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Abstract A total synthesis of curvulone B has been completed using a
Friedel–Crafts reaction and a highly cis-selective intramolecular oxa-Mi-
chael addition. The 2-chlorobenzyl protecting group was employed and
found to have much greater Lewis acid stability compared to the simple
benzyl group.
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Curvulone B (1) is a cis-disubstituted tetrahydropyran
natural product and is one of a number of related com-
pounds isolated from a marine fungus.1 Given our interest
in the synthesis of such tetrahydropyrans by the combina-
tion of cross-metathesis and intramolecular oxa-Michael
addition,2,3 and the fact that this chemistry gives the cis ste-
reochemistry with high selectivity when the acceptor is a
ketone, we set out to complete the synthesis of this com-
pound (Scheme 1). During the course of these studies, a
synthesis of curvulone B (1) was reported by Takahashi et
al. using this method for THP formation.4 We wish to report
our results in which the cross-metathesis substrate is as-
sembled in an efficient manner, employing a novel phenol
protecting group.

Our synthesis began with the economical starting mate-
rial 3,5-dihydroxybenzoic acid (4, Scheme 2). Esterification5

and protection of the two phenolic hydroxy groups as their
benzyl ethers, followed by reduction of the ester and chlori-
nation with thionyl chloride gave the benzylic chloride 8a.6
Palladium-catalyzed methoxycarbonylation7 was employed
to introduce the required additional carbon atom. Although
such reactions often employ elevated pressures, this was
easily achieved with carbon monoxide at ambient pressure

(balloon) with just 2 mol% of bis(triphenylphosphine)palla-
dium(II) chloride as the catalyst, to give ester 9a in 88%
yield.8

Our initial intention was to introduce the acryloyl side
chain required for metathesis by a palladium-catalyzed
coupling process. While, after optimization, ester 9a could
be cleanly and regioselectively iodinated α to the acetate
side chain using N-iodosuccinimide (NIS) in refluxing ace-
tonitrile, attempts to achieve a Sonogashira coupling9 with
propargyl alcohol or a carbonylative coupling with vinyl tri-
n-butyltin10 were fruitless, returning unreacted starting
material. We, therefore, resorted to a more classical C–C
bond-forming technique. The Friedel–Crafts acylation of es-
ter 9a also proceeded with complete regioselectivity to give
ketone 11a, but in only 36% yield (Table 1, entry 1). The low
yield was found to be due to extensive debenzylation.11 Rea-
soning that this premature deprotection involves the Lewis
acid mediated formation of a benzyl cation, we examined
substituted benzyl ethers. We anticipated that an electron-
withdrawing substituent would destabilize the cation and

Scheme 1  Curvulone B and its retrosynthesis
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minimize the undesired deprotection pathway. Use of the
4-chlorobenzyl group12,13 resulted in only modest improve-
ment (Table 1, entry 2). This substituent exerts an inductive
effect. In contrast, use of an 2-chlorobenzyl protecting
group resulted in an increase in yield of the Friedel–Crafts
product to 89% (Table 1, entry 4).14 This is consistent with
the strong dependency of the inductive effect on distance,
amplifying the destabilization of the cation by placing the
electron-withdrawing substituent closer to the center of
positive charge. The 2-chlorobenzyl group is, therefore,
more stable under Lewis acidic conditions.15 In addition,
use of the 4-nitrobenzyl protecting group also resulted in a
high yield of the Friedel–Crafts product (Table 1, entry 3).
The mesomeric effect of the nitro group is not, of course, so
attenuated by distance. Thus, both the 2-chlorobenzyl
group and the 4-nitrobenzyl group proved to be much more
robust than the ordinary benzyl group under Lewis acidic
conditions. In all cases examined, subsequent elimination
of the β-chlorine atom of ketones 11 from the side chain
gave the desired enones 12 in high yield.

Table 1  Friedel–Crafts Reactions with Different Protecting Groupsa

Initial metathesis studies of enones 12 were carried out
with the benzyl-protected material 12a (Table 2). Cross-
metathesis16 of the benzyl-protected substrate 12a with
TBS ether 3b17 was found to proceed best in hexafluoroben-
zene (Table 2, entry 2).18 The yield using this solvent was
somewhat improved over the use of toluene (Table 2, entry
1). We were unable to achieve cross-metathesis of the 4-ni-
trobenzyl-protected material 12d. This failure was due to
the lack of solubility of the substrate in the solvents used.

Scheme 2  Synthesis of curvulone B
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Entry Substrate 9 PG Yield (%)

1 9a Bn 36

2 9b 4-ClC6H4CH2 42

3 9c 4-O2NC6H4CH2 80

4 9d 2-ClC6H4CH2 89
a Reaction at –40 °C in CH2Cl2 with SnCl4 as the Lewis acid. The mixture was 
quenched with one equivalent of Et3N at the same temperature.
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The material is not sufficiently soluble in solvents which
promote the metathesis reaction, such as toluene and hexa-
fluorobenzene. Use of mixtures with more polar solvents,
such as THF, appeared to inhibit metathesis. We did not,
therefore, pursue studies with 4-nitrobenzyl-protected
compound 12d. In contrast, the 2-chlorobenzyl-protected
material 12c underwent cross-metathesis efficiently with
TBS ether 3b in 1,2-dichloroethane, although a quite high
catalyst loading was required (Table 2, entry 6). Hexafluo-
robenzene and toluene could not be used due, again, to sol-
ubility issues. 1,2-Dichloroethane was found to be the best
solvent (Table 2, entries 5 and 6).

Table 2  Cross-Metathesis Reactions of Enone 12 with Alkene 3ba

Desilyation of either the benzyl compound 13a or the 2-
chlorobenzyl compound 13c, under our usual conditions
with amberlyst-15 in methanol, gave the tetrahydropyrans
14a and 14c cleanly and directly as single cis diastereoiso-
mers. In contrast, Takahashi et al., employing mildly basic
conditions, obtained a mixture favoring the trans isomer,
which required further equilibration.19 Debenzylation of ei-
ther 14a or 14c by hydrogenation over palladium hydroxide
on carbon gave the natural product 1. The spectroscopic
and chiroptical data was in good agreement with that re-
ported: [α]D

21 –19 (c 0.28, EtOH) {lit.: [α]D
25 –22 (c 0.27,

EtOH),1a –15.1 (c 0.52, EtOH)4}. It is notable that, in the case
of the 2-chlorobenzyl-protected material, the carbon chlo-
rine bond was not reduced.20,21

The synthesis of curvulone B has been achieved in ten
steps and 39% overall yield from commercially available
starting material. The efficiency of the synthesis rests upon
the use of carbonylation chemistry to introduce the ester
group, the metathesis–Michael strategy to introduce the
cis-tetrahydropyran and the addition of a 2-chlorine atom
to the well-known benzyl protecting group to provide ro-
bustness under Lewis acidic conditions. We believe that
this protecting group will be of general use in organic syn-
thesis.
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