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ABSTRACT: Directed hydrogenation, in which product selectivity is dictated
by the binding of an ancillary directing group on the substrate to the catalyst, is
typically catalyzed by homogeneous Rh and Ir complexes. No heterogeneous
catalyst has been able to achieve equivalently high directivity due to a lack of
control over substrate binding orientation at the catalyst surface. In this work, we
demonstrate that Pd−Cu bimetallic nanoparticles with both Pd and Cu atoms
distributed across the surface are capable of high conversion and
diastereoselectivity in the hydroxyl-directed hydrogenation reaction of
terpinen-4-ol. We postulate that the OH directing group adsorbs to the more oxophilic Cu atom while the olefin and hydrogen
bind to adjacent Pd atoms, thus enabling selective delivery of hydrogen to the olefin from the same face as the directing group with a
16:1 diastereomeric ratio.
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Substrate-directed hydrogenations are an important class of
selective organic reactions that provide access to highly

functionalized and diastereomerically pure products.1−4 High
selectivity toward directed hydrogenation has been demon-
strated using molecular catalysts based on Ir, Rh, and Co, in
which the organometallic complex simultaneously activates and
coordinates H2, the directing group, and the alkene in a well-
defined orientation at a single metal center in order to achieve
facially selective addition of H2 across the olefin (Scheme
1a).5−9 Heterogeneous systems based on supported metal

nanoparticles tend to be more reactive, robust, and recyclable
as hydrogenation catalysts than their molecular counterparts,
but none have shown significant directing capability.10−12 A
few examples using monometallic heterogeneous catalysts such
as Raney Ni and supported Pd, Pt, and Rh nanoparticles have
shown a mild directing group effect with alcohol, ether, and
amine functionality, but the strength of the interaction
between the directing group and the surface is weak compared
to homogeneous complexes, resulting in poor diastereoinduc-
tion.13−20

In this work, we show that a bimetallic Pd surface is capable
of achieving diastereoselective OH-directed hydrogenation
when both metal atoms are available at the catalyst surface. We
postulate that adsorption of the alcohol directing group to the
more oxophilic alloying metal and activation of the alkene and
hydrogen at adjacent Pd atoms result in diastereoselective
delivery of hydrogen on the same face as the directing group
(Scheme 1b). Previous work has shown that alloying pure Pd
increases its selectivity for a variety of hydrogenation and
condensation reactions, but these examples use the second
metal primarily to temper the reactivity of the Pd surface in
order to achieve semihydrogenation of alkynes and dienes or to
alter chemoselectivity between multiple reaction path-
ways.21−36

We began by synthesizing supported Pd-M (3:1) alloy
nanoparticles through coimpregnation of metal precursor salts
on Al2O3 followed by high temperature reduction at 800 °C in
5% H2/N2 to form the alloy. These Pd3M/Al2O3 catalysts were
screened in the hydrogenation of a model substrate, terpinen-
4-ol, in cyclohexane under balloon pressure of H2 at room
temperature (Table 1). Well-ordered bimetallic surfaces with
directing capability are expected to favor product P1, while no
significant steric preference for P2 is expected in the absence of
a directing effect.
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Scheme 1. Homogeneous vs Heterogeneous Directed
Hydrogenation
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Using a pure Pd/Al2O3 catalyst, we observe complete
conversion of the substrate after 2 h and a diastereomeric ratio
for P1/P2 (dr) of 1:1, revealing that pure Pd nanoparticles are
incapable of binding the hydroxyl directing group, in line with
previous reports on Pd/C catalysts (Table 1, entry 1).5 Pd3Fe,
Pd3Co, and Pd3Ni catalysts show conversions similar to pure
Pd with slight increases in dr to 2−3:1 toward the directed
product (Table 1, entries 2−4). However, incomplete alloying
and phase segregation of the two metals is observed, which
results in low directivity (Figure S1).37 The late transition
metal alloys Pd3Cu and Pd3Zn show suppressed conversion
and elevated diastereoselectivity relative to monometallic Pd,
suggesting that a larger proportion of the catalyst forms the
bimetallic structure (Table 1, entries 5 and 6). In this initial
screen, Pd3Cu showed the highest diastereoselectivity for the
directed hydrogenation with a 5:1 dr at 43% conversion in 2 h.
A control sample containing only Cu showed no conversion
under these conditions (Table S12, Figure S26).
Pd−Cu alloys are known to show dynamic surface

reconstruction during thermal annealing depending on the
gas atmosphere and temperature regime.38−40 Pd atoms
preferentially migrate to the surface in the presence of strongly
adsorbing gases such as H2 and CO while Cu segregates to the
surface under high-temperature inert gas or vacuum conditions
(Scheme 2).41−44 To better control the surface composition of
the Pd−Cu alloy nanoparticles and to improve selectivity
toward the directed hydrogenation, we carried out a variety of

thermal annealing steps under both reducing and inert
atmospheres.
Mesoporous SiO2 was chosen as the support for thermal

annealing studies due to the superior uniformity and low
polydispersity of its supported nanoparticles (Table S13,
Figure S27). For the following thermal treatments, we begin
with an identical impregnated and calcined material with a
75:25 Pd/Cu ratio on SiO2. The impregnation is carried out
sequentially using metal ammonia precursors, and after
calcination, only oxidized Pd and Cu species are observed
(Figures S2 and S3). We first performed H2 reduction on the
calcined sample at temperatures ranging from room temper-
ature to 800 °C (Table 1, entries 7−9). At room temperature,
only Pd precursors can be reduced by H2, generating a catalyst
comprising reduced Pd nanoparticles interspersed with Cu
oxides (RT H2), which shows identical reactivity and
selectivity to pure Pd. Catalyst selectivity increases slightly
with increasing reduction temperature due to Pd−Cu alloy
formation (600H2). However, at best, catalysts treated with H2
alone can achieve modest directivity (3:1 dr) and full
conversion over 20 h, consistent with formation of a Pd-rich
alloy surface in the high temperature H2 environment
(800H2).
To generate a more Cu-rich surface, we annealed the

calcined sample under N2 at temperatures between 600 and
800 °C (Table 1, entries 10−12). Due to the lack of an
external reductant, higher temperatures are required to reduce
the Cu precursors and form the bimetallic alloy using only
residual ammonia in the calcined material. At 600 °C under
N2, the catalyst shows high conversion and low directivity due
to negligible Cu precursor reduction at this temperature
(600N2). As the N2 annealing temperature is raised to 700 and
800 °C, the diastereoselectivity rises dramatically to 10:1 and
17:1 dr, respectively, while the conversion drops to 66% and
30% (700N2, 800N2).
We then further reduced the catalysts annealed under N2 at

400 °C in H2 in order to more efficiently reduce and
incorporate the Cu atoms into the alloy nanoparticle (Table 1,
entries 13−15). In all cases, the reactivity increases while the
diastereoselectivity of the N2-treated catalyst is retained. Our
most selective and active catalyst, 800N2-400H2, achieves 16:1
dr and full conversion over 20 h. Raising the reduction
temperature up to 800 °C after N2 annealing (800N2-800H2)
erodes the dr back down to 6:1 due to segregation of Pd to the
surface. On the basis of these data, the optimal catalyst for
both high diastereoselectivity and high conversion in this
system requires sequential 800N2-400H2 treatment in order to
obtain a balanced distribution of Pd and Cu on the bimetallic
surface.

Table 1. Screening of Supported Pd-M Catalystsa

a0.1 mmol substrate, 50 mg 2 wt % Pd-M catalyst, 5 mL cyclohexane,
H2 balloon bSingle run conversions and diastereomeric ratios (dr)
determined by GC with decane as an internal standard.

Scheme 2. Changes in Pd−Cu Surface Speciation As a
Function of Thermal Treatment Atmosphere, Temperature,
and Sequence
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To understand the structural requirements for efficient
substrate-directed hydrogenation, we characterized three
Pd3Cu/SiO2 samples that show distinct selectivity and
conversion behavior: 800H2, 800N2-400H2, and 800N2. All
catalysts show similar nanoparticle morphology and Pd−Cu
average elemental composition based on scanning-transmission
electron microscopy (STEM), energy-dispersive X-ray spec-
troscopy (EDS), and X-ray fluorescence (XRF; Figures 1 and

S4−S6, Table S1). Powder X-ray diffraction (XRD) shows that
all samples possess a face-centered cubic (FCC) crystal
structure as expected for a solid-solution Pd−Cu alloy, and
all peaks are shifted to a higher 2θ relative to a pure Pd phase
(Figure 2a,b). The sample directly reduced in 5% H2 (800H2)
shows a larger peak shift compared to those annealed first
under N2. The calculated lattice parameter of 3.833 Å indicates
an approximate Pd79Cu21 structure for the 800H2 sample while

the 800N2 and 800N2-400H2 samples have lattice parameters
of 3.854 Å and Pd87Cu13 composition (Table S2).
X-ray absorption fine structure (EXAFS) at the Pd K-edge

shows that all samples possess the characteristic two-peak
shape of the FCC crystal structure (Figure 2c). Fitting the
EXAFS spectrum allows us to determine the coordination
numbers (CN) and bond distances (R) for all atoms within the
first coordination sphere (Table 2, Table S3, Figure S8).
Consistent with XRD, EXAFS indicates that the largest
amount of Pd−Cu alloying is observed in the 800H2 sample
followed by the 800N2-400H2 and 800N2 samples based on the
ratio of Pd−Pd to Pd−Cu CN. The 800N2 sample also shows
residual Pd−O scattering due to incomplete reduction of Pd
precursors. At the Cu K-edge, all samples show significant
unreduced Cu−O scattering in addition to Cu−Pd scattering
(Figure 2d). The ratio of Cu−Pd to Cu−O CN in each sample
parallels the degree of alloying observed at the Pd K-edge and
in the XRD pattern (Table 2, Figure S9). On the basis of these
data, we conclude that the bulk Pd−Cu alloy structure does
not dictate catalyst diastereoselectivity. In fact, the catalyst with
the highest degree of bulk alloying, 800H2, showed the lowest
directed hydrogenation selectivity, corroborating our hypoth-
esis that the surface composition must vary based on the
thermal treatment sequence and environment.
The scattering amplitude in the Pd K-edge EXAFS

spectrum, which reflects the total first-shell coordination
around Pd atoms, provides indirect information about the
enrichment of Pd atoms on the surface or in the core of the
nanoparticle (Figure 2c, Table 2).34,45,46 The low directivity
800H2 catalyst has the lowest EXAFS scattering intensity and a
total Pd−M CN of 8.6, significantly lower than the expected
CN of 12 for bulk Pd atoms in an FCC structure and
characteristic of Pd enrichment at the surface of the
nanoparticle. In contrast, the strongly directing 800N2-400H2
catalyst has a similar average nanoparticle size but shows much
higher scattering intensity and a total Pd−M CN of 11.2
(Figure S6). We also characterized another low directivity
sample (800H2/Al2O3) with larger average particle size
compared to the SiO2 samples (Figure S10). The 800H2/
Al2O3 sample has a total Pd-M CN of 9.4, higher than the total
CN on 800H2/SiO2 due to the larger particles, but still in a
regime that represents significant surface Pd speciation (Table
S3). Unfortunately, total coordination number cannot be
analyzed when residual oxide remains in the sample, as is the
case for the 800N2 sample and all EXAFS data at the Cu K-
edge. In addition, we obtained STEM-EDS mapping and CO
chemisorption data on the thermally treated Pd3Cu/SiO2
samples, but neither measurement has sufficient resolution to
clearly distinguish the relative distribution of Pd and Cu atoms
on the nanoparticle surface (Figure 1d−f, Table S5). Together
with the literature on Pd−Cu surface segregation, these data
suggest that subtle changes to bimetallic surface composition
engendered by the thermal treatments have a strong impact on
directed hydrogenation behavior.
In order to confirm that the diastereoselectivity observed on

the Pd−Cu alloy catalysts is in fact due to a hydroxyl directing
effect, we prepared two analogues of terpinen-4-ol (R = OH)
with different directing groups. Terpinen-4-ol methyl ether (R
= OCH3) should have weaker directing ability because the
bulky methyl group decreases the binding affinity of the oxygen
atom to the surface while p-menthene (R = H) should exhibit
no direction whatsoever (Scheme 3). When two Pd3Cu/SiO2
catalysts (800H2, 800N2-400H2) are compared to pure Pd/

Figure 1. STEM images and EDS maps for Pd3Cu/SiO2 treated under
(a, d) 800 °C H2, (b, e) 800 °C N2-400 °C H2, and (c, f) 800 °C N2.

Figure 2. (a) Powder XRD, (b) close-up of XRD (111) peak, (c) Pd
K-edge EXAFS, and (d) Cu K-edge EXAFS for Pd3Cu/SiO2 catalysts.

ACS Catalysis pubs.acs.org/acscatalysis Letter

https://doi.org/10.1021/acscatal.1c01434
ACS Catal. 2021, 11, 6128−6134

6130

http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.1c01434/suppl_file/cs1c01434_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c01434?fig=fig2&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.1c01434?rel=cite-as&ref=PDF&jav=VoR


SiO2, we indeed observe that the directing effect is attenuated
upon methylation or removal of the hydroxyl functional group.
The methyl ether substrate has a strong steric selectivity
preference due to the bulky methoxy group in the axial
position, which is reflected in the 1:7 dr (P1/P2) on pure Pd
(Table 3). While there is an increase in dr toward the directed
product from 1:7 to 1:4 and 1:2 using Pd−Cu catalysts, the
weak direction can never overcome the steric preference.
When no directing group is present (R = H), no change in
diastereoselectivity is observed between the monometallic Pd
and Pd−Cu catalysts. The hydrogenated product exhibits a dr

of ∼1:3 on all catalysts due to the inherent steric preference of
the substrate, illustrating that the geometric and electronic
changes to the catalyst surface that accompany alloy formation
do not affect diastereoselectivity in the absence of a directing
group. The rates of reaction should also be sensitive to the
strength of directing group binding to the surface, which is
observed on both Pd−Cu alloy catalysts. The nondirecting R =
H substrate shows lower reactivity by a factor of 3 and 6
relative to R = OH and OMe substrates, respectively, because
no oxygen functionality is present to facilitate substrate
adsorption onto Cu surface atoms.
We also evaluated a few additional substrates to identify the

key features that enable highly diastereoselective heteroge-
neous directed hydrogenation (Table 4). Both homoallylic
(entries 1, 2) and allylic alcohols (entries 3−8) are capable of
directing the diastereoselective hydrogen addition, provided at
least one additional substituent besides the OH group is
present on the cyclohexene ring to reduce conformational
flexibility. In particular, substrates in which the OH directing
group prefers an axial position in the half-chair conformation
result in the highest diastereoselectivities (entries 1, 2, 3, 6).
Substrates wherein the directing group prefers an equatorial
position or has no conformational preference (entries 4, 5, 7,
8) show weaker directing effects but still noticeable increases
in diastereomeric ratio relative to the pure Pd/SiO2 control.
Finally, we performed kinetics and reusability studies on our

optimized Pd3Cu/SiO2 catalyst to understand surface struc-
tural evolution and catalyst stability over time. We first
measured conversion and selectivity for terpinen-4-ol hydro-
genation over time using a freshly prepared catalyst.
Interestingly, the diastereoselectivity of the catalyst increases
significantly over the first 6 h of the reaction, likely due to
bimetallic surface reconstruction that occurs upon exposure to
the reaction medium (Figure 3). The diastereoselectivity at the
end of 20 h of reaction reaches the expected 14:1 dr and 90%
conversion. To avoid exposing the catalyst to air, we then
injected a second aliquot of the substrate directly into the flask.
The reaction continues at a slightly slower rate, but the
diastereomeric ratio of the new product formed is high from
the outset, corroborating the fact that the catalyst surface
reaches a stable state after an initial reconstruction. If we
instead filter off the Pd3Cu/SiO2 powder and dry it in the air,
we find that the reactivity of the catalyst drops significantly
upon reuse though the diastereoselectivity remains high,
indicating that the alloy surface deactivates significantly upon

Table 2. Pd and Cu K-edge XAS Fitting Parameters for Thermally Treated Pd3Cu/SiO2 Catalysts

sample edge scattering pair CN R (Å) σ2 (Å2)a E0 (eV)

Pd3Cu/SiO2 800 °C H2 Pd Pd−Pd 7.0 ± 0.6 2.717 ± 0.005 0.005 −5.0 ± 0.6
Pd−Cu 1.6 ± 0.6

Cu Cu−O 1.9 ± 0.4 1.917 ± 0.018 0.009 −3.4 ± 0.7
Cu−Pd 4.8 ± 0.5 2.680 ± 0.008

Pd3Cu/SiO2800 °C N2 + 400 °C H2 Pd Pd−Pd 9.8 ± 0.4 2.728 ± 0.002 0.005 −6.3 ± 0.3
Pd−Cu 1.4 ± 0.4

Cu Cu−O 3.0 ± 0.3 1.924 ± 0.007 0.009 −2.3 ± 0.4
Cu−Pd 3.9 ± 0.3 2.725 ± 0.006

Pd3Cu/SiO2 800 °C N2 Pd Pd−O 1.4 ± 0.4 2.041 ± 0.028 0.005 −6.5 ± 0.4
Pd−Pd 8.3 ± 0.5 2.729 ± 0.003
Pd−Cu 0.8 ± 0.5

Cu Cu−O 4.1 ± 0.1 1.928 ± 0.003 0.009 −3.0 ± 0.3
Cu−Pd 1.8 ± 0.2 2.710 ± 0.007

aσ2 values are determined based on metal foil references and fixed during the EXAFS fitting.

Scheme 3. Steric vs Directing Selectivity Preferences for
Different Directing Groups

Table 3. Diastereoselectivity and Conversion for Three
Directing Groups over Pd/SiO2 and Pd3Cu/SiO2 Catalysts

dr (P1:P2)a at high conversion

catalyst R = OH R = OMe R = h

Pd/SiO2 1:3 1:7 1:3
Pd3Cu 800H2 3:1 1:4 1:3
Pd3Cu 800N2−400H2 16:1 1:2 1:3

conversion (%) at fixed time

catalyst R = OH R = OMe R = H

Pd/SiO2
b 99 96 74

Pd3Cu 800 H2
c 31 64 11

Pd3Cu 800N2-400H2
c 21 49 8

aDiastereomeric ratios averaged over three runs; standard deviations
provided in Table S4. bConversions obtained at 2 h. cConversions
obtained at 4 h.
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oxidation (Table S6). Catalysts that have been exposed to air
can be regenerated through a 200 °C H2 reduction, which then
results in 72% conversion and a 12:1 dr over 20 h.
In conclusion, we show that control over the composition of

a bimetallic Pd−Cu surface through thermal annealing enables

high diastereoselectivity in the hydroxyl-directed hydrogena-
tion reaction of terpinen-4-ol and related substrates. We
postulate that selective binding of the directing group to Cu
surface atoms and activation of H2 and the olefin on
neighboring Pd surface atoms enable facially selective hydro-
gen addition to the olefin with a 16:1 diastereomeric ratio.
Future studies will probe the ensemble geometry and
adsorption properties of the Pd−Cu surface in greater detail
in order to more clearly elucidate the origin of catalyst
diastereoselectivity. We anticipate that multimetallic surfaces
with well-defined ensemble geometry will enable heteroge-
neous substrate-directed catalysis that retains the robustness of
materials while achieving the stereoselectivity of molecular
complexes.
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Table 4. Substrate Scope for Pd3Cu/SiO2-Catalyzed
Directed Hydrogenationa

a(*) Conversion, diastereomeric ratio (dr), and percent isomerization
determined by GC with decane as an internal standard except for
entry 7, where dr is determined by NMR. (^) Entries 3 and 4 and
entries 5 and 6 run as a mixture of diastereomers.

Figure 3. Starting material (terpinen-4-ol) concentration and product
diastereomeric ratio vs time over a fresh Pd3Cu/SiO2 catalyst and
after reinjection of a second aliquot of starting material.
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