1Å− 1 with 
MMFF94x forcefield. Partial charges were automatically calculated. The 
X-ray crystallographic structure of PDGFRα, co-crystallized with WQ-C- 
159 was retrieved from the Protein Data Bank, https://www.rcsb.org/, 
(PDB code: 5GRN) [109]. The enzyme was prepared by removing the 
water molecules. Protonation of the enzyme was done using protonate 
3D protocol in MOE with the default parameters. Docking protocol was 
carried out using Triangle Matcher placement method while London dG 
scoring function were used for the docking protocol and the produced 
poses were refined using forcefield. Redocking of the native ligand into 
the active site was carried out with the purpose of docking setup vali
dation. After then, the validated setup was used to predict the possible 
binding pose of compound 4f to be compared to that of sunitinib as 
reference compound and so its affinity to the target enzyme. 

4.4. Pharmacokinetic study 

Pharmacokinetic properties of compound 4f were determined 
following i.v. and p.o. administration in male Sprague-Dawley rats 
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(250–300 g) obtained from the Laboratory Animal Center, Faculty of 
Pharmacy, Cairo University. Approval of all experimental procedures 
was obtained from the Research Ethics Committee for experimental and 
clinical studies at Faculty of Pharmacy, Cairo University. The animals 
were placed in cages with free access to food and water. Compound 4f 
was dissolved with the aid of 5% tween 80 in normal saline. Animals 
were randomly divided into two groups (n = 4). The first group was 
orally dosed with 15 mg/kg of compound 4f by gastric gavage. The 
second group was given a dose of 5 mg/kg by gastric gavage injection 
into the tail vein. After then, blood samples (200 μL) were withdrawn 
from the orbital venous plexus at the following time intervals: 30 min 
and 1, 2, 3, 4, 5, 6, 8 and 24 h (p.o.); 5, 20, 40 min and 1, 2, 4, 6, 8 and 
24 h (i.v.). Whole blood samples were collected in heparinized tubes and 
the plasma was immediately centrifuged (4000 rpm, 10 min, 4 ◦C) and 
then stored at − 20 ◦C until analysis. For preparation of the calibration 
curve, compound 4f was dissolved in acetonitrile at a concentration of 
0.5 mg/mL (Working solution), and then seven calibration standards 
ranging from 50 to 9000 ng/mL of 4f were prepared by adding 10 μL of 
serial dilutions from the working solution to 90 μL of drug free rat 
plasma. The calibration standards and the plasma samples were 
extracted by protein precipitation using acetonitrile. The concentrations 
of compound 4f in the extracted standards and plasma samples were 
quantified by LC-UV with a reversed-phase column (Waters Spherisorb 
ODS column (150 × 4.6 mm, 5 μm) (column temperature = 45 ± 2 ◦C) 
and acetonitrile: 0.1% triethylamine (50:50, v/v) as the mobile phase. 
The flow rate was maintained at 1 mL/min and UV detection at 341 nm. 
The pharmacokinetics parameters were calculated using WinNonlin 
Software 7.0 [110,111]. 

4.5. IC50 calculations and statistical analysis 

All IC50 calculations were carried out using Quest GraphTM IC50 
Calculator, which uses a four-parameter logistic regression model [112]. 
The results presented herein are expressed as mean ± SD. Statistical 
significance of the IC50 values was checked using GraphPad Prism 7.00 
software using the Student’s t-test at P < 0.05. 
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