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ABSTRACT: Concise syntheses of the Hancock alkaloids
(−)-angustureine and (−)-cuspareine are presented, applying
and refining a recently developed rhodium-catalyzed hydro-
amination for the stereoselective construction of the chiral
secondary amine. Furthermore, the syntheses include an allene
synthesis via boron−magnesium exchange as well as the
construction of the tetrahydroquinoline motive via a hydro-
boration/Suzuki−Miyaura coupling sequence.

Alkaloids bearing tetrahydroquinoline motifs are occurring
widely in plants, and many of them exhibit interesting

biological activities.1,2 Prominent examples include the
members of the family of Hancock alkaloids, e.g., (−)-angus-
tureine, (−)-cuspareine, (−)-galipeine, and (−)-galipinine
(Figure 1). All of these natural products were isolated by

Jacquemond-Collet from the bark of Galipea of f icinalis
Hancock, which comprises 20 different species found in
northern South America.1b In light of their biological activity
profiles, extracts from these plants have been used in folk
medicine for the treatment of dysentery and fever.3a More
recently, extracts of the bark of Galipea of f icinalis also have
been shown to possess antiplasmodial and cytotoxic
activities.3b

Encouraged by these interesting biological properties, many
chemists contributed to the development of asymmetric
synthesis of these tetrahydroquinoline motifs. Bearing in
mind that the main challenge is the asymmetric generation
of the secondary amine, a variety of reactions have been
utilized as key steps,4−10 with most syntheses relying on
asymmetric catalytic hydrogenation of quinolines.11 Another
general approach for the construction of the chiral secondary

amine by allylic substitution was developed by Helmchen using
an Ir/phosphoramidite-based catalyst system.12,13

In the recent past, our research group has developed a
rhodium-catalyzed asymmetric hydroamination of allenes with
anilines, a method which could be seen as an atom-efficient
alternative to allylic substitution.14 Herein, we report a novel
and concise total synthesis of (−)-angustureine and
(−)-cuspareine in the absence of protecting groups, enabled
by a highly enantioselective hydroamination strategy.
In the beginning, the two required allenes 1 and 2 were

synthesized in two short and efficient ways. n-Hexyl allene 1
was prepared through propargylic substitution employing
propargyl bromide and the Grignard reagent derived from n-
hexyl bromide in the presence of a copper catalyst on a 200
mmol scale reaction in 69% yield. The aryl functionalized
allene 2 was obtained in a two-step sequence starting from 2,3-
dimethoxystyrene employing an iridium-catalyzed linear
selective hydroboration and subsequent boron−magnesium
exchange.15 The obtained Grignard reagent was then trapped
in an analogous manner with propargyl bromide under copper
catalysis to give allene 2 in 60% yield over both steps (Scheme
1).
Building on our previously reported hydroamination results

provided by a Rh/Josiphos J003-2 based catalyst system, we
tested these previous standard conditions for 2-iodo aniline (7)
and n-hexyl allene (1). Surprisingly, we obtained the desired
product 8 either with EtOH as a cosolvent or with PPTS as an
additive in low optical purities (Table 1, entries 1 and 2).
Furthermore, EtOH enabled a dehalogenation by transfer
hydrogenation leading to dehalogenated allylic aniline 9. To
overcome the problem of low enantioselectivity, we tested the
sterically more demanding ligand J009-2 (entry 3). However,
in the reaction in the presence of PPTS, the desired product 8
was obtained in low yield and enantioselectivity. To exclude
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Figure 1. Examples of naturally occurring tetrahydroquinoline
alkaloids.
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the possibility that the PPTS had a negative effect as an
additive, the reaction was performed in the absence of it (entry
4). To our delight, 9 was obtained in high yield and excellent
enantioselectivity, providing new optimized conditions for the
hydroamination of allenes.16

With these optimized conditions in hand, we sought to
examine a small scope of substrates, which did not perform
satisfactorily under the previously reported conditions.14 In all
tested substrate combinations, the desired secondary anilines
were obtained in better yields and higher enantioselectivities
by the new catalyst system (Scheme 2).
Furthermore, product 19 allowed us to determine the

absolute configuration, which was found to be the same as that
obtained for the previous, J003-2 based method.
As we were now capable of synthesizing catalysis products 8

and 17 in high yield and enantioselectivity, the synthesis of
(−)-angustureine and (−)-cuspareine was envisioned next. In
contrast to the synthesis of Helmchen,12a the methylation of
the secondary aniline was performed first for both natural
products, as we assumed that the free amine could complicate
the intramolecular Suzuki coupling by promoting unwanted
side reactions.17 In both cases, the amine methylation
proceeded smoothly through reductive amination in good
yields (Schemes 3 and 4). However, for the hydroboration of

the allylic double bond and the subsequent intramolecular
Suzuki coupling, slightly different conditions had to be applied.
Transformation of allylic aniline toward (−)-angustureine
occurred under mild conditions, employing only 1 equiv of 9-
BBN at rt, furnishing quantitively the desired hydroboration
product. Its subsequent treatment with [Pd(dppf)Cl2] and an

Scheme 1. Preparation of Allenes 1 and 2a

aReaction conditions: (a) (1) 3 (1.0 equiv), Mg (1.2 equiv), THF
(0.1 M), rt−70 °C, 2 h; (2) 4 (1.2 equiv), CuBr (10 mol %), THF
(0.6 M), 0 °C−rt, 12 h, 69%; (b) HBpin (1.2 equiv), [{Ir(cod)Cl}2]
(1.0 mol %), dppp (2.0 mol %), toluene (1.0 M), rt, 18 h, 83%; (c)
(1) ClMg(CH2)4MgCl (2.0 equiv), toluene/THF (1:1, 0.3 M), 0
°C−rt, 2 h; (2) propargyl bromide (4) (1.2 equiv), CuBr (10 mol %),
THF (0.5 M), 0 °C−rt, 12 h, 72%.

Table 1. Optimization of the Hydroamination of 2-Iodo
Aniline (7) and n-Hexyl Allene (1)

entry ligand additive
yield of 8c

(%)
ee of 8d

(%)
yield of 9c

(%)
ee of 9d

(%)

1a J003-2 49 75 42 74
2b J003-2 PPTS 97 79
3 J009-2 PPTS 77 35
4 J009-2 89 95

aReaction conditions: 2-iodo aniline (7) (1.0 mmol) and n-hexyl
allene (1) (1.5 mmol) in DCE/EtOH (7:1, 2.5 mL) at 80 °C, 18 h.
bReaction conditions: 2-iodo aniline (7) (1.0 mmol), n-hexyl allene
(1) (1.0 mmol), and PPTS (10 mol %) in DCE (2.5 mL) at 80 °C, 18
h. cYield of isolated product. dDetermined by chiral HPLC analysis.
cod = 1,5-cyclooctadiene, PPTS = pyridinium p-toluenesulfonate.

Scheme 2. Comparison of Previous and New
Hydroamination Conditionsa

a[a] Reaction conditions: aniline (1.0 mmol), allene (1.5 mmol),
[{Rh(cod)Cl}2] (2.0 mol %), and J003-2 (5.0 mol %) in DCE/EtOH
(7:1, 2.5 mL) at 80 °C, 18 h. [b] Reaction conditions: aniline (1.0
mmol), allene (1.5 mmol), [{Rh(cod)Cl}2] (2.0 mol %), and J009-2
(5.0 mol %) in DCE (2.5 mL) at 80 °C, 18 h.

Scheme 3. Synthesis of (−)-Angustureinea

aReaction conditions: (a) Formaline sol. (40 wt %, 15 equiv),
NaCNBH3 (1.5 equiv), AcOH (10 equiv), MeCN (0.1 M), rt, 18 h,
99%; (b) 9-BBN (1.05 equiv), THF (0.5 M), 0 °C−rt; then
[Pd(dppf)Cl2] (1.5 mol %), NaOHaq (3.0 M, 3.0 equiv), 80 °C, 18 h,
94%.

Scheme 4. Synthesis of (−)-Cuspareinea

aReaction conditions: (a) (CH2O)n (15 equiv), NaCNBH3 (10
equiv), AcOH (10 equiv), MeCN (0.1 M), rt, 18 h, 94%; (b) 9-BBN
(2.5 equiv), THF (0.8 M), 70 °C, 20 min; then [Pd(dppf)Cl2] (5.0
mol %), Cs2CO3 (2.0 equiv), DMF/H2O (15:1, 0.4 M), 80 °C, 24 h,
63%.
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aqueous NaOH solution at 80 °C furnished (−)-angustureine
in 94 and 83% yield over three steps starting from allene 1.
The synthesis of (−)-cuspareine starting from allylic amine

17, however, did not succeed satisfactorily employing the same
reaction conditions. Conversely, more forceful reaction
conditions had to be chosen in order to guarantee complete
hydroboration. Furthermore, the previously used conditions
for the Suzuki coupling resulted in low yields. Finally, after
being freed from the solvent (THF), the hydroboration
intermediate was reacted in the presence of [Pd(dppf)Cl2] and
Cs2CO3 in a solvent mixture of DMF/H2O. These reaction
conditions provided (−)-cuspareine in 63% yield and 25%
overall yield in four steps starting with commercially available
4-vinyl veratrole (5).
In conclusion, we have developed concise, enantioselective,

and protecting-group-free syntheses of (−)-angustureine and
(−)-cuspareine. In this context, we improved the catalyst
system of our previously developed hydroamination of allenes
with anilines now reaching higher yields and enantioselectiv-
ities. This allylic addition can be seen as an atom efficient
alternative to the conventionally applied allylic substitution.
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