
Accepted Manuscript

Synthesis of three-dimensional fused and spirocyclic oxygen-containing cyclo-
butanone derivatives

Sergey V. Ryabukhin, Kateryna I. Fominova, Dmitriy A. Sibgatulin, Oleksandr
O. Grygorenko

PII: S0040-4039(14)01943-1
DOI: http://dx.doi.org/10.1016/j.tetlet.2014.11.050
Reference: TETL 45434

To appear in: Tetrahedron Letters

Received Date: 19 September 2014
Revised Date: 4 November 2014
Accepted Date: 13 November 2014

Please cite this article as: Ryabukhin, S.V., Fominova, K.I., Sibgatulin, D.A., Grygorenko, O.O., Synthesis of three-
dimensional fused and spirocyclic oxygen-containing cyclobutanone derivatives, Tetrahedron Letters (2014), doi:
http://dx.doi.org/10.1016/j.tetlet.2014.11.050

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tetlet.2014.11.050
http://dx.doi.org/http://dx.doi.org/10.1016/j.tetlet.2014.11.050


  

Graphical Abstract 

Synthesis of three-dimensional fused and 

spirocyclic oxygen-containing cyclobutanone 

derivatives 

Sergey V. Ryabukhin, Kateryna I. Fominova, Dmitriy A. Sibgatulin, Oleksandr O. Grygorenko 

 

 

Leave this area blank for abstract 

info. 

http://ees.elsevier.com/tetl/viewRCResults.aspx?pdf=1&docID=39255&rev=2&fileID=809191&msid={4276C0C6-6ABD-41C2-8842-736DB31037B4}


  

 1 

 

 

Tetrahedron Letters 
journal  homepage:  www.e lsevier .com  

 

Synthesis of three-dimensional fused and spirocyclic oxygen-containing 

cyclobutanone derivatives 

Sergey V. Ryabukhin,
a
 Kateryna I. Fominova,

a 
Dmitriy A. Sibgatulin,

b 
Oleksandr O. Grygorenko

a
  

aNational Taras Shevchenko University of Kyiv, Volodymyrska Street, 64, Kyiv 01601, Ukraine 
bInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine 

 

——— 

 Corresponding author. Tel.: +38-044-239-3315; fax: +38-044-573-2643; e-mail: gregor@univ.kiev.ua 

Fused and spirocyclic ring systems are the key structural 

elements of numerous important organic molecules, including 

many natural products and marketed drugs. Many synthetic 

efforts in heterocyclic chemistry have been directed towards the 

synthesis of heteroaromatic ring systems; apart from certain cases 

such as steroid-like molecules and some other natural products, 

fused and spirocyclic heteroaliphatic frameworks have received 

less attention. The situation has since changed and recent trends 

in medicinal chemistry have shifted towards three-dimensional 

scaffolds as the central cores of potential drugs.
1
 

Conformationally restricted templates, including spirocyclic 

ones, have advantages for drug discovery, since, due to their pre-

organizaion, they have increased chance of potent and selective 

binding with their biological targets. It is not surprising therefore, 

that spirocyclic heteroaliphatic molecules have attracted 

signifiacnt attention from synthetic and medicinal chemists.
2
 

Furthermore, special attention has been paid to oxygen-enriched 

molecules since it was shown that many compound collections 

have less oxygen content compared to natural products and 

marketed drugs.
3
 Therefore, fused and spirocyclic ring systems 

based on saturated oxygen heterocycles are of particular interest. 

In this work, we have turned our attention to fused and 

spirocyclic oxygen-containing ring systems based on the 

cyclobutanone motif, namely, 2-oxaspiro(bicyclo[3.2.0]heptane-

7,1'-cycloalkane)-6-ones (1) and 2-oxaspiro(bicyclo[4.2.0]-

octane-8,1'-cycloalkane)-6-ones (2). Since the classical method 

for the construction of the polysubstituted cyclobutanones relies 

on [2+2] cycloaddition with ketenes,
4
 cyclic vinyl ethers 3 and 4 

would be the starting materials of choice for the construction of 

ring systems 1 and 2, respectively (Scheme 1). Surprisingly, 

vinyl ethers 3 and 4 are virtually unstudied in reactions with 

ketenes. Most of the literature involved reactions of 3,6-dihydro-

2H-pyran (4) with more reactive aryl-substituted ketenes.
5 

Only a 

single example described the [2+2]cycloaddition of 4 with 

gaseous dimethylketene (5) (generated by pyrolysis of either 

1,1,3,3-trimethylcyclobutanedione
6
 or isobutyryl anhydride

5a
), 

leading to 2-oxabicyclo[4.2.0]octane derivative 6 (Scheme 2). 

 

Scheme 1. 

 

Scheme 2. 

First of all, we have checked if compound 6 could be obtained 

using dimethylketene generated in situ from isobutyryl chloride 

and triethylamine. It was found that a complex mixture was 

obtained when a 1:1.5 ratio of 4 and 5 (as described by Martin 

and co-workers
5a

) was used. We found that compound 6 did form 
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in a substantial amount in the presence of at least a three-fold 

excess of 4; increasing the ratio of 4 and 5 further improved the 

reaction outcome, such that when using a 10:1 ratio of the 

starting materials, the isolated yield of 6 was 43% (after 

fractional distillation)
7
 – a result very similar to that obtained by 

Krapcho and Lesser.
6
 The method was also amenable to the 

preparation of adduct 7
8
 (64% yield) starting from 2,3-

dihydrofuran (3). 

It was found that the procedure was efficient with alicyclic 

acyl chlorides 8b–d: the corresponding fused and spirocyclic 

cyclobutanones 1 and 2 were obtained in 56–67% yields (Table 

1). No product 2a was formed in the reaction of 

cyclopropanecarbonyl chloride (8a) and 4; obviously, the 

corresponding ketene was too strained to be formed efficiently 

under the reaction conditions. 

Table 1. Synthesis of fused, spirocyclic cyclobutanones 1 and 2 

 

Entry Starting materialsa m n Product Yield (%) Ref. 

1 8c + 3 2 1 1c 56 9 

2 8a + 4 0 2 2a 0 – 

3 8b + 4 1 2 2b 57 10 

4 8c + 4 2 2 2c 62 11 

5 8d + 4 3 2 2d 67 12 

a  Ratio of 8, 3(4) and Et3N = 1:10:1.3 

Since alicyclic ketenes have rarely been used in reactions with 

vinyl ethers previously,
13

 we also checked if the method worked 

with acyclic substrates, namely, ethyl vinyl ether (9) (Scheme 3). 

Reaction of 9 with the ketene generated from 8c gave the 

corresponding adduct 10 in 50% yield.
14

 

 

Scheme 3. 

In conclusion, a convenient method for the preparation of 

oxygen-containing fused and spirocyclic cyclobutanone 

derivatives, in particular, 2-oxaspiro(bicyclo[3.2.0]heptane-7,1'-

cycloalkane)-6-ones and 2-oxaspiro(bicyclo[4.2.0]octane-8,1'-

cycloalkane)-6-ones, is described. The procedure involves readily 

available and inexpensive starting materials and could be scaled 

up to prepare 100 g of the product in a single run. The building 

blocks obtained are of particular interest in medicinal chemistry 

as three-dimensional scaffolds for the generation of lead-like 

libraries, as well as in other areas of chemistry as versatile 

synthetic intermediates. 
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