JOC The Journal of Organic Chemistry

Article

Subscriber access provided by Nottingham Trent University

Multi-component Tether Catalysis Synthesis of Highly Functionalized 4-(Pyridin-2-ylmethyl)-2-amino-pyrroles via Cascade Reaction is Accompanied by Decarboxylation

Kun Li, Li Chen, Yun-Xiang Fan, Yao Wei, and Sheng-Jiao Yan

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01814 • Publication Date (Web): 29 Aug 2019 Downloaded from pubs.acs.org on August 29, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Multi-component Tether Catalysis Synthesis of Highly Functionalized 4-(Pyridin-2-ylmethyl)-2amino-pyrroles via Cascade Reaction is Accompanied by Decarboxylation

Kun Li, Li Chen, Yun-Xiang Fan, Yao Wei and Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

KEYWORDS: 2-Aminopyrroles, Tether catalysis, Cascade reaction, Decarboxylation, Heterocyclic ketene aminals.

ABSTRACT: A multi-component tether catalysis protocol for the synthesis of 4-(pyridin-2ylmethyl)-2-aminopyrroles (PMAPs) was constructed by simply refluxing a mixture of ethyl 2-(pyridin-2-yl)acetates **1** and various types of arylglyoxal monohydrates **2** and different heterocyclic ketene aminals **3** in EtOH solvent. Based on this reaction, a series of highly functionalized PMAPs was obtained through a novel cascade reaction accompanied by a decarboxylation mechanism. As a result, the pyridin-2-ylmethyl was successfully introduced in the target compounds, and a library of PMAPs was easily constructed using the cascade reaction described in this study. This protocol demonstrated that the most important feature was the decarboxylation reaction of the 2-(pyridin-2-yl)acetates **1**, which can be used in the synthesis of pyridin-2-ylmethyl-substituted heterocycles including pyrroles, pyridines, quinolones, and other heterocyclic compounds resembling those found in nature.

ACS Paragon Plus Environment

INTRODUCTION

Pyrrole derivatives are vital *N*-containing heterocycles and are a common structural motif in numerous natural products, biologically important molecules, and pharmaceuticals.¹ Examples are the central cannabinoid (CB1) receptor antagonist (Fig. 1, URB447), the anti-tumor agent neolamellarin A, and the antihyperlipidemic agent atorvastatin.² Consequently, a greater number of chemists and pharmacologists have been interested in these types of heterocycles and have constructed many protocols for the synthesis of pyrrole derivatives.²⁻³ A general method involves the use of Paal-Knorr condensations to synthesize pyrroles.⁴ Furthermore, *N*-sulfonyl-1,2,3-triazoles also have been widely used as the substrate to synthesize pyrroles.⁵

Currently, there has been an increasing number of protocols for synthesizing pyrroles.⁶ Among pyrrole derivatives, there has been great interest in 2-aminopyrrole in recent years due to the 2-aminopyrrole skeleton being incorporated in many medicinal compounds, as well as its broad-spectrum and unique biological activities including mitogen-activated protein kinase kinase (MEK) inhibitor,⁷ metallo- β -lactamase (MBL) inhibitor,⁸ (Fig. 1), tumor necrosis factor (TNF)- α production inhibitor, phosphodiesterase (PDE) inhibitor,⁹ protein kinase casein kinase 2 (CK2) inhibitor;¹⁰ antagonist against corticotropin-releasing factor (CRF) receptors (Fig. 1);¹¹ and antimalarial, anti-bacterial, and cytotoxic activities.¹² As a result, an increasing number of procedures have been used to synthesize pyrroles¹³⁻¹⁶ including (1) a multicomponent reaction base on nitrile or isocyanide-containing substrates and (2) cycloisomerization of alkyne and allene-containing substrates catalyzed by transition metal complexes. For example, Ye and co-workers reported a gold-catalyzed intermolecular ynamide amination-initiated *aza*-Nazarov cyclization to synthesize 2-aminopyrroles (Scheme 1).^{16a} Zhu and co-workers described an oxidative Strecker reaction (mediated by 2-iodoxybenzoic acid and tetra-butylammonium

bromide) followed by a [4+1]-cycloaddition of the resulting α,β -unsaturated imidoyl cyanides with isocyanides to provide 2-aminopyrroles (Scheme 1).^{16b} (3) Our group recently established a simple protocol that uses Morita–Baylis–Hillman (MBH) acetates reacted with heterocyclic ketene aminals (HKAs) *via* base-promoted tandem Michael addition, elimination, and aromatization for the facile synthesis of 2-aminopyrroles.¹⁷

Figure 1. Biological activity of pyrroles and compounds 4-5.

Pyridine derivatives are one of the most important classes of nitrogen heterocyclic compounds and are ubiquitous structural motifs in biologically active molecules or drugs.¹⁸⁻²¹ Constructing hybrid molecules that are combined with the pyridine skeleton and 2-aminopyrrole skeleton may increase the chance for excellent biological activities. The hybrid molecules are 4-(pyridin-2ylmethyl)-2-aminopyrroles (PMAPs). The reported methods for their synthesis usually have some shortcomings, such as the need for expensive transition metal additives and poor selectivity. Additionally, methods for synthesis of biological heterocycles substituted by pyridinylmethyl, quinolin-2-ylmethyl, and other benzyl groups are very rare. The scarcity may

be due to the fact that when using the alkylation agents, the *N*-alkylation products are always obtained rather that the *C*-alkylation products.

Heterocyclic ketene aminals (HKAs) are fascinating and versatile building blocks²² and were widely used to synthesize various heterocycles with important biological activities including antitumor,²³ anti-anxiety,²⁴ anti-leishmanial,²⁵ antibacterial,²⁶ and pesticide.²⁷ To further extend the use of HKAs in synthesis, we herein report the construction of a library of functionalized 2-aminopyrrole derivatives based on multicomponent reactions between HKAs, ethyl 2-(pyridin-2-yl)acetates, and arylglyoxal monohydrates. The process occurs in refluxing ethanol without any added catalyst.

RESULTS AND DISCUSSION

In order to achieve optimal conditions, first, ethyl 2-(pyridin-2-yl)acetates 1a (0.5 mmol), arylglyoxal monohydrate **2b** (0.5 mmol), and HKA **3a** were mixed without any added catalyst at reflux in different solvents including ethanol, acetonitrile, tetrahydrofuran (THF), 1,4-dioxane, and toluene. The results showed that ethanol was the most optimal solvent, and gave the product 4e with a moderate yield (79%) (Table 1, entries 1-5). In an attempt to use a more environmentally friendly solvent, water was used as a solvent in this cascade reaction, and the results showed that we obtained a lower yield compared with ethanol (Table 1, entry 1 vs. 6). Next, a mixture of ethanol and water at different volume ratios served as the solvent and was screened at reflux without any other catalyst (Table 1, entries 7–9). The results showed that ethanol is the most optimal solvent when compared to other solvents, including the mixed solvents (Table 1, entry 1 vs. 2–9). Based on the optimal solvents, the basic catalyst including Et₃N, pyridine, and Cs₂CO₃ were applied in this reaction that was refluxed in ethanol for 12 hours (Table 1, entries 10-12). The results demonstrated that the basic catalyst could not promote the reaction at all, and a low yield (35-66%) was obtained. Next, acid catalysts including CH₃COOH, p-TsOH, and NH₂SO₃H were screened under the same conditions. The results revealed that these three catalysts also could not promote the yield of the cascade reaction (Table 1, entries 12–15). Comparing all of the conditions, we found that the optimal conditions were the use of ethanol as the solvent without any other catalyst at reflux for 12 hours (Table 1, entry 1 vs. 2–15).

Table 1. Optimized Conditions for the Synthesis of 4e ^a				
N 1a	COOEt + OH + 2b	NH O A 3a F	Vent	
entry	solvent	catalyst	time/h	yield ^{b} (%)
1	EtOH	_	12	79
2	MeCN	_	12	54
3	THF	_	12	55
4	1,4-dioxane	_	12	42
5	toluene	_	12	61
6	H ₂ O	_	12	12
7	EtOH/H ₂ O=1:5	_	12	19
8	EtOH/H ₂ O=1:2	_	12	33
9	EtOH/H ₂ O=1:1	_	12	55
10	EtOH	Et ₃ N	12	57
11	EtOH	pyridine	12	35
12	EtOH	Cs_2CO_3	12	66
13	EtOH	CH ₃ COOH	12	49
14	EtOH	<i>p</i> -TsOH	12	0
15	EtOH	NH ₂ SO ₃ H	12	0

^{*a*} Reagents and conditions: **1a** (0.5 mmol), **2b** (0.5 mmol), **3a** (0.5 mmol), catalyst (0.05 mmol), solvent (3.0 mL). ^{*b*} Isolated yield based on **3a**.

Once we determined the optimized conditions, we explored the scope and limitations of the cascade reaction of ethyl 2-(pyridin-2-yl)acetates **1** and arylglyoxal monohydrates **2** and HKAs **3** (Table 2). The results showed that the substituted groups of ethyl 2-(pyridin-2-yl)acetates **1** and arylglyoxal monohydrates **2** exerted only a slight effect on the yield of the target compounds **4**, and we almost could not arrive at obvious rules for the substituted group. In general, this cascade

^{*a*} **1–3** (0.5 mmol), EtOH (3.0 mL). ^{*b*} **1–3** (1.0 mmol), EtOH (5.0 mL).

reaction can smoothly proceed with the different structures of the 2-(pyridin-2-yl)acetates 1 and arylglyoxal monohydrates 2 to produce compounds 4 with moderate to good yield. The substituted group of HKAs 3 has a different effect on the yield of the target compounds. The effect of substitution on the aryl group of HKAs was also evaluated. Substitution at C-4 of the aryl group has a slight effect on the yield. When the substituents were at C-2 of the aryl group, yields were slightly lower (Table 2, 4i, 4n and 4r). Overall, all of the substrates can be used in the reaction, and all will produce compounds 4 in moderate to good yield (Table 2, entries 1–28). To illustrate this new synthetic method, a larger scale (1–3, 1.0 mmol) synthesis of compound 4e was carried out, and we obtained 309 mg compound 4e with an increasing yield up to 78% (Table 2). Alkylglyoxal monohydrates 2e–2f were used as substrates to test this cascade reaction, and the results showed that alkylglyoxal monohydrates 2e–2f did not react with ethyl 2-(pyridin-2-yl)acetates 1a and HKA 3a, and we could not obtain the target compounds 4c'–4d' (SI, Scheme S1).

To further explore the scope and limitations of the cascade reaction, a variety of HKAs **3** with electron-withdrawing groups was used as the substrate in this cascade reaction (Table 3). The results showed that all of the substituted groups of HKAs **3** had a slight influence on the yield of the reaction. Overall, different substituted HKAs can be used in the reaction and give compounds **5** with good yield (Table 3).

To determine the structure of PMAPs, compound **4a** was selected as a representative compound and characterized by X-ray crystallography (Supporting Information, Figure S1, CCDC 1920258).

To determine the tether catalysis mechanism, control experiments were performed using substrates **1d–1g** as reagents that were reacted with arylglyoxal monohydrate **2b** and HKA **3a**. Substrates **1d–1g** did not react with arylglyoxal monohydrate **2b** and HKA **3a** under the same conditions (SI, Scheme S2). Substrates **1a–1d** produced the target compounds with satisfactory yields (Table 2), but positive results were not obtained for substrates **1d–1g**. Thus, it was successfully demonstrated that intermediate **7** is necessary for the cascade reaction to proceed so that intermediates **8** and **9** can be formed (Scheme 2).

To explain the possible mechanism of the cascade reaction, we used target compound 4e as a representative compound. The hypothesis for the mechanism of the cascade reaction is shown in Scheme 2. Initially, the 2-(pyridin-2-yl)acetate 1a react with the arylglyoxal monohydrate 2b *via* 1,2-addition to form the intermediate 6. Next, the intermediate 7 is produced from intermediate 6 by enolate formation. Then, intermediate 7 gives compound 8 *via* an intramolecular tether-catalyzed cyclization reaction. Compound 9 is obtained from compound 8 through another intramolecular cyclization reaction and loses one molecule of ethanol. Compound 9 gives intermediate 10 *via* a enol-ketone tautomerization. Then, α -*C* of substrate 3a attacks the carbonyl

group of intermediate 10 by a 1,2-addition reaction, and imine-enamine tautomerization follows to obtain intermediate 12. The amino group of intermediate 12 subsequently attacks the intramolecular benzylic carbon, which results in the loss of one molecule of CO_2 to produce intermediate 13. The intermediate 13 gets one proton from solvent to form intermediate 14. Ultimately, intermediate 14 forms compound 4e by losing one molecule of water. Scheme 2. Proposed Mechanism of the Cascade Reaction EtO **EtO** .OEt Enolate 1,2-Addition formation HO ò∈ 1a ÓH

To probe the mechanism of this cascade reaction, 2,2-dihydroxy-1-phenylethanone (**2b**) and HKA (**3a**) and the solvent EtOH (3 mL) were charged in a round-bottom flask. Next, ethyl 2-(pyridin-2-yl)acetate (**1a**) was added. The reaction was refluxed only for 3 hours. Then, the reaction mixture was injected into the high-performance liquid chromatography-high resolution

mass spectrometry (HPLC-HRMS) system. The four molecular ion peaks that appeared in the high-resolution mass spectrum were: HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₈NO₄ [M+H]⁺, 300.1230; found, 300.1236; HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₈NO₄ [M+H]⁺, 300.1230; found, 300.1224; HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₈NO₄ [M+H]⁺, 300.1230; found, 300.1230. There are the HRMS spectra of intermediates **6**/7/**8**; HRMS (TOF ES⁺): m/z calcd. for C₁₅H₁₂NO₃ [M+H]⁺, 254.0812; found, 254.0816; HRMS (TOF ES⁺): m/z calcd. for C₁₅H₁₂NO₃ [M+H]⁺, 254.0812; found, 254.0816; HRMS (TOF ES⁺): m/z calcd. for C₁₅H₁₂NO₃ [M+H]⁺, 254.0812; found, 254.0819, which are the HRMS spectra of intermediate **9**/10; HRMS (TOF ES⁺): m/z calcd. for C₂₆H₂₃FN₃O₄ [M+H]⁺, 460.1667; found, 460.1663, which is the HRMS spectra of compound **11** or **12**; HRMS (TOF ES⁺): m/z calcd. for C₂₅H₂₁FN₃O [M+H]⁺, 398.1663; found, 398.1661), which is the HRMS spectrum of target compound **4e** (supporting information, Figure S83–Figure S90). Based on the molecular ion peaks of intermediate **6–12**, the proposed mechanism of the cascade reaction is reasonable (Scheme 2).

This cascade reaction via a novel mechanism including a tether catalysis and a decarboxylation mechanism (Scheme 2). As a result, the pyridin-2-ylmethyl was successfully introduced in the target compounds, and a library of PMAPs was easily constructed using the cascade reaction described in this study. The novel mechanism was been confirmed by the high resolution mass spectrometry (HRMS) of intermediates **6–12** (Supporting information, Figure S84–Figure S89) and the control experiments (Supporting Information, Scheme S2). This protocol demonstrated that the most important feature was the tether catalysis and decarboxylation reaction of the 2-(pyridin-2-yl)acetates **1**. In future studies, these reactions will be used in this efficient and concise one-step protocol for the synthesis of pyridin-2-ylmethyl-substituted heterocycles including pyrroles, pyridines, quinolones, and other heterocyclic compounds resembling those found in nature.

CONCLUSIONS

In conclusion, we have developed a procedure consisting of an tether catalysis reaction for the synthesis of PMAPs by simply refluxing a mixture of ethyl 2-(pyridin-2-yl)acetates **1** and various types of arylglyoxal monohydrates **2** and different heterocyclic ketene aminals **3** in EtOH solvent (Scheme 2). Using this procedure, a series of highly functionalized PMAPs was obtained through a novel cascade reaction accompanying a decarboxylation mechanism. Consequently, the functionalized pyridin-2-ylmethyl was simply and rapidly introduced in the pyrrole skeleton, and the library of PMAPs was easily constructed using the cascade reaction described in this study. This protocol demonstrated that the most important feature was the decarboxylation reaction of the 2-(pyridin-2-yl)acetates **1**, and it can be used in the synthesis of pyridin-2-ylmethyl-substituted heterocycles including pyrroles, pyridines, quinolones, and other heterocyclic compounds resembling those found in nature.

EXPERIMENTAL SECTION

General Methods. All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated DMSO-*d*₆ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected; HRMS were performed on an Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

The procedure for the synthesis of HKAs 3a-3g.^{28a-b}

HKAs (**3a–3f**) were prepared according to the literature.^{28a} The mixture of ketene dithioacetals (10 mmol) and 1,2-diaminoethane (12 mmol) in anhydrous toluene (40 mL) was stirred for about 8 hours at reflux. The mixture was cooled to room temperature and the product collected by filtration as a withe or yellow solid with 85-92%.

HKA (**3g**) were prepared according to the literature.^{28b} The mixture of ketene dithioacetals (10 mmol) and 1,2-diaminoethane (12 mmol) in ethanol (40 mL) was stirred for about 8 hours at reflux. The mixture was cooled to room temperature and the product collected by filtration as a withe solid (**3g**) with 86%.

1-(4-Fluorophenyl)-2-(imidazolidin-2-ylidene)ethanone (*3a*):^{28c} Withe solid (1.86 g, 90%); Mp: 206–208 °C [Lit. 206 °C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.25 (s, 1H, NH), 7.78–7.76 (m, 2H, ArH), 7.40 (s, 1H, NH), 7.17 (t, *J* = 8.8 Hz, 2H, ArH), 5.24 (s, 1H, CH), 3.61 (t, *J* = 8.3 Hz, 2H, CH₂); 3.45 (t, *J* = 8.3 Hz, 2H, CH₂); HRMS (TOF ES⁺): *m/z* calcd for C₁₁H₁₂FN₂O [(M+H)⁺], 207.0928; found, 207.0928.

1-(4-Chlorophenyl)-2-(imidazolidin-2-ylidene)ethanone (3b):^{28d} Withe solid (2.05 g, 92%); Mp: 236–237.5 °C [Lit. 238°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.26 (s, 1H, NH), 7.73 (d, J = 8.5 Hz, 2H, ArH), 7.42 (s, 1H, NH), 7.41 (d, J = 8.5 Hz, 2H, ArH), 5.25 (s, 1H, CH), 3.60 (d, J = 7.7 Hz, 2H, CH₂), 3.46 (d, J = 7.7 Hz, 2H, CH₂); HRMS (TOF ES⁺): *m/z* calcd for C₁₁H₁₂ClN₂O [(M+H)⁺], 223.0633; found, 223.0634.

1-(4-Bromophenyl)-2-(imidazolidin-2-ylidene)ethanone (*3c*):^{28d} Yellow solid (2.35 g, 88%); Mp: 272–274°C [Lit. 275°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.25 (s, 1H, NH), 7.66 (d, *J* = 8.4 Hz, 2H, ArH), 7.56 (d, *J* = 8.4 Hz, 2H, ArH), 7.43 (s, 1H, NH), 5.24 (s, 1H, CH), 3.61 (d, *J* = 7.7 Hz, 2H, CH₂), 3.46 (d, *J* = 7.7 Hz, 2H, CH₂); HRMS (TOF ES⁺): *m/z* calcd for

 $C_{11}H_{12}BrN_2O[(M+H)^+]$, 267.0128; found, 267.0128.

2-(*Imidazolidin-2-ylidene*)-*1*-(*p-tolyl*)*ethanone* (**3d**):^{28d} Withe solid (1.82 g, 90%); Mp: 244– 245 °C [Lit. 245°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.26 (s, 1H, NH), 7.61 (d, *J* = 8.0 Hz, 2H, ArH), 7.33 (s, 1H, NH), 7.16 (d, *J* = 8.0 Hz, 2H, ArH), 5.24 (s, 1H, CH), 3.59 (d, *J* = 7.6 Hz, 2H, CH₂), 3.43 (d, *J* = 7.6 Hz, 2H, CH₂), 2.31 (s, 3H, CH₃); HRMS (TOF ES⁺): *m/z* calcd for C₁₂H₁₄N₂O [(M+H)⁺], 203.1179; found, 203.1176.

2-(*Imidazolidin-2-ylidene*)-*1*-(*4-methoxyphenyl*)*ethanone* (*3e*):^{28d} Withe solid (1.99 g, 91%); Mp: 217–219 °C [Lit. 218°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.24 (s, 1H, NH), 7.68 (d, *J* = 8.6 Hz, 2H, ArH), 7.28 (s, 1H, NH), 6.90 (d, *J* = 8.6 Hz, 2H, ArH), 5.23 (s, 1H, CH), 3.77 (s, 3H, CH₃), 3.59 (t, *J* = 8.3 Hz, 2H, CH₂), 3.43 (t, *J* = 8.3 Hz, 2H, CH₂); HRMS (TOF ES⁺): *m/z* calcd for C₁₂H₁₅N₂O₂ [(M+H)⁺], 219.1128; found, 219.1128.

1-(2-Chlorophenyl)-2-(imidazolidin-2-ylidene)ethan-1-one (*3f*):^{28e} Yellow solid (1.89 g, 85%); Mp: 240–241 °C [Lit. 242°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.00 (s, 1H, NH), 7.46 (s, 1H, NH), 7.38–7.28 (m, 4H, ArH), 4.72 (s, 1H, CH), 3.61 (t, *J* = 8.5 Hz, 2H, CH₂), 3.44 (t, *J* = 8.5 Hz, 2H, CH₂); HRMS (TOF ES⁺): *m/z* calcd for C₁₁H₁₂ClN₂O [(M+H)⁺], 223.0633; found, 223.0637.

2-(*Nitromethylene*)*imidazolidine* (**3***g*):^{28b} White solid (1.11 g, 86%); Mp: 168–169 °C [Lit. 170°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.29 (s, 2H, NH), 6.34 (s, 1H, CH), 3.58 (s, 4H, CH₂); HRMS (TOF ES⁺): *m*/zcalcd for C₄H₇N₃NaO₂ [(M+Na)⁺], 152.0430; found, 152.0434.

1-(Imidazolidin-2-ylidene)propan-2-one(**3***h*):^{28f} White solid (87%); Mp: 145–147 °C [Lit. 148°C]; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.88 (s, 1H, NH), 7.07 (s, 1H, NH), 4.51 (s, 1H, CH), 3.50 (t, *J* = 8.1 Hz, 2H, CH₂), 3.35 (t, *J* = 8.1 Hz, 2H, CH₂), 1.73 (s, 3H, CH₃); HRMS (TOF ES⁺): *m/z* calcd for C₆H₁₁N₂O [(M+H)⁺], 127.0866; found, 127.0866.

General procedure for the synthesis of 4-(pyridin-2-ylmethyl)-2-aminopyrroles 4–5. Arylglyoxal monohydrates 1 (0.5 mmol), ethyl 2-pyridylacetates 2 (0.5 mmol), and ethanol (3 mL) were placed into a 5-mL round-bottom flask. Then, heterocyclic ketene amines (HKAs) 3 (0.5 mmol) were added to this mixture, and the mixture was refluxed until the completion of the reaction, which was monitored by thin-layer chromatography (TLC, approximately 12 hours). The reaction mixture was cooled to room temperature. The mixture was extracted three times with ethyl acetate (25 mL). The combined organic extracts were washed with water and brine, and finally dried over MgSO₄. The solvent was removed in vacuum to afford a crude residue, which was purified by flash column chromatography to provide **4–5** with good yield of 61–83%.

(4-Fluorophenyl)(5-(4-fluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)methanone (4a): Yellow solid (168 mg, 81%); Mp: 173.0–173.5 °C; IR (KBr) 3435, 2962, 2368, 1598, 1528, 1417, 1249, 1164, 1079, 769cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ = 8.39–8.38 (m, 1H, NCH), 7.57 (d, J = 1.8 Hz, 1H, ArH), 7.53–7.47 (m, 4H, ArH), 7.23–7.17 (m, 4H, ArH), 7.12–7.04 (m, 2H, ArH), 5.72 (s, 1H, NH), 4.03 (t, J = 8.8 Hz, 4H, ArCH₂, NCH₂), 3.78 (t, J = 1.5 Hz, 2H, NHCH₂); ¹³C {¹H} NMR (150 MHz, DMSO-d₆): δ = 187.2, 163.7 (d, J = 244.5 Hz), 162.0, 161.6 (d, J = 243.0 Hz), 153.9, 148.9, 138.4, 136.5, 130.4, 130.3, 128.1, 123.3, 122.6, 121.2, 119.6, 116.0, 115.6, 100.7, 49.1, 44.7, 34.8; ¹⁹F NMR (470 MHz, DMSO-d₆) δ = 110.7, 115.2; HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₀F₂N₃O [(M+H)⁺], 416.1569; found, 416.1569.

(4-Chlorophenyl)(5-(4-fluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)methanone (4b): Yellow solid (168 mg, 78%); Mp: 214.1–210.5 °C; IR (KBr) 3434, 2896, 1592, 1506, 1416, 1299, 1227 1164, 1084, 1245, 764cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.31–8.30 (m, 1H, NCH), 7.52–7.49 (m, 1H, ArH), 7.42–7.40 (m, 6H, ArH),

7.39–7.34 (m, 2H, ArH), 7.16–7.13 (m, 1H, ArH), 7.04–7.96 (m, 1H, ArH), 5.70 (s, 1H, NH), 3.95 (t, J = 4.4 Hz, 4H, ArCH₂, NCH₂), 3.71–3.68 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) $\delta = 187.1$, 162.0, 161.6 (d, J = 241.5Hz), 154.1, 148.9, 140.6, 136.5, 135.2, 130.3 (d, J = 7.5 Hz), 129.7, 128.7, 128.1, 123.4, 122.6, 121.2, 119.5, 116.0 (d, J = 21.0Hz), 100.7, 49.1, 44.7, 34.8; HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₀ClFN₃O [(M+H)⁺], 432.1273; found, 432.1264.

(5-(4-Fluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)(ptolyl)methanone (4c): Yellow solid (162 mg, 79%); Mp: 207.8–208.0 °C; IR (KBr) 3433, 1593, 1531, 1504, 1414, 1298, 1225, 1163, 1079, 763cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆) δ = 8.32– 8.31 (m, 1H, NCH), 7.50–7.47 (m, 1H, ArCH), 7.42–7.40 (m, 2H, ArH), 7.32 (d, *J* = 8.0 Hz, 2H, ArH), 7.15–7.11 (m, 4H, ArH), 7.03–7.01 (m, 4H, ArH), 6.95 (d, *J* = 7.8 Hz, 1H, ArH), 5.42 (s, 1H, NH), 3.98–3.92 (m, 4H, ArCH₂, NCH₂), 3.70–3.66 (m, 2H, NHCH₂), 2.27 (s,3H, ArCH₃); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) δ = 188.4, 162.2, 161.5 (d, *J* = 243.0 Hz), 153.6, 148.9, 140.4, 139.2, 136.4, 130.2 (d, *J* = 7.5 Hz), 129.2, 128.2, 128.0, 123.1, 122.6, 121.2, 119.8, 115.9 (d, *J* = 21.0 Hz), 101.0, 49.1, 44.7, 34.7, 21.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₃FN₃O [(M+H)⁺], 412.1820; found, 412.1823.

(5-(4-Fluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)(4methoxyphenyl)methanone (4d): Yellow solid (164 mg, 77%); Mp: 180.1–180.5 °C; IR (KBr) 3419, 1595, 1529, 1503, 1417, 1305, 1251, 1162, 841, 770cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆) $\delta = 8.32-8.31$ (m, 1H, NCH), 7.50–7.47 (m, 1H, ArCH), 7.45–7.40 (m, 4H, ArCH), 7.13 (d, J =8.9 Hz, 2H, ArH), 7.03–7.01 (m, 1H, ArCH), 6.97 (d, J = 7.9 Hz, 1H, ArH), 6.87–6.86 (m, 2H, ArH), 5.47 (s, 1H, NH), 4.00–3.93 (m, 4H, ArCH₂, NCH₂), 3.73 (s, 3H, COCH₃), 3.69–3.66 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) $\delta =$ 187.7, 162.3, 161.6, 161.6 (d, J = 243.0

Hz), 153.2, 148.9, 136.5, 134.2, 130.2, 130.2, 128.3, 123.0, 122.7, 121.2, 120.1, 116.0 (d, J = 21.0 Hz), 113.9, 100.9, 55.7, 49.1, 44.7, 34.8; ¹⁹F NMR (470 MHz, DMSO- d_6) $\delta = 115.4$; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃FN₃O₂ [(M+H)⁺], 428.1769; found, 428.1766.

(4-Fluorophenyl)(5-phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)methanone (4e): Yellow solid (157 mg, 79%); Mp: 191.0–191.2 °C; IR (KBr) 3429, 2930, 1603, 1553, 1294, 1219, 1151, 763cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.39–8.38 (m, 1H, NCH), 7.58–7.56 (m, 1H, ArH), 7.53–7.51 (m, 2H, ArH), 7.43–7.41 (m, 1H, ArH), 7.37 (t, J = 7.5 Hz, 3H, ArH), 7.27 (d, J = 7.3 Hz, 1H, ArH), 7.19 (t, J = 8.9 Hz, 2H, ArH), 7.11–7.10 (m, 1H, ArH), 7.04 (d, J = 7.8 Hz, 1H, ArH), 5.73 (s, 1H, NH), 4.07–4.04 (m, 4H, ArCH₂, NCH₂), 3.79–3.76 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 187.2, 162.9, 162.2, 154.0, 148.9, 138.4, 136.5, 131.7, 130.4 (d, J = 9.0 Hz), 129.0, 128.2, 127.2, 124.3, 122.5, 121.2, 119.5, 115.6, 115.5, 100.8, 49.1, 44.9, 34.9; ¹⁹F NMR (470 MHz, DMSO- d_6) δ = 110.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₅H₂₁FN₃O [(M+H)⁺], 398.1663; found, 398.1664.

(4-Chlorophenyl)(5-phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)methanone (4f): Yellow solid (163 mg, 79%); Mp: 190.2–190.8°C; IR (KBr) 3433, 2893, 1593, 1529, 1417, 1298, 1166, 1083, 643cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.38 (d, J = 4.1 Hz, 1H, NCH), 7.58 (d, J = 1.6 Hz, 1H, ArH), 7.46–7.41 (m, 3H, ArH), 7.38 (t, J = 5.1 Hz, 5H, ArH), 7.27 (d, J = 7.3Hz, 1H, ArH), 7.11 (d, J = 1.7 Hz, 1H, ArH), 7.04 (d, J = 7.9 Hz, 1H, ArH), 5.79 (s, 1H, NH), 4.05 (t, J = 3.4 Hz, 4H, ArCH₂, NCH₂), 3.78 (t, J = 7.5 Hz, 2H, NHCH₂); ¹³C {¹H} NMR (150 MHz, DMSO- d_6) δ =187.2, 162.1, 154.2, 148.9, 140.6, 136.5, 135.2, 131.6, 129.7, 129.0, 128.7, 128.2, 127.2, 124.5, 122.5, 121.2, 119.4, 100.8, 49.1, 44.9, 34.9; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₅H₂₁ClN₃O [(M+H)⁺], 414.1368; found, 414.1364.

(5-Phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)(p-tolyl)meth-

anone (*4g*): Yellow solid (151 mg, 77%); Mp: 226.5–226.8 °C; IR (KBr) 3322, 3057, 2893, 1599, 1535, 1415, 1298, 1168, 1079, 762cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.32–8.31 (m, 1H, NCH), 7.50–7.48 (m, 1H, ArCH), 7.34–7.27 (m, 6H, ArH), 7.19–7.17 (m, 1H, ArH), 7.12 (d, J = 7.7 Hz, 2H, ArH), 7.03–7.01 (m, 1H, ArH), 6.95 (d, J = 7.9 Hz, 1H, ArH), 5.42 (s, 1H, NH), 4.01–3.94 (m, 4H, ArCH₂, NCH₂), 3.70–3.67 (m, 2H, NHCH₂), 2.27 (s, 3H, ArCH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ = 188.4, 162.2, 153.7, 148.9, 140.4, 139.3, 136.4, 131.8, 129.2, 129.0, 128.1, 123.1, 127.1, 124.1, 122.5, 121.1, 119.8, 101.1, 49.1, 44.9, 34.9, 21.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄N₃O [(M+H)⁺], 394.1914; found, 394.1912.

(4-Methoxyphenyl)(5-phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)methanone (4h): Yellow solid (159 mg, 78%); Mp: 165.1–165.4 °C; IR (KBr) 3435, 1598, 1527, 1417, 1303, 1249, 1164, 1079, 1034, 843, 769cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.32–8.31 (m, 1H, NCH), 7.50–7.47 (m, 1H, ArCH), 7.45–7.44 (m, 2H, ArCH), 7.35 (t, J = 1.1Hz, 2H, ArH), 7.29 (t, J = 7.6 Hz, 2H, ArH), 7.18 (t, J = 7.3 Hz, 1H, ArH), 7.03–7.01 (m, 2H, ArH), 6.97 (d, J = 7.9Hz, 1H, ArH), 6.87 (t, J = 1.8 Hz, 2H, ArH), 5.47 (s, 1H, NH), 4.03–3.95 (m, 4H, ArCH₂, NCH₂), 3.73 (s, 3H, COCH₃), 3.70–3.67 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 187.7, 162.4, 161.6, 153.3, 148.9, 136.4, 134.3, 131.8, 130.2, 129.0, 128.1, 127.0, 124.0, 122.5, 121.1, 120.0, 113.9, 101.1, 55.7, 49.1, 44.9, 34.9; HRMS (TOF ES⁺): m/zcalcd for C₂₆H₂₄N₃O₂ [(M+H)⁺], 410.1863; found, 410.1862.

(2-Chlorophenyl)(5-phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)methanone (4i): Yellow solid (156 mg, 76%); Mp: 169.4–169.9 °C; IR (KBr) 3383, 1611, 1534, 1478, 1414, 1361, 1254, 1219, 973, 743cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.25 (d, J = 2.4 Hz, 1H, NCH), 7.49 (t, J = 7.4 Hz, 1H, ArCH), 7.28–7.17 (m, 8H, ArCH), 7.04–6.96 (m, 4H, ArCH), 3.97 (t, 2H, NCH₂), 3.77 (d, J = 7.1 Hz, 4H, ArCH₂, NCH₂); ¹³C{¹H} NMR (150

MHz, DMSO-*d*₆) δ= 185.4, 161.5, 155.5, 148.9, 141.7, 136.4, 131.5, 130.3, 130.0, 129.6, 129.0, 128.1, 128.0, 127.4, 127.3, 124.4, 122.3, 121.2, 101.4, 49.1, 44.7, 34.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₅H₂₁ClN₃O [(M+H)⁺], 414.1368; found, 414.1364.

(4-Fluorophenyl)(6-(pyridin-2-ylmethyl)-5-(p-tolyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)methanone (4j): Yellow solid (166 mg, 81%); Mp: 179.0–179.2 °C; IR (KBr) 3433, 3262, 1604, 1539, 1502, 1418, 1223, 1156, 766 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.38–8.37 (m, 1H, NCH), 7.59–7.56 (m, 1H, ArH), 7.53–7.50 (m, 2H, ArH), 7.29 (d, *J* = 8.0 Hz, 2H, ArH), 7.20–7.17 (m, 4H, ArH), 7.11–7.09 (m, 1H, ArH), 7.03 (d, *J* = 7.9 Hz,1H, ArH), 5.70 (s, 1H, NH), 4.05–4.01 (m, 4H, ArCH₂, NCH₂), 3.78–3.75 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ =187.1, 163.7 (d, *J* = 244.5 Hz), 162.3, 153.9, 148.9, 138.5, 136.4 (d, *J* = 9.0 Hz), 130.4 (d, *J* = 7.0 Hz), 129.6, 128.8, 128.2, 124.3, 122.4, 121.1, 119.0, 115.6, 115.4, 100.8, 49.1, 44.8, 34.9, 21.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₃FN₃O [(M+H)⁺], 412.1820; found, 412.1818.

(4-Chlorophenyl)(6-(pyridin-2-ylmethyl)-5-(p-tolyl)-2,3-dihydro-1H-pyrrolo[1,2-a] imidazol-7yl)methanone (4k): Yellow solid (172 mg, 81%); Mp: 227.3–227.9 °C; IR (KBr) 3433, 2962, 1595, 1531, 1414, 1298, 1228, 1166, 1083, 632cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.30– 8.29 (m, 1H, NCH), 7.49 (d, J = 1.8 Hz, 1H, ArH), 7.38–7.37 (m, 4H, ArH), 7.34–7.33 (m, 2H, ArH), 7.21 (d, J = 8.1 Hz, 2H, ArH), 7.10 (d, J = 8.0 Hz, 1H, ArH), 6.95 (d, J = 7.8 Hz, 1H, ArH), 5.70 (s, 1H, NH), 3.96–3.93 (m, 4H, ArCH₂, NCH₂), 3.70 (t, J = 4.6 Hz, 2H, NHCH₂), 2.22 (s, 3H, ArCH₃); ¹³C {¹H} NMR (150 MHz, DMSO- d_6) δ =187.1, 162.2, 154.0, 148.9, 140.7, 136.6, 136.5, 135.2, 129.7, 129.6, 128.7, 128.7, 128.2, 124.5, 122.4, 121.1, 118.9, 100.7, 49.1, 44.8, 34.9, 21.2; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃ClN₃O [(M+H)⁺], 428.1524; found, 428.1518.

(6-(*Pyridin-2-ylmethyl*)-5-(*p-tolyl*)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)(*p-tolyl*)methanone (41): Yellow solid (169 mg, 83%); Mp: 166.1–166.9 °C; IR (KBr) 3385, 2927, 1595, 1532, 1415, 1298, 1167, 760cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.31–8.30 (m, 1H, NCH), 7.50–7.47 (m, 1H, ArCH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.21 (d, *J* = 8.1 Hz, 2H, ArH), 7.12– 7.08 (m, 4H, ArH), 7.02–7.00 (m, 1H, ArH), 6.94 (d, *J* = 7.9 Hz, 1H, ArH), 5.38 (s, 1H, NH), 3.99–3.91 (m, 4H, ArCH₂, NCH₂), 3.69–3.66 (m, 2H, NHCH₂), 2.26 (s, 3H, ArCH₃), 2.21 (s, 3H, ArCH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ = 188.4, 162.4, 153.5, 148.9, 140.3, 139.3, 136.4, 129.6, 129.2, 128.9, 128.9, 128.1, 124.1, 122.5, 121.1, 119.2, 101.1, 49.1, 44.8, 34.9, 21.5, 21.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₆N₃O [(M+H)⁺], 408.2070; found, 408.2075.

(4-Methoxyphenyl)(6-(pyridin-2-ylmethyl)-5-(p-tolyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)methanone (4m): Yellow solid (165 mg, 78%); Mp: 171.0–171.2 °C; IR (KBr) 3315, 2925, 1600, 1530, 1418, 1305, 1251, 1163, 1077, 1037, 841, 771cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆) δ = 8.31–8.30 (m, 1H, NCH), 7.48–7.43 (m, 3H, ArCH), 7.21 (d, *J* = 8.1 Hz, 2H, ArH), 7.09 (d, *J* = 7.9 Hz, 2H, ArH), 7.01 (s, 2H, ArH), 6.95 (d, *J* = 7.9 Hz, 1H, ArH), 6.87–6.85 (m, 2H, ArH), 5.44 (s, 1H, NH), 4.01–3.92 (m, 4H, ArCH₂, NCH₂), 3.73 (s, 3H, COCH₃), 3.69 (t, *J* = 1.7 Hz, 2H, NHCH₂), 2.21 (s,3H, ArCH₃); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) δ = 187.7, 162.5, 161.5, 153.1, 148.9, 136.4, 136.3, 134.3, 130.1, 129.6, 129.0, 128.1, 124.0, 122.5, 121.1, 119.5, 113.9, 101.0, 55.7, 49.1, 44.8, 34.9, 21.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₆N₃O₂ [(M+H)⁺], 424.2020; found, 424.2017.

(2-Chlorophenyl)(6-(pyridin-2-ylmethyl)-5-(p-tolyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)methanone (4n): Yellow solid (132 mg, 62%); Mp: 205.1–205.2 °C; IR (KBr) 3343, 1546, 1527, 1470, 1414, 1282, 1229, 975, 749cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.24 (s, 1H, NCH), 7.49 (t, J = 7.6 Hz, 1H, ArCH), 7.24 (t, J = 6.7 Hz, 2H, ArCH), 7.16 (d, J = 7.4 Hz, 3H,

ArCH), 7.08 (d, J = 7.4 Hz, 3H, ArCH), 7.02 (t, J = 5.8 Hz, 3H, ArCH), 3.95 (t, J = 8.1 Hz, 2H, NCH₂), 3.76 (s, 4H, ArCH₂, NCH₂), 2.20 (s, 3H, ArCH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) $\delta = 185.3$, 161.6, 155.4, 148.8, 141.7, 136.7, 136.4, 130.3, 129.9, 129.6, 128.6, 128.1, 128.0, 127.4, 124.4, 122.3, 121.2, 101.4, 49.1, 44.6, 34.5, 21.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₃ClN₃O [(M+H)⁺], 428.1524; found, 428.1522.

(5-(3,4-Difluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)-(4-fluorophenyl)methanone (40): Yellow solid (173 mg, 80%); Mp: 165.1–165.5 °C; IR (KBr) 3435, 1605, 1556, 1510, 1224, 1150, 768cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.41–8.40 (m, 1H, NCH), 7.61–7.58 (m, 2H, ArH), 7.54–7.52 (m, 2H, ArH), 7.44 (t, J = 8.8 Hz, 1H, ArH),7.31 (d, J = 1.2 Hz, 1H, ArH), 7.21–7.19 (m, 2H, ArH), 7.13–7.11 (m, 1H, ArH), 7.07 (d, J= 7.9 Hz, 1H, ArH), 5.75 (s, 1H, NH), 4.06 (t, J = 7.9 Hz, 4H, ArCH₂, NCH₂), 3.78–3.75 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ =187.2, 163.3 (d, J = 246.0 Hz), 161.8, 154.0, 150.0 (d, J = 244.0 Hz), 149.0, 148.0 (d, J = 244.0 Hz), 138.3, 136.6, 130.4 (d, J = 9.0 Hz), 129.3, 125.1, 122.9, 122.3, 121.3, 120.8, 118.1 (d, J = 18.0 Hz), 117.0 (d, J = 18.0 Hz), 115.6 (d, J = 22.5 Hz), 100.8, 49.1, 44.8, 34.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ = 138.0 (d, J = -18.8 Hz), 140.7 (d, J = -18.8 Hz), 140.7; HRMS (TOF ES⁺): m/z calcd for C₂₅H₁₉F₃N₃O [(M+H)⁺], 434.1475; found, 434.1473.

(4-Chlorophenyl)(5-(3,4-difluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2a]imidazol-7-yl)methanone (4p): Yellow solid (184 mg, 82%); Mp: 209.3–209.8 °C; IR (KBr) 3433, 1592, 1525, 1469, 1416, 1278, 1223, 1091, 768cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.33 (d, J = 4.0 Hz, 1H, NCH), 7.58–7.50 (m, 2H, ArH), 7.40–7.35 (m, 5H, ArH), 7.23 (d, J = 6.0 Hz, 1H, ArH), 7.06–7.04 (m, 1H, ArH), 7.00 (d, J = 7.8 Hz, 1H, ArH), 5.72 (s, 1H, NH), 3.98 (t, J = 10.8 Hz, 4H, ArCH₂, NCH₂), 3.69 (t, J = 7.4 Hz, 2H, NHCH₂); ¹³C{¹H} NMR (150

MHz, DMSO-*d*₆) 187.2, 161.7, 154.2, 149.8 (d, J = 243.0 Hz), 149.0, 149.5 (d, J = 243.0 Hz), 140.5, 136.6, 135.4, 129.8, 129.2, 128.8, 125.1, 122.9, 122.4, 121.3, 120.7, 118.1 (d, J = 18.0 Hz), 117.1 (d, J = 18.0 Hz), 100.7, 49.1, 44.8, 34.6; HRMS (TOF ES⁺): m/z calcd for C₂₅H₁₉ClF₂N₃O [(M+H)⁺], 450.1179; found, 450.1167.

(5-(3,4-Difluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)-(4-methoxyphenyl)methanone (4q): Yellow solid (178 mg, 80%); Mp: 205.9–206.3 °C; IR (KBr) 3324, 1594, 1525, 1469, 1417, 1376, 1304, 1252, 1161, 770cm⁻¹; ¹H NMR (600 MHz, DMSO d_6) δ = 8.41 (t, J = 4.0 Hz, 1H, NCH), 7.65–7.62 (m, 1H, ArCH), 7.60–7.57 (m, 1H, ArCH), 7.52 (t, J = 6.8 Hz, 2H, ArH), 7.31 (d, J = 10.6 Hz, 1H, ArH), 7.13–7.07 (m, 2H, ArCH), 6.95 (d, J = 8.7 Hz, 1H, ArH), 5.60 (s, 1H, NH), 4.09–4.04 (m, 4H, ArCH₂, NCH₂), 3.81 (s, 3H, COCH₃), 3.76–3.73 (m, 2H, NHCH₂); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 187.8, 162.0, 161.7, 153.3, 149.8 (d, J = 243.0 Hz), 149.5 (d, J = 243.0 Hz), 149.0, 136.6, 134.1, 130.2, 129.5, 125.0, 123.0, 121.9, 121.3, 121.3, 118.1 (d, J = 18.0 Hz), 117.0 (d, J = 18.0 Hz), 113.9, 101.0, 55.7, 49.1, 44.8, 34.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ = 138.1 (d, J = -18.8 Hz), 141.2 (d, J = -18.8 Hz); HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₂F₂N₃O₂ [(M+H)⁺], 446.1675; found, 446.1682.

(2-Chlorophenyl)(5-(3,4-difluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2a] -imidazol-7-yl)methanone (4r): Yellow solid (141 mg, 63%); Mp: 175.1–175.7 °C; IR (KBr) 3383, 1606, 1530, 1475, 1416, 1271, 1220, 974, 750cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.36 (s, J = 3.5 Hz, 1H, NCH), 7.58 (t, J = 6.6 Hz, 2H, ArCH), 7.44–7.33 (m, 4H, ArCH), 7.23 (d, J = 6.0 Hz, 2H, ArCH), 7.19 (s, 1H, ArCH), 7.14–7.12 (m, 1H, ArCH), 7.06 (s, 1H, ArCH), 4.06 (t, J = 8.1 Hz, 2H, NCH₂), 3.83 (d, J = 8.0 Hz, 4H, ArCH₂, NCH₂); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 185.5, 161.1, 155.5, 150.6, 150.6, 149.8 (d, J = 243.0 Hz), 149.5 (d, J = 243.0 Hz), 141.6, 136.5, 130.4, 130.0, 129.6, 129.1, 128.0, 127.5, 125.0, 122.6, 122.4, 121.4, 118.1 (d, J = 18.0 Hz), 117.1 (d, J = 18.0 Hz), 101.4, 49.1, 44.6, 34.3; HRMS (TOF ES⁺): m/z calcd for C₂₅H₁₉ClF₂N₃O [(M+H)⁺], 450.1179; found, 450.1174.

(6-((5-Ethylpyridin-2-yl)methyl)-5-(4-fluorophenyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7yl)(4-fluorophenyl)methanone (4s): Yellow solid (172 mg, 78%); Mp: 186.3–186.5 °C; IR (KBr) 3440, 1572, 1457, 1418, 1267, 1239, 1033, 753cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.25 (d, *J* = 1.7 Hz, 1H, NCH), 7.53–7.49 (m, 4H, ArH), 7.44–7.42 (m, 1H, ArH), 7.24–7.18 (m, 4H, ArH), 6.96 (d, *J* = 8.0 Hz, 1H, ArH), 5.73 (s, 1H, NH), 4.03 (t, *J* = 7.9 Hz, 4H, ArCH₂, NCH₂), 3.76 (t, *J* = 7.4 Hz, 2H, NHCH₂), 2.56–2.51 (m, 2H, CH₂CH₃), 1.16 (t, *J* = 7.6 Hz, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ = 187.2, 163.7 (d, *J* = 246.0 Hz), 161.6 (d, *J* = 243.0 Hz), 159.4, 153.9, 148.4, 138.4, 136.0, 135.8, 130.4 (d, *J* = 9.0 Hz), 130.2 (d, *J* = 7.5 Hz), 128.2, 123.2, 122.2, 119.9, 116.0 (d, *J* = 21.0 Hz), 115.5 (d, *J* = 21.0 Hz), 100.7, 49.1, 44.7, 34.3, 25.4, 15.8; HRMS (TOF ES⁺): *m*/z calcd for C₂₇H₂₄F₂N₃O [(M+H)⁺], 444.1882; found, 444.1883.

(4-Chlorophenyl)(6-((5-ethylpyridin-2-yl)methyl)-5-(4-fluorophenyl)-2,3-dihydro-1H-pyrrolo-[1,2-a]imidazol-7-yl)methanone (4t): Yellow solid (181 mg, 79%); Mp: 189.1–189.6 °C; IR (KBr) 3443, 1593, 1564, 1439, 1418, 1277, 1203, 1081, 760cm⁻¹; ¹H NMR (600 MHz, DMSO d_6) $\delta = 8.25$ (d, J = 1.8 Hz, 1H, NCH), 7.51–7.49 (m, 2H, ArH), 7.46–7.41 (m, 5H, ArH), 7.22 (d, J = 8.8 Hz, 2H, ArH), 6.96 (d, J = 8.0 Hz, 1H, ArH), 5.78 (s, 1H, NH), 4.04–4.00 (m, 4H, ArCH₂, NCH₂), 3.77 (t, J = 7.5 Hz, 2H, NHCH₂), 2.56–2.53 (m, 2H, CH₂CH₃), 1.16 (t, J = 7.6Hz, 3H, CH₂CH₃); ¹³C {¹H} NMR (150 MHz, DMSO- d_6) $\delta = 187.1$, 161.0 (d, J = 243.0 Hz), 159.3, 154.1, 148.4, 140.6, 136.1, 135.8, 135.2, 130.2 (d, J = 9.0 Hz), 129.7, 128.7, 128.1, 123.4, 122.2, 119.7, 116.0 (d, J = 21.0 Hz), 100.7, 49.1, 44.7, 34.3, 25.4, 15.9; HRMS (TOF ES⁺): m/zcalcd for C₂₇H₂₄CIFN₃O [(M+H)⁺], 460.1586; found, 460.1586.

(4-Bromophenyl)(6-((5-ethylpyridin-2-yl)methyl)-5-(4-fluorophenyl)-2,3-dihydro-1H-pyrrolo-[1,2-a]imidazol-7-yl)methanone (4u): Yellow solid (206 mg, 82%); Mp: 201.1–201.6 °C; IR (KBr) 3433, 1597, 1542, 1433, 1416, 1289, 1204, 1086, 753cm⁻¹; ¹H NMR (600 MHz, DMSO d_6) δ = 8.24 (d, J = 1.8 Hz, 1H, NCH), 7.55 (d, J = 8.3 Hz, 2H, ArH), 7.51–7.49 (m, 2H, ArH), 7.43–7.37 (m, 3H, ArH), 7.22 (d, J = 8.8 Hz, 2H, ArH), 6.96 (d, J = 8.0 Hz, 1H, ArH), 5.79 (s, 1H, NH), 4.03–3.99 (m, 4H, ArCH₂, NCH₂), 3.77 (t, J = 7.5 Hz, 2H, NHCH₂), 2.56–2.53 (m, 2H, CH₂CH₃), 1.16 (t, J = 7.6 Hz, 3H, CH₂CH₃); ¹³C {¹H} NMR (150 MHz, DMSO- d_6) δ = 187.2, 161.6 (d, J = 243.0 Hz), 159.3, 154.1, 148.4, 141.0, 136.1, 135.8, 131.6, 130.2 (d, J = 7.5 Hz), 129.9, 128.1, 124.1, 123.4, 122.2, 119.7, 116.0 (d, J = 21.0 Hz), 100.6, 49.1, 44.7, 34.3, 25.4, 15.9; HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₄BrFN₃O [(M+H)⁺], 504.1081; found, 504.1083.

(6-((5-Ethylpyridin-2-yl)methyl)-5-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)(4-fluorophenyl)methanone (4v): Yellow solid (165 mg, 78%); Mp: 161.9–162.5 °C; IR (KBr) 3443, 1560, 1453, 1419, 1247, 1227, 1037, 750cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.25 (s, 1H, NCH), 7.54–7.52 (m, 2H, ArH), 7.44–7.36 (m, 5H, ArH), 7.28–7.25 (m, 1H, ArH), 7.19 (t, *J* = 8.8 Hz, 2H, ArH), 6.96 (d, *J* = 8.0 Hz, 1H, ArH), 5.74 (s, 1H, NH), 4.03–4.07 (m, 4H, ArCH₂, NCH₂), 3.77(t, *J* = 7.7 Hz, 2H, NHCH₂), 2.56–2.51 (m, 2H, CH₂CH₃), 1.16 (t, *J* = 7.6 Hz, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ = 187.2, 163.7 (d, *J* = 246.0 Hz), 159.5, 154.0, 148.4, 138.4, 135.8 (d, *J* = 36.0 Hz), 131.7, 130.4 (d, *J* = 9.0 Hz), 129.0, 128.2, 127.8, 127.1, 124.2, 122.0, 119.8, 115.5 (d, *J* = 21.0 Hz), 100.9, 49.1, 44.9, 34.4, 25.4, 15.8; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₅FN₃O [(M+H)⁺], 426.1976; found, 426.1974.

(4-Chlorophenyl)(6-((5-ethylpyridin-2-yl)methyl)-5-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)methanone (4w): Yellow solid (167 mg, 76%); Mp:210.2–210.5 °C; IR (KBr) 3433,

1597, 1542, 1433, 1416, 1289, 1204, 1086, 760cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 8.24 (d, J = 1.6 Hz, 1H, NCH), 7.46–7.41 (m, 4H, ArH), 7.37 (t, J = 7.6 Hz, 5H, ArH), 7.27 (t, J = 7.4 Hz, 1H, ArH), 6.96 (d, J = 7.0 Hz, 1H, ArH), 5.79 (s, 1H, NH), 4.06–4.02 (m, 4H, ArCH₂, NCH₂), 3.79–3.76 (m, 2H, NHCH₂), 2.57–2.53 (m, 2H, CH₂CH₃), 1.17(t, J = 7.6 Hz, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ =187.1, 159.5, 154.2, 148.4, 140.7, 136.0, 135.7, 135.2, 131.7, 129.7, 129.0, 128.7, 128.2, 127.1, 124.4, 122.0, 119.7, 100.8, 49.1, 44.9, 34.4, 25.4, 15.9; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₅ClN₃O [(M+H)⁺], 442.1681; found, 442.1681.

(4-Bromophenyl)(6-((5-ethylpyridin-2-yl)methyl)-5-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)methanone (4x): Yellow solid (182 mg, 75%); Mp: 200.5–200.9 °C; IR (KBr) 3446, 1587, 1532, 1434, 1417, 1289, 1204, 1086, 760cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆) δ = 8.17 (d, J = 1.8 Hz, 1H, NCH), 7.48 (d, J = 1.7 Hz, 4H, ArH), 7.35 (d, J = 7.4 Hz, 3H, ArH), 7.31– 7.28 (m, 4H, ArH), 7.19 (d, J = 7.4 Hz, 1H, ArH), 6.88 (d, J = 8.0 Hz, 1H, ArH), 5.72 (s, 1H, NH), 3.98–3.94 (m, 4H, ArCH₂, NCH₂), 3.71–3.68 (m, 2H, NHCH₂), 2.49–2.45 (m, 2H, CH₂CH₃), 1.09 (t, J = 7.6 Hz, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) δ =187.2, 159.4, 154.2, 148.4, 141.0, 136.0, 135.7, 135.7, 131.6, 129.9, 129.0, 128.1, 127.2, 124.4, 124.1, 122.0, 119.6, 100.8, 49.1, 44.9, 34.4, 25.4, 15.9; HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₅BrN₃O [(M+H)⁺], 486.1176; found, 486.1172.

(4-Fluorophenyl)(5-(4-fluorophenyl)-6-((6-methylpyridin-2-yl)methyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)methanone (4y): Yellow solid (178 mg, 83%); Mp: 184.9–185.5 °C; IR (KBr) 3443, 1594, 1443, 1418, 1253, 1217, 1079, 763cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆) δ = 7.44–7.37 (m, 5H, ArH), 7.16–7.09 (m, 4H, ArH), 6.87 (d, J = 7.6 Hz, 1H, ArH), 6.75 (d, J = 7.7 Hz,1H, ArH),5.69 (s, 1H, NH), 3.96–3.90 (m, 4H, ArCH₂, NCH₂), 3.69 (t, J = 7.9 Hz, 2H,

NHCH₂), 2.30 (s, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ = 187.3, 163.7 (d, *J* = 244.5 Hz), 161.6 (d, *J* = 243.0 Hz), 161.3, 157.0, 153.9, 138.4, 136.8, 130.3 (d, *J* = 9.0 Hz), 130.3, 128.1, 123.3, 120.4, 119.6, 119.3, 115.9 (d, *J* = 21.0 Hz), 115.5 (d, *J* = 21.0 Hz), 100.7, 49.1, 44.7, 34.7, 24.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₂F₂N₃O [(M+H)⁺], 430.1725; found, 430.1717.

(4-Bromophenyl)(5-(4-fluorophenyl)-6-((6-methylpyridin-2-yl)methyl)-2,3-dihydro-1H-pyrrolo -[1,2-a]imidazol-7-yl)methanone (4z): Yellow solid (186 mg, 76%); Mp: 210.2–210.5 °C; IR (KBr) 3434, 1587, 1506, 1457, 1415, 1228, 1163, 1074, 1015cm⁻¹; ¹H NMR (600 MHz, DMSO d_6) δ = 7.48–7.37 (m, 5H, ArH), 7.27 (d, J = 8.3 Hz, 2H, ArH), 7.15 (t, J = 8.9 Hz, 2H, ArH), 6.88 (d, J = 7.6 Hz, 1H, ArH), 6.74 (d, J = 7.7 Hz, 1H, ArH), 5.79 (s, 1H, NH), 3.96–3.87 (m, 4H, ArCH₂, NCH₂), 3.70 (t, J = 8.3 Hz, 2H, NHCH₂), 2.30 (s, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 187.3, 161.6 (d, J = 243.0 Hz), 161.2, 157.0, 154.2, 141.0, 136.8, 131.6, 130.3 (d, J = 9.0 Hz), 129.9, 128.1, 124.0, 123.4, 120.4, 119.3, 119.2, 115.9 (d, J = 22.5 Hz), 100.6, 49.1, 44.7, 34.7, 24.5; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₂BrFN₃O [(M+H)⁺], 490.0925; found, 490.0919.

(4-Fluorophenyl)(6-((6-methylpyridin-2-yl)methyl)-5-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]im -idazol-7-yl)methanone (4a'): Yellow solid (158 mg, 77%); Mp: 171.9–172.5 °C; IR (KBr) 3469, 1572, 1593, 1449, 1416, 1257, 1207, 1070, 755cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.52–7.42 (m, 5H, ArH), 7.38 (t, J = 7.6 Hz, 2H, ArH), 7.27 (t, J = 7.3 Hz,1H, ArH), 7.18 (t, J = 7.8 Hz, 2H, ArH), 6.95 (d, J = 7.6 Hz, 1H, ArH), 6.82 (d, J = 7.7 Hz, 1H, ArH), 5.77 (d, J = 9.5 Hz, 1H, NH), 4.06–4.01 (m, 4H, ArCH₂, NCH₂), 3.79–3.77 (m, 2H, NHCH₂), 2.38 (s, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 187.3, 163.7 (d, J = 246.0 Hz), 161.5, 156.9, 154.1, 136.8, 131.7, 130.3 (d, J = 9.0 Hz), 129.0, 128.2, 127.1, 124.3, 120.4, 119.5, 119.2,

115.5 (d, J = 21.0 Hz), 100.8, 49.1, 44.9, 34.8, 24.5; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃FN₃O [(M+H)⁺], 412.1820; found, 412.1819.

(4-Bromophenyl)(6-((6-methylpyridin-2-yl)methyl)-5-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]im -idazol-7-yl)methanone (4b'): Yellow solid (186 mg, 79%); Mp: 192.6–192.8 °C; IR (KBr) 3433, 1592, 1504, 1457, 1415, 1248, 1167, 1078, 1013 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.54 (d, J = 8.4 Hz, 2H, ArH), 7.47–7.41 (m, 3H, ArH), 7.39–7.34 (m, 4H, ArH), 7.27 (t, J = 7.3 Hz, 1H, ArH), 6.95 (d, J = 7.6 Hz, 1H, ArH), 6.81 (d, J = 1.2 Hz, 1H, ArH), 5.89 (s, 1H, NH), 4.06–3.98 (m, 4H, ArCH₂, NCH₂), 3.81–3.78 (m, 2H, NHCH₂), 2.38 (s, 3H, CH₂CH₃); ¹³C {¹H} NMR (150 MHz, DMSO- d_6) δ =187.3, 161.3, 157.0, 154.3, 141.0, 136.8, 131.6, 131.6, 129.8, 129.0, 128.2, 127.2, 124.4, 124.0, 120.4, 119.2, 119.2, 100.8, 49.1, 44.9, 34.8, 24.5; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃BrN₃O [(M+H)⁺], 472.1019; found, 472.1018.

1-(5-Phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[1,2-a]imidazol-7-yl)ethan-1-one

(*5a*): White solid (111 mg, 70%); Mp: 203.9–204.5 °C; IR (KBr) 1617, 1363, 701, 644, 611, 570 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.46 (d, *J* = 4.5 Hz, 1H, NCH), 7.64–7.61 (m, 1H, ArH), 7.39–7.34 (m, 4H, ArH), 7.25(t, *J* = 7.1 Hz, 1H, ArH), 7.14 (t, *J* = 4.8 Hz, 2H, ArH), 6.48 (s, 1H, NH), 4.14 (s, 2H, ArCH₂), 4.06 (t, *J* = 7.7 Hz, 2H, NCH₂), 3.90 (d, *J* = 7.0 Hz, 2H, NHCH₂), 2.14 (s, 3H, CH₃); ¹³C {¹H} NMR (150 MHz, DMSO-*d*₆) δ =189.4, 162.5, 153.9, 149.0, 136.6, 131.8, 129.0, 128.1, 127.0, 123.5, 122.7, 121.2, 119.0, 102.3, 48.9, 45.0, 35.0, 29.6; HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₂₀N₃O [(M+H)⁺], 318.1601; found, 318.1599.

1-(5-(4-Fluorophenyl)-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo[*1,2-a*]*imidazol-7-yl)ethan-1-one* (**5b**): White solid (119 mg, 71%); Mp: 181.2–181.5 °C; IR (KBr) 1617, 1361, 700, 634, 570 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.45 (d, *J* = 4.6 Hz, 1H, NCH), 7.64–7.61 (m, 1H, ArH), 7.46–7.44 (m, 2H, ArH), 7.22–7.13 (m, 4H, ArH), 6.47 (s, 1H, NH), 4.09 (s, 2H,

ArCH₂), 4.04 (t, J = 7.7 Hz, 2H, NCH₂), 3.89 (t, 2H, NHCH₂), 2.13 (s, 3H, CH₃); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) $\delta = 189.3$, 162.3, 161.5 (d, J = 246.0 Hz), 153.8, 149.0, 136.6, 130.1 (d, J = 9.0 Hz), 128.3, 122.8, 122.5, 121.2, 119.1, 115.8 (d, J = 21.0 Hz), 102.1, 48.9, 44.8, 34.8, 29.6; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₉FN₃O [(M+H)⁺], 336.1507; found, 336.1507.

I-(6-((5-*Ethylpyridin-2-yl)methyl)-5-phenyl-2,3-dihydro-1H-pyrrolo*[1,2-*a*]*imidazol-7-yl*)*ethan-I-one* (*5c*): White solid (125 mg, 75%); Mp: 183.9–184.5 °C; IR (KBr) 1617, 1460, 1375, 1361, 701, 644 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.31 (d, *J* = 1.9 Hz, 1H, NCH), 7.48– 7.47 (m, 1H, ArH), 7.40–7.34 (m, 4H, ArH), 7.25 (t, *J* = 7.3 Hz, 1H, ArH), 7.05 (d, *J* = 8.0 Hz, 1H, ArH), 6.47 (s, 1H, NH), 4.09–4.05 (m, 4H, ArCH₂, NCH₂), 3.91–3.88 (m, 2H, NHCH₂), 2.59–2.55 (m, 2H, CH₂CH₃), 2.13 (s, 3H, CH₃), 1.18 (t, *J* = 7.6 Hz, 3H, CH₂CH₃); ¹³C {¹H} NMR (150 MHz, DMSO-*d*₆) δ =189.3, 159.8, 153.9, 148.5, 136.0, 135.9, 131.9, 129.0, 128.1, 127.0, 123.4, 122.2, 119.3, 102.3, 48.9, 45.0, 34.5, 29.6, 25.4, 15.8; HRMS (TOF ES⁺): *m/z* calcd for C₂₂H₂₄N₃O [(M+H)⁺], 346.1914; found, 346.1907.

7-*Nitro-5-phenyl-6-(pyridin-2-ylmethyl)-2,3-dihydro-1H-pyrrolo*[*1,2-a*]*imidazole*(*5d*): Yellow solid (72 mg, 45%); Mp: 163.9–164.5 °C; IR (KBr) 1616, 1560, 1361, 699, 643, 610 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.47 (d, *J* = 4.3 Hz, 1H, NCH), 7.92 (s, 1H, NH), 7.68 (t, *J* = 7.4 Hz, 1H, ArH), 7.48 (d, *J* = 7.8 Hz, 2H, ArH), 7.41 (t, *J* = 7.5 Hz, 2H, ArH), 7.33 (t, *J* = 7.4 Hz, 1H, ArH), 7.21–7.17 (m, 2H, ArH), 4.16 (s, 2H, ArCH₂), 4.13 (d, *J* = 5.4 Hz, 2H, NCH₂), 4.02 (t, *J* = 8.8 Hz, 2H, NHCH₂); ¹³C {¹H} NMR (150 MHz, DMSO-*d*₆) δ =161.1, 151.6, 149.3, 136.8, 130.5, 129.2, 128.3, 128.1, 124.2, 122.6, 121.6, 114.5, 113.0, 49.0, 45.4, 33.9; HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₇N₄O₂ [(M+H)⁺], 321.1346; found, 321.1339.

6-((5-Ethylpyridin-2-yl)methyl)-5-(4-fluorophenyl)-7-nitro-2,3-dihydro-1H-pyrrolo[1,2-a]imid -azole (5e): Yellow solid (82 mg, 45%); Mp: 179.9–180.3 °C; IR (KBr) 1561, 1617, 1464, 1372,

1361, 697, 646 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 8.33 (s, 1H, NCH), 7.92 (s, 1H, NH), 7.79 (t, *J* = 8.7 Hz, 1H, ArH), 7.55–7.46 (m, 3H, ArH), 7.41 (s, 1H, ArH), 7.17 (d, *J* = 8.0 Hz, 1H, ArH), 4.15 (t, 2H, ArCH₂), 4.06 (s, 2H, NCH₂), 4.00 (t, *J* = 8.9 Hz, 2H, NHCH₂), 2.60–2.56 (m, 2H, CH₂CH₃), 1.18 (t, *J* = 7.6 Hz, 3H, CH₂CH₃); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ = 158.1, 155.0 (d, *J* = 243.0 Hz), 151.5, 148.7, 136.7, 136.1, 136.2, 125.5, 122.7, 122.1, 118.3 (d, *J* = 16.5 Hz), 117.6 (d, *J* = 18.0 Hz), 114.4, 48.9, 45.3, 33.2, 25.4, 15.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₂₀FN₄O₂ [(M+H)⁺], 367.1565; found, 367.1559.

5-(3,4-Difluorophenyl)-6-((6-methylpyridin-2-yl)methyl)-7-nitro-2,3-dihydro-1H-pyrrolo[1,2a] -imidazole (5f): Yellow solid (87 mg, 47%); Mp: 170.2–170.5 °C; IR (KBr) 1549, 1617, 1464, 671, 649 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ = 7.92 (s, 1H, NH), 7.60–7.54 (m, 3H8, ArH), 7.26 (t, J = 8.7 Hz, 2H, ArH), 7.04 (d, J = 7.6 Hz, 1H, ArH), 6.96 (d, J = 7.7 Hz, 1H, ArH), 4.13 (t, 2H, NCH₂), 4.04–3.99 (m, 4H, ArCH₂, NHCH₂), 2.44 (s, 3H, ArCH₃); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ = 162.9 (d, J = 243.0 Hz), 161.3 (d, J = 243.0 Hz), 160.3, 157.4, 151.4, 137.2, 130.6 (d, J = 9.0 Hz), 126.9, 123.3, 120.9, 119.3, 119.4, 116.1 (d, J = 21.0 Hz), 114.4, 113.0, 48.9, 45.3, 33.8, 24.6; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₇F₂N₄O₂ [(M+H)⁺], 371.1314; found, 371.1310.

ASSOCIATED CONTENT

Supporting Information

Spectroscopic and analytical data as well as the original copy of ¹H and ¹³C NMR spectra of all new compounds and X-ray crystallographic (CIF file) of compound **4a** (CCDC1920258). This material is available free of charge *via* the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: <u>yansj@ynu.edu.cn</u> (S.-J. Y). Tel/Fax: +86 87165031633.

ORCID

Sheng-Jiao Yan: 0000-0002-7430-4096

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the National Natural Science Foundation of China (Nos. 21662042, 81760621, 21362042, U1202221), the Program for Changjiang Scholars and Innovative Research Team in University (IRT17R94), the Natural Science Foundation of Yunnan Province (2017FA003) and Scientific and Technological Innovation Team of Green Synthesis and Activity Research of Natural-like Heterocyclic Compound Libraries in Universities of Yunnan Province. We also thank Dr. Rong Huang of Advanced Analysis and Measurement Center of Yunnan University for helpful testing the NMR.

REFERENCES

(1) Ahmad, S.; Alam, O.; Naim, M. J.; Shaquiquzzaman, M.; Alam, M. M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. *Eur. J. Med. Chem.* **2018**, *157*, 527–561.

(2) (a) Bertuzzi, G.; Thøgersen, M. K.; Giardinetti, M.; Vidal-Albalat, A.; Simon, A.; Houk, K. N.; Jørgensen, K. A. Catalytic Enantioselective Hetero-[6+4] and -[6+2] Cycloadditions for the Construction of Condensed Polycyclic Pyrroles, Imidazoles, and Pyrazoles. *J. Am. Chem. Soc.* 2019, *141*, 3288–3297. (b) Kawakita, K.; Beaumier, V. P.; Kakiuchi, Y.; Tsurugi, H.; Tonks, I. A.; Mashima, K. Bis(imido)vanadium(V)-Catalyzed [2+2+1] Coupling of Alkynes and

Azobenzenes Giving Multisubstituted Pyrroles. *J. Am. Chem. Soc.* **2019**, *141*, 4194–4198. (c) Dutta, S.; Mallick, R. K.; Prasad, R.; Gandon, V.; Sahoo, A. K. Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne- Ynamides. *Angew. Chem. Int. Ed.* **2019**, *58*, 2289–2294. (d) Li, Y.; Yang, H.; Zhai, H. The Expanding Utility of Rhodium-Iminocarbenes: Recent Advances in the Synthesis of Natural Products and Related Scaffolds. *Chem. Eur. J.* **2018**, *24*, 12757–12766. (e) Liang, S.; Zeng, C.-C.; Luo, X.-G.; Ren, F.-Z.; Tian, H.-Y.; Sun, B.-G.; Littled, R. D. Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu₄NI induced *C–N* followed by a *C–O* bond formation cascade for the synthesis of indolines. *Green Chem.* **2016**, 18, 2222–2230.

(3) (a) Douchez, A.; Geranurimi, A.; Lubell, W. D. Applications of γ , δ -Unsaturated Ketones Synthesized by Copper-Catalyzed Cascade Addition of Vinyl Grignard Reagents to Esters. *Acc. Chem. Res.* **2018**, *51*, 2574–2588. (b) He, X.-L.; Zhao, H.-R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.-C. Asymmetric Barton–Zard Reaction To Access 3-Pyrrole-Containing Axially Chiral Skeletons. *ACS Catal.* **2019**, *9*, 4374–4381. (c) Chiu, H.-C.; See, X.-Y.; Tonks, I. A. Dative Directing Group Effects in Ti-Catalyzed [2+2+1] Pyrrole Synthesis: Chemo- and Regioselective Alkyne Heterocoupling. *ACS Catal.* **2019**, *9*, 216–223. (d) Kardile, R. D.; Kale, B. S.; Sharma, P.; Liu, R.-S. Gold-Catalyzed [4 + 1]-Annulation Reactions between 1,4-Diyn-3-ols and Isoxazoles To Construct a Pyrrole Core. *Org. Lett.* **2018**, *20*, 3806–3809. (e) Man, N.-N.; Wang, J.-Q.; Zhang, L.-M.; Wen, L.-R.; Li, M. Chemo-, Regio-, and Stereoselective Construction of Core Skeleton of Furo[2,3-*b*]pyrrole via Multicomponent Bicyclization Reaction. *J. Org. Chem.* **2017**, *82*, 5566–5573.

(4) (a) Dörr, A. I. A.; Lubell, W. D. Homoallylic ketones and pyrroles by way of coppercatalyzed cascade additions of alkyl-substituted vinyl Grignard reagents to esters. *Can. J. Chem.*

, *85*, 1006–1017. (b) Hansford, K. A.; Zanzarova, V.; Dörr, A. A.; Lubell, W. D. Three-Step Solution-Phase Combinatorial Access to 1,2-Disubstituted and 1,2,5-Trisubstituted Pyrroles from Carboxylic Esters. *J. Comb. Chem.* **2004**, *6*, 893–898.

(5) (a) Schultz, E. E.; Sarpong, R. Application of In Situ-Generated Rh-Bound Trimethylenemethane Variants to the Synthesis of 3,4-Fused Pyrroles. *J. Am. Chem. Soc.* **2013**, *135*, 4696–4699. (b) Rajaseka, S.; Anbarasan, P. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles to Polysubstituted Pyrroles. *J. Org. Chem.* **2014**, *79*, 8428–8434.

(6) (a) Kourany-Lefoll, E.; Pais, M.; Sevenet, T.; Guittet, E.; Montagnac, A.; Fontaine, C.; Guenard, D.; Adeline, M. T.; Debitus, C. Phloeodictines A and B: new antibacterial and cytotoxic bicyclic amidinium salts from the new caledonian sponge, Phloeodictyon sp. J. Org. Chem. 1992, 57, 3832-3835. (b) Mancini, I.; Guella, G.; Sauvain, M.; Debitus, C.; Duigou, A. G.; Ausseil, F.; Menou, J. L.; Pietra, F. New 1,2,3,4-tetrahydropyrrolo[1,2a]pyrimidiniumalkaloids (phloeodictynes) from the New Caledonian shallow-water haplosclerid sponge Oceanapia fistulosa. Structural elucidation from mainly LC-tandem-MS-soft-ionization techniques and discovery of antiplasmodial activity. Org. Biomol. Chem. 2004, 2, 783–787. (c) Davis-Gilbert, Z. W.; Wen, X.; Goodpaster, J. D.; Tonks, I. A. Mechanism of Ti-Catalyzed Oxidative Nitrene Transfer in [2 + 2 + 1] Pyrrole Synthesis from Alkynes and Azobenzene. J. Am. Chem. Soc. 2018, 140, 7267–7281. (d) Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N. Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives. J. Am. Chem. Soc. , 135, 17349–17358.

(7) Wallace, M. B.; Adams, M. E.; Kanouni, T.; Mol, C. D.; Dougan, D. R.; Feher, V. A.; O'Connell, S. M.; Shi, L.; Halkowycz, P.; Dong, Q. Structure-based design and synthesis of

ACS Paragon Plus Environment

pyrrole derivatives as MEK inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4156–4158.

(8) McGeary, R. P.; Tan, D. T. C.; Selleck, C.; Pedroso, M. M.; Sidjabat, H. E.; Schenk, G. Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1*H*-pyrrole-3-carbonitrile as a broad spectrum metallo- β -lactamase inhibitor. *Eur. J. Med. Chem.* **2017**, *137*, 351–364.

(9) Bullington, J. L.; Fan, X.; Jackson, P. F.; Zhang, Y.-M. PCT Int. Appl. WO 2004029040 A1, 2004.

(10) Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. Deoxyribonucleoside 2'- or 3'-Mixed Disulfides: Prodrugs To Target Ribonucleotide Reductase and/or To Inhibit HIV Reverse Transcription. *J. Med. Chem.* **2003**, *46*, 2565–2568.

(11) Nakazato, A.; Okubo, T.; Nozawa, D.; Tamita, T.; Kennis, L. E. J. Pyrrolopyrimidine and pyrrolotriazine derivatives. US 8106194 B2. 2012.

(12) (a) Jung, E. K.; Leung, E.; Barker, D. Synthesis and biological activity of pyrrole analogues of combretastatin A-4. *Bioorg. Med. Chem. Lett.* 2016, *26*, 3001–3005. (b) Wang, M.; Ye, C.; Liu, M.; Wua, Z.; Li, L.; Wang, C. Liu, X. Guo, H. Synthesis and antitumor activity of 5-(5-halogenated-2-oxo-1*H*-pyrrolo[2,3-*b*]pyridin-(3*Z*)-ylidenemeth-yl)-2,4-dimethyl-1*H*-pyrrole-3-carboxamides. *Bioorg. Med. Chem. Lett.* 2015, *25*, 2782–2787.

(13) (a) Qiu, G.; Wang Q.; Zhu, J. Palladium-Catalyzed Three-Component Reaction of Propargyl Carbonates, Isocyanides, and Alcohols or Water: Switchable Synthesis of Pyrroles and Its Bicyclic Analogues. *Org. Lett.* 2017, *19*, 270–273. (b) Tukhtaev, H. B.; Ivanov, K. L.; Bezzubov, S. I.; Cheshkov, D. A.; Melnikov, M. Y.; Budynina, E. M. *aza*-Wittig Reaction with Nitriles: How Carbonyl Function Switches from Reacting to Activating. *Org. Lett.* 2019, *21*, 1087–1092. (c) Reekie, T. A.; Donckele, E. J.; Manenti, G.; Püntener, S.; Trapp N.; Diederich, F.

A Three-Step Synthesis of Tetrasubstituted NH-Pyrroles. Org. Lett. 2016, 18, 2252–2255.

(14) (a) Estevez, V.; Villacampa, M.; Menendez, J. C. Recent advances in the synthesis of pyrroles by multicomponent reactions. *Chem. Soc. Rev.* 2014, *43*, 4633–4657. (b) Wang, X.; Xu, X.-P.; Wang, S.-Y.; Zhou, W.; Ji, S.-J. Highly Efficient Chemoselective Synthesis of Polysubstituted Pyrroles via Isocyanide-Based Multicomponent Domino Reaction. *Org. Lett.* 2013, *15*, 4246–4249.

(15) (a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N. Gevorgyan, V. Transition Metal-Mediated Synthesis of Monocyclic Aromatic Heterocycles. *Chem. Rev.* 2013, *113*, 3084–3213.
(b) Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H Bond Functionalizations. *Acc. Chem. Res.* 2014, *47*, 281–295.(c) Wu, Y.; Zhu, L.; Yu, Y.; Lou, X.; Huang X. Polysubstituted 2-Aminopyrrole Synthesis via Gold-Catalyzed Intermolecular Nitrene Transfer from Vinyl Azide to Ynamide: Reaction Scope and Mechanistic Insights. *J. Org. Chem.* 2015, *80*, 11407–11416. (d) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Recent advances in transition-metal-catalyzed reactions of alkynes with isoxazoles. *Org. Biomol. Chem.* 2017, *15*, 8483–8492.

(16) (a) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Gold-Catalyzed Intermolecular Ynamide Amination-Initiated Aza-Nazarov Cyclization: Access to Functionalized 2-Aminopyrroles. *Org. Lett.* **2016**, *18*, 3254–3257. (b) Fontaine, P.; Masson, G.; Zhu, J. Synthesis of pyrroles by consecutive multicomponent reaction/[4+1] cycloaddition of α -iminonitriles with isocyanides. *Org. Lett.* **2009**, *11*, 1555–1558.

(17) Liu, J.; Li, Q.; Cao, Z.-M.; Jin, Y.; Lin, J.; Yan, S.-J. Cascade Reaction of Morita–Baylis– Hillman Acetates with 1,1-Enediamines or Heterocyclic Ketene Aminals: Synthesis of Highly Functionalized 2-Aminopyrroles. *J. Org. Chem.* **2019**, *84*, 1797–1807.

(18) (a) Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3rd-generation ALK
inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. *Eur. J. Med. Chem.* 2017, *134*, 348–356. (b) Siu, M.; Ghosh, A. S.; Lewcok, J. W. Dual Leucine
Zipper Kinase Inhibitors for the Treatment of Neurodegeneration. *J. Med. Chem.* 2018, *61*, 8078–8087. (c) Schoepfer, J.; Jahnke, W..; Berellini, G.; Buonamici, S.; Cotesta, S. Discovery of
Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. *J. Med. Chem.* 2018, *61*, 8120–8135. (d) Liu, N.; Tu, J.; Dong, G.; Sheng, C. Emerging New
Targets for the Treatment of Resistant Fungal Infections. *J. Med. Chem.* 2018, *61*, 5484–5511.

(19) (a) Brusoe, A. T.; Hartwig, J. F. Palladium-Catalyzed Arylation of Fluoroalkylamines. J. Am. Chem. Soc. 2015, 137, 8460–8468. (b) Park, N. H.; Vinogradova, E. V.; Surry, D. S.; Buchwald, S. L. Design of New Ligands for the Palladium- Catalyzed Arylation of α- Branched Secondary Amines. Angew. Chem., Int. Ed. 2015, 54, 8259–8262. (c) Guo, W.-S.; Dou, Q.; Hou, J.; Wen, L.-R.; Li, M. Synthesis of 6-Phosphorylated Phenanthridines by Mn(II)-Promoted Tandem Reactions of 2-Biaryl Isothiocyanates with Phosphine Oxides. J. Org. Chem. 2017, 82, 7015–7022. (d) Zhang, C.-H.; Huang, R.; Hu, X.-M.; Lin, J.; Yan, S.-J. Three-Component Site-Selective Synthesis of Highly Substituted 5*H*-Chromeno-[4,3-*b*]pyridines. J. Org. Chem. 2018, 83, 4981–4989.

(20) (a) Yu, F.; Yan, S.; Hu, L.; Wang, Y.; Lin, J. Cascade Reaction of Isatins with Heterocyclic Ketene Aminals: Synthesis of Imidazopyrroloquinoline Derivatives. *Org. Lett.* **2011**, *13*, 4782–4785. (b) Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z. An Efficient Synthesis of Pyrrolo[2,3,4-*kl*]acridin-1-one Derivatives Catalyzed by l-Proline. *Org. Lett.* **2012**, *14*, 4598–4601. (c) Jiang, B.; Wang, X.; Li, M.-Y.; Wu, Q.; Ye, Q.; Xu, H.-W.; Tu, S.-J. A domino synthetic strategy leading to two-carbon-tethered fused acridine/indole pairs and

fused acridine derivatives. *Org. Biomol. Chem.* **2012**, *10*, 8533–8538. (d) Xu, H.; Zhou, B.; Zhou, P.; Zhou, J.; Shen, Y.-H.; Yu, F.-C.; Lu, L.-L. Insights into the unexpected chemoselectivity in Brønsted acid catalyzed cyclization of isatins with enaminones: convenient synthesis of pyrrolo[3,4-*c*]quinolin-1-ones and spirooxindoles. *Chem. Commun.* **2016**, *52*, 8002–8005.

(21) (a) Wang, B.-Q.; Zhang, C.-H.; Tian, X.-X.; Lin, J.; Yan, S.-J. Cascade Reaction of Isatins with 1,1-Enediamines: Synthesis of Multisubstituted Quinoline-4-carboxamides. *Org. Lett.* 2018, 20, 660–663. (b) Luo, Q.; Huang, R.; Xiao, Q.; Yao, Y.; Lin, J.; Yan, S.-J. Highly Selective Synthesis of 2-Amino-4,6-diarylpyridine Derivatives by the Cascade Reaction of 1,1-Enediamines with *α*,*β*-Unsaturated Ketones. *J. Org. Chem.* 2019, *84*, 1999–2011. (c) Du, X.-X.; Zi, Q.-X.; Wu, Y.-M.; Jin, Y.; Lin, J.; Yan, S.-J. An environmentally benign multi-component reaction: regioselective synthesis of fluorinated 2-aminopyridines using diverse properties of the nitro group. *Green Chem.* 2019, *21*, 1505–1516. (d) Chen, L.; Huang, R.; Du, X.-X.; Yan, S.-J.; Lin, J. One-Pot Synthesis of Highly Functionalized Bicyclic Imidazopyridinium Derivatives in Ethanol. *ACS Sustainable Chem. Eng.* 2017, *5*, 1899–1905.

(22) (a) Wang, K.-M.; Yan, S.-J.; Lin, J. Heterocyclic Ketene Aminals: Scaffolds for Heterocycle Molecular Diversity. *Eur. J. Org. Chem.* 2014, *6*, 1129–1145. (b) Li, M.; Shao, P.; Wang, S.-W.; Kong, W.; Wen, L.-R. Four-Component Cascade Heteroannulation of Heterocyclic Ketene Aminals: Synthesis of Functionalized Tetrahydroimidazo[1,2-*a*]pyridine Derivatives. *J. Org. Chem.* 2012, *77*, 8956–8967. (c) Zeng, C.-C.; Liu, F.-J.; Ping, D.-W.; Hu, L.-M.; Cai, Y.-L.; Zhong, R.-G. One-Pot Electrochemical Synthesis of Fused Indole Derivatives Containing Active Hydroxyl Groups in Aqueous Medium. *J. Org. Chem.* 2009, *74*, 6386–6389.
(d) Zhou, B.; Liu, Z.-C.; Qu, W.-W.; Yang, R.; Lin, X.-R.; Yan, S.-J.; Lin, J. An environmentally

benign, mild, and catalyst-free reaction of quinones with heterocyclic ketene aminals in ethanol: site-selective synthesis of rarely fused [1,2-*a*]indolone derivatives via an unexpected anti-Nenitzescu strategy. *Green. Chem.* **2014**, *16*, 4359–4370.

(23) (a) Huang, C.; Yan, S.-J.; Zeng, X.-H.; Dai, X.-Y.; Zhang, Y.; Qing, C.; Lin, J. Biological evaluation of polyhalo 1,3-diazaheterocycle fused isoquinolin-1(2*H*)-imine derivatives. *Eur. J. Med. Chem.* 2011, *46*, 1172–1180. (b) Yu, F.-C.; Lin, X.-R.; Liu, Z.C.; Zhang, J.-H.; Liu, F.-F.; Wu, W.; Ma, Y.-L.; Qu, W.-W.; Yan, S.-J.; Lin, J. Beyond the Antagonism: Self-Labeled Xanthone Inhibitors as Modeled "Two-in-One" Drugs in Cancer Therapy. *ACS Omega* 2017, *2*, 873–889.

(24) Kondo, H.; Taguchi, M.; Inoue, Y.; Sakamoto, F.; Tsukamoto, G. Synthesis and antibacterial activity of thiazolo-, oxazolo-, and imidazolo[3,2-*a*][1,8]naphthyridinecarboxylic acids. *J. Med. Chem.* **1990**, *33*, 2012–2015.

(25) Suryawanshi, S. N.; Pandey, S.; Rashmirathi; Bhatt, B. A.; Gupta, S. Chemotherapy of leishmaniasis Part VI: Synthesis and bioevaluation of some novel terpenyl *S*,*N*- and *N*,*N*-acetals. *Eur. J. Med. Chem.* **2007**, *42*, 511–516.

(26) Abdelhalim, M. M.; El-Saidi, M. M. T.; Rabie, S. T.; Elmegeed, G. A. Synthesis of novel steroidal heterocyclic derivatives as antibacterial agents. *Steroids* **2007**, *72*, 459–465.

(27) (a) Bao, H.; Shao, X.; Zhang, Y.; Deng, Y.; Xu, X.; Liu, Z.; Li, Z. Specific Synergist for Neonicotinoid Insecticides: IPPA08, a *cis*-Neonicotinoid Compound with a Unique Oxabridged Substructure. *J. Agric. Food Chem.* 2016, *64*, 5148–5155. (b) Chen, N.; Meng, X.; Zhu, F.; Cheng, J.; Shao, X.; Li, Z. Tetrahydroindeno[1',2':4,5]pyrrolo[1,2-a]imidazol-5(1H)-ones as Novel Neonicotinoid Insecticides: Reaction Selectivity and Substituent Effects on the Activity Level. *J. Agric. Food Chem.* 2015, *63*, 1360–1369.

(28) (a) Huang, Z.-T.; Wang, M.-X. A New Route to 3*H*-1,5-Benzodiazepines and Heterocylic Ketene Aminals from Benzoyl Substituted Ketene Dithioacetals and Diamines. *Synthesis* **1992**, *12*, 1273–1276. (b) Kalisiak, J.; Ralph, E. C.; Cahman, J. R. Nonquaternary Reactivators for Organophosphate-Inhibited Cholinesterases. *J. Med. Chem.* **2012**, *55*, 465–474. (c) Li, Z.-J.; Smith, C. D. THE SYNTHESIS OF FLUOROHETEROCYCLIC KETENE AMINALS. *Synth. Commun.* **2001**, *31*, 527–533. (d) Huang, Z.-T.; Liu, Z.-R. Synthesis of 2-(Benzoylmethylene)-imidazoldines and –hexahdropyrimidines by Condensation of Ethyl Benzoylacetimidates With 1,2-Ethamediamine or 1,3-Propandiamine, and Some Addition Reactions. *Synthesis* **1987**, *4*, 357–362. (e) Chanu, L. G.; Singh, T. P.; Jang, Y. J.; Yoon, Y.-J.; Singh, O. M.; Lee, S.-G. *Bull. Korean Chem. Soc.* **2014**, *35*, 994–1000. (f) Wang, H.-T.; Wang, X.-J.; Huang, Z.-J. Synthesis of Acety-Substituted Heterocyclic Ketene Aminals and Their Deacetylation Reaction. *Chem. Ber.* **1990**, *123*, 2141–2145.