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ABSTRACT: A practical and efficient Lewis acid-catalyzed radical-radical coupling reaction of N-hydroxyphthalimide 
esters and 4-cyanopyridines with inexpensive bis(pinacolato)diboron as reductant has been developed. With ZnCl2 as the 
catalyst, a wide range of quaternary 4-substituted pyridines, including highly congested diarylmethyl- and triarylmethyl- 
substituents, could be selectively obtained in moderated to good yields with broad functional group tolerance. Combined 
theoretical calculations and experimental studies indicate that the Lewis acid could coordinate with the cyano group of 
pyridine-boryl radical to lower the activation barrier of the C-C coupling pathway, leading to the formation of 4-
substituted pyridines. Moreover, it could also facilitate the decyanation/aromatization of the radical-radical coupling 
intermediate. 

KEYWORDS: Lewis acid catalysis, radical-radical coupling, pyridines, quaternary carbons, late-stage.

Pyridines are essential structural units that exist in a 
wide range of biologically active molecules,1 natural 
products2 and functional materials.3 Functionalization of 
pyridines with conventional two-electron process, 
including nucleophilic aromatic substitution (SNAr),4 and 
transition-metal catalyzed C-H activation,5 has been 
broadly investigated. However, sensitive organometallic 
reagents6 or transition-metal catalysts7 are always 
required in these processes. Moreover, the introduction of 
congested tertiary substituents toward pyridines with 
two-electron strategies is rather challenging.4a,8

With the prosperity of radical chemistry, we could 
construct complex molecules via radical-mediated 
processes.9,10 For example, the classical Minisci-type 
reactions11 with different kinds of radical precursors, 
including alkyl carboxylic acid,12 boronates,13 alkyl 
halides,14 sulfinates,15 sulfonyl halides,16 alcohols,17 
olefins,18 and alkanes,19 have been extensively developed 
for the C-H functionalization of electron-deficient 
heteroarenes. This strategy proceeds through the direct 
addition of carbon radical to heteroaromtic bases, which 
always involves competitive low-energy pathways, and 
therefore the regioselectivity of this type reaction is 
difficult to control.20 Although Baran21 and co-workers 
have performed systematic investigations on the 
regiochemistry of Minisci reactions and provided some 
practical guidelines to this issue, the tunability of 
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Scheme 1. Radical-mediated strategies for the 
functionalization of pyridines.

regioselectivity of pyridine is difficult. In addition to 
Minisci reactions, radical based ipso-substitution of 
pyridine nitriles is another approach for the synthesis of 
substituted pyridines. Recently, MacMillan,22 Opatz’s23 
and Inoue24 groups have independently reported the 
pyridylation of alkyl carboxylic acid, alcohol oxalate salts, 
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C-C or sp3 C-H bond (Scheme 1b) with pyridine nitriles 
under the irradiation of visible light or UV-light. These 
methods always involve the radical-radical coupling 
between the pyridine nitrile radical anions with another 
in situ generated carbon radical, leading to ipso-
substituted pyridine products. However, transition-metal 
photocatalysts or the nearly stoichiometric amount of 
organic photocatalysts and UV-light irradiation are 
required in those transformations. In this regard, the 
development of practical and efficient strategies that 
enables to generate substituted pyridines under mild 
condition would be of great synthetic value. We herein 
report a ZnCl2-catalyzed reductive decarboxylative 
pyridylation of N-hydroxyphthalimide (NHPI) esters via 
the radical-radical coupling of the neutral 4-
cyanopyridine-boryl radical25 with the decarboxylative 
carbon radical, which is mechanistically different from 
Minisci-type reactions or photoredox catalyzed ipso-
substitution strategy. Moreover, the protocol reported 
here could avoid the regioselectivity issue in Minisci 
reactions, and a series of quaternary carbons containing 
pyridine-4-yl moiety could be obtained in good efficiency.
Reaction Design
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Scheme 2. Reaction design of the decarboxylative 
pyridylation of NHPI ester.

Recently, our group25c and Fu group26 independently 
described that the persistent pyridine-boryl radical27 
generated from the B2pin2 and pyridines induce the 
reductive fragmentation of redox-active esters (RAEs) to 
form carbon radicals, which could be further trapped by 
1,1-disubtituted alkenes or the boryl radical to generate 
the C-C or C-B products. This strategy intrigued our 
interest in construction of the synthetically valuable 4-
subtituted pyridines via the ipso-substitution of 4-
cyanopyridines with RAEs as the radical precursors, 
which are easily available from the abundant carboxylic 
acids, as shown in Scheme 2a. One can see from Scheme 
2b that the radical-radical coupling reaction between the 
pyridine-boryl radical (Int1) and carbon radical (Int2) 

may proceed through three different pathways (Cγ-C, Cα-
C, and B-C pathways), due to three different resonance 
structures of Int1. With 2-phenyl-propan radical and 4-
cyanopyridine-boryl radical as the model reactants, the 
activation barriers of these three pathways calculated 
with M06-2X at the 6-31G** level are 7.6, 10.3 and 15.0 
kcal/mol, respectively (see Fig. S2 in SI for details). 
Although the B-C coupling pathway might be excluded, 
we still need to tune the reaction condition to suppress 
the competitive Cα-C pathway, which is a major challenge 
to achieve the desired reaction. In addition, the possible 
H-atom abstraction reaction or self-reaction of the 
decarboxylative carbon radicals should also be suppressed 
by tuning the reaction condition.

Using 4-cyanopyridine and NHPI ester 1aa as model 
substrates in the decarboxylative pyridylation reaction in 
the presence of B2pin2, we observed the formation of Cγ-C 
coupling product 3aa in 48% yield at 80 oC, with 10% yield 
of byproduct 3aa’ (Figure 1, entry 3, see Table S1 and Fig. 
S15 in SI for details). After extensive examination of 
different reaction parameters, the optimal reaction 
conditions were achieved with 10 mol% of ZnCl2 as the 
catalyst. The desired coupling product 3aa could be 
obtained in 76% yield (74% isolated yield) with excellent 
regioselectivity (Cγ/Cα>20:1). Other Lewis acids28 (such as 
B(C6F5)3, AlMe2Cl, MgCl2, AlCl3, FeCl3, Zn(OAc)2) could 
also facilitate the Cγ-C coupling pathway, providing the 
target 3aa in 51% to 72% yields, while the use of BF3

.Et2O 
as the catalyst led to a decreased yield (30%).

+
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(2) Na2CO3 aq, Air
N
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Me
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O
Me
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Me

entry deviation from standard condition yield (%)b

1 none 76%

2 no B2pin2 N.R.

3 no ZnCl2 48%

5 MgCl2, AlCl3, FeCl3, Zn(OAc)2 instead of ZnCl2 56%-72%

ratio (3aa:3aa')c

>20:1

N.R.

4.8:1

8:1-19:1

3aa'

Ph
HN

Me
Me

+
CN

4 BF3
.Et2O, B(C6F5)3, AlMe2Cl instead of ZnCl2 30%-58% 5.8:1-13:1

Figure 1. Optimization of the decarboxylative pyridylation 
of NHPI 1aa. aReaction conditions: 1aa (0.2 mmol), 2 (0.3 
mmol), B2(pin)2 (0.24 mmol), ZnCl2 (10 mol%) in MTBE 
(1.0 mL), under Ar. aNMR yield, using benzyl ether as 
internal standard. cRatio was determined by the GC-MS 
analysis.

After identifying the optimal conditions, we next 
explored the scope and generality of this decarboxylative 
pyridylation protocol. As shown in Table 1, a broad range 
of N-hydroxyphthalimide derivatives of tertiary carboxylic 
acids could be served as radical precursors to react with 4-
cyanopyridine-boryl radical to afford the corresponding 
4-substituted pyridines with a quaternary carbon in good 
to high yields. This protocol exhibits wide functional 
group tolerances, and we obtained the desired products in 
good to excellent yields, including products containing 
halogens (F (3qd), Cl (3ab, 3qc), Br (3c)), esters (3f), 
alkene (3g), alkyne (3h, 3i), ether (3j), Boc carbamate
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Table 1. Substrate scope of the NHPI ester and pyridine.a

+

(1) B2(pin)2, Additives

(2) Na2CO3 aq, Air
N

CN

1 2 3

R
N

ONPhth

O

R''
R'

R

R''
R'

MTBE, 70-80 oCR*
R*

3c, 80%

3o, 92%3k, 72%

3d, 78%

3wa, 43%

MeMe

N

3aa, R1= H, 74%,
3ab, R1= 4-Cl, 84%,
3ac, R1= 4-Ph, 75%,
3ad, R1= 4-OMe, 63%.

N

H

R1

N

Me

MeO CF3

N

MeO
Me

N

3r, 77% 3s, 75%

3f, 54% 3g, 85%

3l, 70%

3h, 63%

N

Me

N

Me

N

Me

TMS

N

Me

MeO

O

3i, 65% 3j, 88%

3m, 90% 3n, 71%

N

Me

N

Me

OCF3 I

N

Me
O

CF3

N

Me
N

R3

N

3y, 32% 3zh, n.d.3zf/3zg, X=F/Cl, n.d.

N

MeMe R4

N

MeMe

N

MeMe

MeMe

N
Br

MeMe

N
(pin)B

3e, 82%

N

Me
Me

N
3wb, 48%

3zi, n.d.

N

MeMe

3b, 73%

MeMe

N

MeS

3ua, 80%(14%c)

N

Me

3ub, 92%

N N

Ph

3uc, 55% 3v, 40%

N

R2 Me

N

3ta,R3=Me, 35%d

3tb,R3=Et, 38%d
3tc, 34%d

N

Me

N
Boc

N

Me
O

Me Me

N

S

3p, 75%b

3qa, 58%b 3qb, 87% 3qe, 65%3qd, 89%

N NN N

Cl

F
3qc, 90%

N
Cl

3qf, 52%

N

O

D. Pyridines

C. Primary and secondary alkyl radical

A. Tertiary alkyl radical

B. Di- and triarylmethyl radical

3xa, R2=Me, 47%,
3xb, R2=Et, 50%,
3xc, R2=i-Pr, 54%,
3xd, R2=cyclopentyl, 49%.

Me

3za, R4=F, 62%,
3zb, R4=Cl, 51%,
3zc, R4=Br, 33%,
3zd, R4=CN, 57%.
3ze, R4=Me, 42%.

X CN

aReaction conditions: aNHPI ester 1 (0.2 mmol), B2(pin)2 (1.2 equiv.), 4-cyanopyridine (1.5 equiv.), ZnCl2 (10 
mol%), MTBE (1.0 mL), 80 0C, 24 hours. b70 0C. cWithout ZnCl2. dWith 2.0 equiv. 4-cyanopyridine. (n.d.=not 
detected).

(3k), heterocycles (azetidine (3k), furan (3l), thiophene 
(3p), tetrahydropyrane (3qf)). More importantly, 
functional groups, such as aryl boronic ester, aryl iodide, 
alkyne silane were also well tolerated with this protocol, 
and desired product 3d, 3i, 3n was obtained in good 
yields. Compounds 3r and 3s with α-methoxyl α-
trifluoromethyl subsitutents were also generated in 77% 
and 75% yields, respectively. In addition to the broad 
functional group compatibility, another feature of our 
protocol is in the construction of sterically congested 
structures, which are difficult in the classical Minisci-type 
reactions.8,17d,29 For example, the transformation could 

afford the congested quaternary carbon pyridines in 52-
92% yields (3e-3s). Moreover, RAEs derived from α-
quaternary aliphatic acids could also smoothly transform 
into the corresponding pyridylation products 3ta-3tc in 
acceptable yields (34%-38%). Tri- or tetraarylmethane 
derivatives are important building blocks with wide 
applications in molecular devices,30 organic frameworks,31 
and pharmaceutical chemistry.32 But they have not been 
widely investigated due to the difficulty of synthesis.33 
With our method, NHPI ester of 2,2-diphenylacetic acid 
1ua-1uc and 2,2,2-triphenylacetic acid 1v could be 
employed as the radical precursor, leading to 3ua-3v in 
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40-92% yield. Our method is not limited to tertiary 
carboxylic acids. The secondary carboxylic acid NHPIs are 
also good alkyl radical precursors, affording the 
corresponding pyridine derivatives (3ua, 3wa-3xd) in 
moderate to good yields (43%-80%). However, the 
primary carboxylic acid NHPI 1y (derived from 3-
phenylpropanoic acid) gave a yield of only 32% (3y) due 
to several competing pathways.34 Thus, this protocol is 
less effective for primary carboxylic acids. Next, we also 
probed the scope of the pyridines in the reaction. Under 
similar condition, 4-cyano-substituted pyridines with 
halides (F, Cl, Br), cyano or methyl substituents at the C3-
position of pyridine ring were well tolerated and the 
corresponding pyridylation products 3za-3ze were 
obtained in 33-62% yields. However, 2-position 
substituted pyridines, including 2-fluoro-4-cyanopyridine, 
2-chloro-4-cyanopyridine, 2,4-dicyanopyridine and 2-
cyanopyridine were not tolerated in this reaction (3zf-
3zh), presumably due to the fact that these pyridines are 
not able to activate the B-B bond of B2(pin)2 to generate 
the corresponding pyridine-boryl radical for initiating the 
radical-radical coupling reaction.

Me
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H
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Me

Me Me
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N
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4d, 41% 4e, 86%

4c, 45%
from (±)Carprofen
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MeMe MeMe
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O
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+
N
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1ua 2 3ua, 14%

6 mmol 9 mmol

N

ONPhth

O
(2) Na2CO3 aq, Air

MTBE, 80 oC, 36h
(1) ZnCl2, B2(pin)2

without ZnCl2
with ZnCl2 (10 mol%)
with ZnCl2 (20 mol%)

3ua, 51%
3ua, 75%

Scheme 3. Synthetic potentials. a. Late-stage 4-
pyridiylation of drug molecules. b. Gram-scale 
experiments. (0.2mmol scale).

To demonstrate the synthetic potentials of this 
transformation in medicinal chemistry, a series of NHPI 
esters derived from commercially available anti-
inflammatory drugs (Scheme 3a) were synthesized and 
subjected to standard conditions. Decarboxylative 

pyridylation products derived from ibuprofen, naproxen, 
carprofen, pranoprofen, flurbiprofen could be obtained in 
good to high yields (4a-4h, 41-92%). Finally, this ZnCl2 
catalyzed Cγ selective decarboxylative pyridylation 
process was amenable to gram-scale synthesis. As shown 
in Scheme 3b, in the presence of 2.5 mol% ZnCl2 catalyst 
loading, gram quantities of pyridine-4-yl substituted 
quaternary alkanes 3aa could be prepared with the NHPI 
esters 1aa in 77% yield. For the 2,2-diphenylacetic acid 
NHPI ester 1ua, in the absence of ZnCl2, only 14% yield of 
the pyridylation product was obtained. With 20 mol% 
ZnCl2 as the catalyst, the yield of the desired product 3ua 
could significantly increase to 75%.
Mechanistic investigations. To gain more mechanistic 
insight into this reaction, the control experiments and 
density functional theory (DFT) calculations were 
conducted. First, the involvement of a free carbon radical 
intermediate (obtained from the decarboxylation of NHPI 
esters) could be confirmed by the isolation of ring-
opening product 6a in 42% yield under standard 
conditions, using substrate 5a as the radical clock 
(Scheme 4a).

O-NPhth

O

Ph

Ph

Ph

N

radical-radical coupling
/aromatization

standard condition

5a

6a, 42%

N

NC

B(pin)

fragmentation

Ph
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Int3
N

+

CN

THF-d8, 60 oC, 24 h

B2pin2 (1.2 equiv)

1aa

without ZnCl2

N
B(pin)

Ph

MeMe

NC

3aa

Ph

Me Me

N

ONPhth

O
Me

Ph
Me

N

+

CN

THF-d8, 60 oC, 24 h

B2pin2 (1.2 equiv)

1aa

with 10mol% ZnCl2

ONPhth

O
Me

Ph
Me

Eq. 1

Eq. 2

m/z [M+H]+
found. 351.2237

11B NMR
found. 23.82

a.

b.

Scheme 4. a. Radical clock experiment performed under 
standard condition. b. NMR and HRMS analysis on the 
crude reaction mixtures.

Then, DFT calculations with M06-2X functional35 were 
conducted to probe the role of ZnCl2 in this reductive 
coupling reaction of RAE and 4-cyanoppyridine. Our 
calculations suggest that the introduction of ZnCl2 do not 
have significant effect on the reaction between pyridine-
boryl radical Int1 and NHPI ester 1aa, the corresponding 
barrier of the key transition state (cleavage of N-O bond) 
is slightly lowered from 23.7 kcal/mol to 22.1 kcal/mol (see 
Fig. S1 and S3, SI). Therefore, the coupling between 
radicals Int1 and Int2 with ZnCl2 was investigated to 
elucidate the impact of ZnCl2 on this reaction (Figure 2a). 
The computed free energy profile and the key transition 
states of this reaction are listed in Figure 2b and 2c. First, 
ZnCl2 and 4-cyanopyridine-boryl radical could form a 
stable Lewis adduct (Int1-ZnCl2), in which the nitrogen 
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+
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Ph
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V III
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Figure 2. (a) Model reaction used in the computational study of the Mechanism. (b) Potential energy surfaces of the 
ZnCl2 catalyzed selectivity radical-radical coupling reaction of Int1 and Int2 (All energies are with respect to the separate 
reactant and ZnCl2). (c) Optimized structures of transition states.

atom of cyano is coordinated to the Zn(II) center (ΔG = -
11.7 kcal/mol). Then, the radical-radical coupling reaction 
between radicals Int2 and Int1-ZnCl2 at the Cγ position or 
Cα position generates 1,4-dihydropyridine intermediate II 
(via TSI-II), and 1,2-dihydropyridine intermediate V (via 
TSI-V). The Cγ-C pathway is the kinetically more favorable 
pathway, which requires a much lower barrier than the 
Cα-C coupling pathway (6.3 v.s. 11.0 kcal/mol). The free 
energy barrier of the Cγ-C coupling pathway is somewhat 
lowered in the presence of ZnCl2 (reduced from 7.6 
kcal/mol to 6.3 kcal/mol). For TSI-II and TSI-V, the 
enlarged energy barrier difference (ΔΔG≠= -4.7 kcal/mol) 
between these two competing pathways could account for 
the experimental observed improvement in product-
selectivity with ZnCl2 as the catalyst (3aa/3aa’, from 4.8:1 
to >20:1). Additionally, ZnCl2 could also facilitate the 
decyanation/aromatization of the 1,4-dihydropyridine 
intermediate Int3. Dissociation of cyanide from II with 
the assistance of ZnCl2 (TSII-III) followed by migration of 
the cyanide from ZnCl2-CN to the Bpin center (TSIII-IV) 
gives the desired decarboxylative/pyridylation product. 

The activation barrier of these two transition states are 
18.1 and 2.5 kcal/mol, respectively. For the dissociation of 
cyanide from intermediate II, our post-Hartree-Fock 
calculations with the cluster-in-molecule local correlation 
method36 (see supporting information for details) also 
lead to a barrier of 22.0 kcal/mol, being slightly higher 
than the M06-2X result (TSII-III, 18.1 kcal/mol). Without 
ZnCl2, the dissociation of cyanide requires a free energy 
barrier of 35.7 kcal/mol, which is difficult to occur at the 
present condition (see Fig. S5 in SI for details). 
Furthermore, NMR experiments were performed to verify 
the calculated mechanism for this ZnCl2-catalyzed 
reductive coupling reaction. The reaction of 1aa, 4-
cyanopyridine and B2pin2 was analyzed by 1H NMR 
spectroscopy in the presence or absence of ZnCl2 (Scheme 
4b, see Fig. S11-12 in SI). Without ZnCl2 (Eq. 1), a set of 
signals observed at δH = 6.35 and 4.45 ppm could be 
assigned to a 1,4-dihydropyridine intermediate Int3. The 
calculated 1H NMR chemical shift (δH = 6.91 and 4.78 
ppm) of Int3 by the Gauge-independent atomic orbital 
(GIAO) method at B97-2/pcSseg-2 level37 is consistent 
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with experimental values described above. Additionally, 
the structure of Int3 was further confirmed by HRMS and 
11B NMR experiments (see Fig. S13 and S14 in SI for 
details). Therefore, the involvement of 1,4-
dihydropyridine (via Cγ-C coupling pathway) could be 
confirmed by our experimental studies. Under a similar 
condition, when a catalytic amount of ZnCl2 was added 
(Eq. 2), the signals that correspond to 1,4-dihydropyridine 
intermediate disappeared and the aromatized product 
3aa was observed (Scheme 4b, see Fig. S13). This result 
indicates that the use of ZnCl2 is crucial to prompt the 
rearomatization of 1,4-dihydropyridine intermediate, 
which is consistent with our DFT calculations. In addition, 
a trace amount of 4-cyanopyridine-boryl radical dimer of 
Int1 was also detected by the 1H NMR and confirmed by 
our calculated 1H NMR chemical shift (see Fig. S11 and 
S12). Taking these experimental and computational 
results into consideration, a ZnCl2 catalyzed 
decarboxylative coupling pathway is proposed in Scheme 
5. First, the pyridine-boryl radical Int1 mediated 
fragmentation of NHPI ester 1 leads to the generation of 
carbon radical Int2 as evidenced by radical-clock 
experiment. Then, the radical-radical coupling of Int1-
ZnCl2 complex and Int2 at the γ-position of the pyridine-
boryl radical generates the 1,4-dihydropyridine 
intermediate. Subsequent elimination of the cyano-Bpin 
with the assistance of ZnCl2 forms the desired 4-
substituted pyridines and regenerates the ZnCl2 catalyst. 
Along the reaction pathway, ZnCl2 works as a bifunctional 
catalyst. It not only facilitates the Cγ-C coupling pathway, 
but also contributes to the lowering of the activation 
barrier of the rearomatization of 1,4-dihydropyridine 
intermediate.

N

CN

Int1

N

CN

B(pin)

R
O

O NPhth
1

N

R

2
N

R
CN

(pin)B

ZnCl2

CN ZnCl2

fragmentation

Int2
R

N

CN

(pin)B

ZnCl2

B2pin2

Int1

-CN-Bpin

(pin)BZnCl2

Scheme 5. Proposed reaction pathway.

In conclusion, the reductive decarboxylative 
pyridylation of N-hydroxyphthalimide esters has been 
established with ZnCl2 as the catalyst. This protocol 
features good selectivity, excellent functional group 
compatibility, and a variety of congested pyridine-
substituted quaternary carbons could be readily prepared 
in good to excellent yields. The combination of DFT 
calculations and experimental investigations suggests that 
ZnCl2 could promote the regioselectivity of the radical-
radical coupling step and lower the activation barrier of 
the rearomatization of the 1,4-dihydropyridine 
intermediate. The role of ZnCl2 proposed here might 

provide new inspiration of the utility of Lewis acid in 
radical chemistry.
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