ARTICLE IN PRESS

Tetrahedron Letters xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Scalable total synthesis of horsfiequinone A

Rui Zhan*, Shou-Zhen Du, Fang Kuang, Ye-Gao Chen*

School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China

ARTICLE INFO

Article history: Received 13 January 2018 Revised 22 February 2018 Accepted 27 February 2018 Available online xxxx

Keywords: Diarylpropane Horsfiequinone A 1,4-p-Benzoquinone Scalable synthesis Diarylpropane dimer

ABSTRACT

Starting from two commercially available substrates, methoxyhydroquinone and piperonyl alcohol, a scalable four-step total synthesis of horsfiequinone A was developed. The notable feature of the synthesis is the application of two continuous sequential transformations. Namely, the key aldehyde **9** and horsfiequinone A were prepared *via* scalable Wittig/hydrolysis and Wittig/catalytic hydrogenation/oxidation sequences, respectively. Importantly, the synthetic route required only three recrystallizations and one column chromatography purification step.

© 2018 Elsevier Ltd. All rights reserved.

Diarylpropanes and their dimers containing a 1,4-p-benzoquinone fragment are rare natural products (<30 members) which have been isolated only in some species of Combretum,¹ Horsfieldia,² and Euonymus.³ Despite the small collection, these comintriguing bioactivities. pounds exhibit for example. horsfiequinone B (Fig. 1 2) shows specific inhibition (IC₅₀ = 4.28 µM) against HL-60 in five tested cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480),² while euonyquinone A (4)and combrequinone B (5) show potent inhibitory activity against human DOPA decarboxylase (hDDC) with IC_{50} values of 11.5 μ M and 21.6 µM, respectively, thus representing promising treatments for Parkinson's (PK) disease.³

The unique structure and important bioactivities of the horsfiequinones encouraged us to systematically research *Horsfieldia tetratepala*^{4,5} and to propose their biogenetic pathway as well as their chemical synthesis. Biogenetically, an aromatic radical coupling pathway for euonyquinone A (**4**) was proposed by Zhang and co-workers.³ Due to the different linkage types of the dimeric horsfiequinones, an intramolecular vinylogous aldol pathway was predicted (Scheme 1).⁶ The crucial monomer horsfiequinone A (**1**) could be enolized to form its enolate, which could be further coupled with another monomer through a vinylogous aldol reaction to give intermediate **A**. This intermediate is converted to horsfiequinone B (**2**) by reduction and enolization. Compound **2** could be further derivatized to form horsfiequinones C-F. Given the

* Corresponding author.

https://doi.org/10.1016/j.tetlet.2018.02.082 0040-4039/© 2018 Elsevier Ltd. All rights reserved. significance of horsfiequinone A for the biosynthesis of dimeric horsfiequinones, it is desirable to develop a scalable and facile route towards this compound. Herein, we report a scalable fourstep total synthesis of horsfiequinone A from two commercially available compounds, piperonyl alcohol and methoxyhydroquinone.

Intermolecular aldol reactions of benzaldehydes with acetophenones have been used to prepare diarylpropanes.⁷ However, syntheses of diarylpropanes with a 1,4-*p*-benzoquinone framework are barely studied. Retrosynthetic analysis indicated that horsfiequinone A could be produced by the oxidation of compound **6** which could be prepared from olefin **7** by catalytic hydrogenation (Scheme 2). Compound **7** could be synthesized from phosphonium salt **8** and aldehyde **9** *via* a Wittig reaction. Compounds **8** and **9** were easily derived from two commercially available compounds, piperonyl alcohol and methoxyhydroquinone.

Our synthesis started with the preparation of phosphonium salt **8**; piperonyl alcohol was treated with *N*-bromosuccinimide (NBS) and PPh₃ in CH₂Cl₂ at room temperature to give the desired phosphonium salt **8** in quantitative yield (see, ESI for details).⁸ The phenol groups of methoxyhydroquinone were benzyl protected using BnBr/K₂CO₃ to give dibenzyl protected product **S1** in quantitative yield after recrystallization from petroleum ether/ethyl acetate (PE/EA). Next, Friedel-Crafts formylation (trimethyl orthoformate/AlCl₃)⁹ was carried out to give aldehyde **10** which was purified by recrystallization from PE/EA in 55% yield. Compound **10** was further converted into aldehyde **9** *via* a continuous Wittig/hydrolysis sequence in 91% yield after recrystallization from PE/EA. Subsequently, compound **8** and **9** were combined using the Wittig reaction to give olefin **7** as a ~2:1 mixture of *Z*/*E* isomers

E-mail addresses: sunnyzhanrui@126.com (R. Zhan), ygchen48@126.com (Y.-G. Chen).

ARTICLE IN PRESS

R. Zhan et al./Tetrahedron Letters xxx (2018) xxx-xxx

Fig. 1. Structures of selected diarylpropane monomer and dimers.

Scheme 1. Plausible biogenetic pathway of the horsfiequinones.

ARTICLE IN PRESS

R. Zhan et al./Tetrahedron Letters xxx (2018) xxx-xxx

Table 1Oxidation of hydroquinone 6.

Entry	Conditions	Yield 6 (%) ^a
1	DDQ (2.0 eq.), toluene/CH ₂ Cl ₂ (5:1), 0 °C, 10 min	87
2	Ag ₂ O (2.0 eq.), Et ₂ O, RT, 2 h	69
3	NaIO ₄ (5.0 eq.), MeOH, 0 °C, 1.5 h	90
4	MnO ₂ (2.0 eq.), CH ₂ Cl ₂ , RT, 4 h	77
5 ^b	Silica gel ^c , CH ₂ Cl ₂ , RT, 12 h	90
6	Silica gel ^c , neat, air, 60 °C, 4 h	96

^a Isolated yield.

^b BRSM, ~50% starting materials were recovered.

^c Silica gel was 20-fold (weight) to substrate.

(determined by ¹H NMR, ESI) in 90% yield. Catalytic hydrogenation of **7** in EtOAc/MeOH allowed removal of the two benzyl protecting groups to provide hydroquinone **6** in 93% yield.

Although trace amounts of the target product **1** was detected during the work-up and purification process, the autoxidation of **6** was incomplete when it was purified on a silica column. Thus, various oxidative conditions were examined for this transformation (Table 1). All of the tested oxidants (DDQ, Ag₂O, NalO₄, MnO₂, entries 1–4) promoted this transformation, and to our delight, the oxidation also proceeded in the presence of silica gel in CH₂Cl₂ at room temperature in 90% yield BRSM (Entry 5). In order to optimize the reaction, compound **6** was loaded onto silica gel (excess) to form a slightly yellow powder which was heated at 60 °C under air for 4 h to give **1** in 96% yield (Entry 6).

After completion of the synthesis, the synthetic route was simplified using a Wittig/catalytic hydrogenation/oxidation sequence starting from compound **9** (13.6 g). Namely, aldehyde **9** was condensed with phosphonium salt **8** via a Wittig reaction, followed by catalytic hydrogenation (Pd/C, H₂) and air mediated oxidation on silica gel to provide the target product **1** (9.6 g) as an orange amorphous solid after purification on a silica column (Scheme 3).

In summary, a facile and scalable total synthesis route to horsfiequinone A (1) was achieved within four steps in 43% overall yield. Moreover, three recrystallizations and only one purification using column chromatography were needed in this approach.

3

Scheme 3. Scalable synthesis of horsfiequinone A.

Acknowledgments

This research was supported financially by the National Natural Science Foundation of China [grant number 31460086]; the Science and Technology Program of Yunnan Province [grant number 2014FD013]; the Scientific Research Program of the Education Department of Yunnan Province [grant number 2014Z047].

A. Supplementary data

Supplementary material including the procedures and ¹H and ¹³C NMR spectra for all compounds. Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tetlet.2018.02.082.

References

- 1. Moosophon P, Kanokmedhakul S, Kanokmedhakul K. J Nat Prod. 2011;74:2216–2218.
- 2. Ma Q, Min K, Li H-L, et al. Planta Med. 2014;80:688–694.
- 3. Ren J, Zhang Y, Jin H, et al. ACS Chem Biol. 2014;9:897-903.
- 4. Du S-Z, Wang Z-C, Liu Y, Zhan R, Chen Y-G. Phytochem Lett. 2017;19:98–100.
- 5. Du S-Z, Kuang F, Liu Y, Chen Y-G, Zhan R. Nat Prod Res. 2018;32:162–166.
- (a) For the vinylogous aldol reaction, see review: Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. *Chem Rev.* 2011;111:3076–3154. examples;
 (b) Saito S, Nagahara T, Shiozawa M, Nakadai M, Yamamoto H. *J Am Chem Soc.* 2003;125:6200–6210;
 (c) Gazaille JA, Sammakia T. *Org Let.* 2012;14:2678–2681;
 - (d) Hartwig WT, Sammakia T. J Org Chem. 2017;82:759-764.
 - Gan H, Cao W, Feng W, Guo K. J Chem Res.. 2015;39:416–420.
- Barrett TN, Braddock DC, Monta A, Webb MR, White AJP. J Nat Prod. 2011;74:1980–1984.
- 9. Sum TH, Sum TJ, Stokes JE, Galloway WRJD, Spring DR. Tetrahedron. 2015;71:4557–4564.