## Paper

## Highly Efficient Synthesis of Multi-Substituted Allenes from Propargyl Acetates and Organoaluminum Reagents Mediated by Palladium

Α

Zhen Zhang Xuebei Shao Gang Zhang Qinghan Li\* Xinying Li

College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China Iqhchem@163.com 21900049@swun.edu.cn



Received: 18.02.2017 Accepted after revision: 28.03.2017 Published online: 04.05.2017 DOI: 10.1055/s-0036-1588177; Art ID: ss-2017-h0101-op

**Abstract** A simple and mild catalytic  $S_N 2'$  substitution reaction of propargyl acetates with organoaluminum reagents is reported. The  $S_N 2'$  substitution reaction of propargyl acetates with organoaluminum reagents mediated by Pd(PhP<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (1 mol%)/PPh<sub>3</sub> (2 mol%)/K<sub>2</sub>CO<sub>3</sub> in tetrahydrofuran at 60 °C for 3–4 hours afforded the corresponding multi-substituted allenes in good yields (up to 94%) with high selectivities (up to 99%). The process was simple and easily performed, which offers an efficient method to synthesize the multi-substituted allene derivatives.

Key words allenes, palladium, propargyl acetates, organoaluminum reagent,  $S_N 2'$  substitution reaction

Multi-substituted allenes are very important intermediates and functional groups that are widely applied in organic synthesis.<sup>1,2</sup> Allene moieties have also been found in a large number of medicinal and natural products<sup>3</sup> and photoelectric materials.<sup>4</sup> Therefore, the synthesis of allenes has attracted great interest in organic and medicinal chemistry. Developing some simple and effective methods for the synthesis of multi-substituted allenes from simple and easily available organic compounds is very important. Until now numerous effective methodologies for the synthesis allenes have been reported.<sup>5,6</sup> The synthetic method of substituted allenes include isomerization of alkynes,<sup>7</sup> elimination of allylic derivatives,<sup>8</sup> coupling reactions of terminal alkynes and aldehydes,<sup>9</sup> and metal-catalyzed S<sub>N</sub>2'-type substitution reactions of propargylic derivatives.<sup>10,11</sup> Among them, the metal-catalyzed S<sub>N</sub>2'-type substitution reactions of propargylic derivatives with organometallic reagents is one of the most generally useful ones (Scheme 1). However, there are two competing possible reaction pathways; the successful application of S<sub>N</sub>2'-type substitution reaction depends on the choice of catalyst and/or organometallic species to selectively produce either the allene product **2** or the alkyne product **3**. Therefore, the development of rapid and more efficient method for the synthesis of allenes is still a challenge.



 $\label{eq:scheme1} \begin{array}{l} \mbox{Metal-catalyzed $S_N2'$ and $S_N2$ substitution reaction of propagylic derivatives with organometallic species} \end{array}$ 

Our previous studies show that the catalytic system of 1  $mol\% Pd(OAc)_2/2 mol\% (o-tolyl)_3P$  worked efficiently for the cross-coupling of propargyl acetates with organoaluminum reagents, producing the trisubstituted allenes in good to excellent yields of up to 94% in tetrahydrofuran.<sup>6f</sup> However, the reaction of trimethylaluminum (AlMe<sub>3</sub>) with 2-methyl-4-phenylbut-3-yn-2-yl acetate, employing the catalyst of 1 mol% Pd(OAc)<sub>2</sub>/2 mol% (o-tolyl)<sub>3</sub>P, yielded tetrasubstituted allene 1,1,3-trimethyl-3-phenylallene in only 80% yield and with low selectivity (90:10). To continue our effort to develop cross-coupling reactions using reactive organometallic reagents,<sup>6h,i,12</sup> we herein report a highly efficient coupling reactions of propargyl acetates with organoaluminum species for the synthesis of tri- and tetrasubstituted allene derivatives using a Pd(PhP<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (1 mol%)/PPh<sub>3</sub>(2 mol%)/K<sub>2</sub>CO<sub>3</sub> (2 equiv) as catalyst. Excellent yields (up to 94%) and high selectivities (up to 99%) were obtained for a wide range of substrates at 60 °C for 3-4 hours in THF.

## Z. Zhang et al.

To optimize the reaction conditions, effects of phosphine ligand, palladium source, reaction time, solvent, the amount of organoaluminum reagent, and the molar ratio of metal to ligand on the S<sub>N</sub>2' substitution reaction were investigated using propargyl acetate 1a (Table 1 and Table 2). We initially investigated the  $S_N 2'$  substitution reaction of propargyl acetates (1a with trimethylaluminum without mental and ligand in THF for 3 hours at ambient temperature. The reaction proceeded to afford both allene 2a and alkyne 3a with only a 10% conversion and a ratio of 1:99 in favor of the alkyne 3a (Table 1, entry 1). When only  $Pd(OAc)_2$  was used as the catalyst, the  $S_N 2'$  substitution reaction of propargyl acetate 1a with trimethylaluminum afforded both allene 2a and alkyne 3a with only a 12% conversion and the ratio of products remained unchanged (entry 2). When 2 mol% PPh<sub>3</sub> was used as ligand, the  $Pd(OAc)_2$ catalyzed the S<sub>N</sub>2' substitution reaction of propargyl acetate 1a with trimethylaluminum to give the products 2a and 3a in 16% conversion (entry 3). The product ratio is about 57:43 in favor of the allene 2a. The other phosphine ligands were then examined (entries 4, 5). It was found that the PPh<sub>3</sub> ligand was best effective for reactivity and selectivity (entry 3). Other phosphine ligands did not provide satisfactory results. To our delight, when 2.0 equivalents of K<sub>2</sub>CO<sub>3</sub> was used as additive, the Pd(OAc)<sub>2</sub>/PPh<sub>3</sub>-catalyzed the  $S_N 2'$  substitution reaction of propargyl acetate **1a** with trimethylaluminum gave the products 2a and 3a in a ratio of 60:40 in favor of the allene 2a with 96% conversion (entry 6). However, the S<sub>N</sub>2' substitution reaction of trimethylaluminum with propargyl acetate 1a produced the product 2a and 3a in a ratio of 95:5 in favor of the allene 2a with 98% conversion at 60 °C over 3 hours (entry 7).

Subsequently, the effect of the amount of trimethylaluminum was investigated. The result revealed that the reaction selectivity increased from 95:5 to 98:2 when the trimethylaluminum loading was increased from 0.5 mmol to 0.6 mmol (Table 1, entries 7 and 8). While using  $K_3PO_4$  as additive, the product conversion decreased from 98% to 58% (entry 9). However, when the ratio of Pd(OAc)<sub>2</sub> and PPh<sub>3</sub> was altered to 1:4, the product conversion and the reaction selectivity remained unchanged (entries 8 and 10).

To improve the reactivity and selectivity, the  $S_N 2'$  substitution reaction of **1a** with trimethylaluminum under other conditions was investigated. First, various solvents were tested in the presence of Pd(OAc)<sub>2</sub> and PPh<sub>3</sub> (Table 2, entries 1, 2). Toluene and hexane reduced the selectivity greatly, and the ratios of product were only 72:28 and 53:47, respectively. In contrast, excellent conversion (98%) and good selectivity (**2a/3a** = 98:2) could be obtained in THF as solvent (Table 1, entry 8). Subsequently, other palladium sources with PPh<sub>3</sub> were surveyed. Although PdCl<sub>2</sub> and Pd(acac)<sub>2</sub> can effectively catalyze the  $S_N 2'$  substitution reaction, the product selectivity and conversion were low (Table 2, entries 3, 4). Pleasingly, excellent conversion (>99%) and

Table 1 Effect of the Ligands, the Loading of AlMe\_3, and the Additives on the  $S_N2^\prime$  Substitution Reactionª

| OAc<br>Ph<br>1a | Pd (<br>+ AIMe <sub>3</sub> lig<br>Ph 1.0 equiv TH | OAc) <sub>2</sub> (1 mol%)<br>pand (2 mol%)<br>additives<br>F (1 mL), 3 h, rt 2a | Ph                     | Me<br>J<br>J<br>J<br>Pr<br>J  |
|-----------------|----------------------------------------------------|----------------------------------------------------------------------------------|------------------------|-------------------------------|
| Entry           | Ligand (2 mol%)                                    | Additive (2.0 equiv)                                                             | Conv. (%) <sup>b</sup> | <b>2a/3a</b> (%) <sup>c</sup> |
| 1               | -                                                  | -                                                                                | 10                     | 1:99                          |
| 2 <sup>d</sup>  | -                                                  | -                                                                                | 12                     | 1:99                          |
| 3               | PPh <sub>3</sub>                                   | -                                                                                | 16                     | 57:43                         |
| 4               | PCy <sub>3</sub>                                   | -                                                                                | 10                     | 45:55                         |
| 5               | dppe                                               | -                                                                                | 12                     | 1:99                          |
| 6               | PPh <sub>3</sub>                                   | K <sub>2</sub> CO <sub>3</sub>                                                   | 96                     | 60:40                         |
| 7 <sup>e</sup>  | PPh <sub>3</sub>                                   | K <sub>2</sub> CO <sub>3</sub>                                                   | 98                     | 95:5                          |
| 8 <sup>f</sup>  | PPh <sub>3</sub>                                   | K <sub>2</sub> CO <sub>3</sub>                                                   | 98                     | 98:2                          |
| 9 <sup>f</sup>  | $PPh_3$                                            | K <sub>3</sub> PO <sub>4</sub>                                                   | 58                     | 99:1                          |
| 10 <sup>g</sup> | PPh <sub>3</sub>                                   | K <sub>2</sub> CO <sub>3</sub>                                                   | 98                     | 98:2                          |

<sup>a</sup> Ratio of **1a**/AlMe<sub>3</sub>/Pd(OAc)<sub>2</sub>/ligand = 0.5:0.5:0.005:0.01 mmol.

<sup>b</sup> Conversion of **2a** + **3a** was determined by <sup>1</sup>H NMR spectra.

<sup>c</sup> The ratio of **2a/3a** was determined by <sup>1</sup>H NMR analysis.

<sup>d</sup> Only Pd(OAc)<sub>2</sub> was used.

<sup>e</sup> Reaction carried out at 60 °C.

<sup>f</sup> AlMe<sub>3</sub> = 0.6 mmol, 60 °C.

<sup>g</sup> Ratio of 1a/AlMe<sub>3</sub>/Pd(OAc)<sub>2</sub>/ligand = 0.5:0.6:0.005:0.02 mmol, 60 °C.

high selectivity (**2a/3a** >99%) were obtained using Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (Table 2, entry 5). The product selectivity and conversion decreased when only Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> was used as the catalyst (entry 6). Therefore, the optimal S<sub>N</sub>2' substitution reaction conditions were 1 mol% Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, 2 mol% PPh<sub>3</sub>, 1.0 mmol K<sub>2</sub>CO<sub>3</sub>, 0.6 mmol trimethylaluminum, and 0.5 mmol propargyl acetate in THF (1 mL) at 60 °C for 3 hours.

Table 2 Effect of the Palladium Source and Solvent on the  $\mathsf{S}_N2'$  Substitution Reaction<sup>a</sup>

| OAc<br>Ph<br>1a | + AIMe <sub>3</sub><br>Ph 1.2 equiv | $ \begin{array}{c} \begin{array}{c} \operatorname{Pd} \left(1 \ \operatorname{mol}^{()}\right) \\ \hline \\ \underline{\operatorname{ligand}} \left(2 \ \operatorname{mol}^{()}\right) \\ \hline \\ \hline \\ K_2 \operatorname{CO}_3, \ \mathrm{THF} \\ 3 \ \mathrm{h}, \ \mathrm{60} \ ^\circ \mathrm{C} \end{array} } \operatorname{Ph}^{\mathcal{M}^{(1)}} $ | • <mark>∕</mark> Me<br>Ph | Ph<br>3a   |
|-----------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|
| Entry           | Pd salt                             | Solvent                                                                                                                                                                                                                                                                                                                                                          | Conv. (%) <sup>b</sup>    | 2a/3a (%)¢ |
| 1               | Pd(OAc) <sub>2</sub>                | hexane                                                                                                                                                                                                                                                                                                                                                           | 92                        | 72:28      |
| 2               | $Pd(OAc)_2$                         | toluene                                                                                                                                                                                                                                                                                                                                                          | 99                        | 53:47      |
| 3               | PdCl <sub>2</sub>                   | THF                                                                                                                                                                                                                                                                                                                                                              | 80                        | 91:9       |
| 4               | Pd(acac) <sub>2</sub>               | THF                                                                                                                                                                                                                                                                                                                                                              | 97                        | 95:5       |
| 5               | $Pd(PPh_3)_2Cl_2$                   | THF                                                                                                                                                                                                                                                                                                                                                              | >99                       | >99:1      |
| 6 <sup>d</sup>  | $Pd(PPh_3)_2Cl_2$                   | THF                                                                                                                                                                                                                                                                                                                                                              | 94                        | 93:7       |

<sup>a</sup> Ratio of **1a**/AlMe<sub>3</sub>/Pd(II)/PPh<sub>3</sub> = 0.5:0.6:0.005:0.01 mmol.

<sup>b</sup> Conversion of **2a** + **3a** was determined by <sup>1</sup>H NMR spectra.

<sup>c</sup> The ratio of **2a/3a** was determined by <sup>1</sup>H NMR analysis.

<sup>d</sup> Only 1 mol% Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> was used.

## Z. Zhang et al.

With the optimized conditions in hand, the scope of the catalytic the S<sub>N</sub>2' substitution reaction of different propargyl acetates with trimethylaluminum was then explored, and the results are presented in Table 3. In all the cases, high yield and excellent selectivity were obtained for all evaluated substrates (Table 3, **2a-p**). Aromatic propargyl acetates with both electron-donating groups (Table 3, entries 2-5) and electron-withdrawing groups (entries 6-9) on the aromatic ring furnished the trisubstituted allenes in 80-88% yield with 99% selectivity (entries 2-9). Furthermore, the propargyl acetates bearing a bulky 1-naphthyl or 2-naphthyl group also gave the trisubstituted allene products with 99% selectivity in yields of 80 and 78% (entries 10 and 11). The  $S_N 2'$  substitution reactions of trimethylaluminum with propargyl acetates bearing *n*-pentyl group was also explored, and after 3 hours, 21 was formed with 99% selectivity in 83% yield (entry 12). Under the same conditions, aliphatic propargyl acetates, such as propargyl acetates **1m-p**, also reacted with trimethylaluminum to provide the trisubstituted allenes (i.e., 2m-p) in good isolated yields and high selectivity (entries 13-16).

**Table 3** $Pd(PPh_3)_2Cl_2/Ph_3P$ -Catalyzed  $S_N2'$ Substitution Reaction ofPropargyl Acetates 1with AlMe $_3^a$ 

| OAc<br>R <sup>1</sup> | $\begin{array}{c} \mbox{Pd}(PPh_3)_2Cl_2~(;\\ \mbox{PPh}_3~(2~mc)\\ \mbox{PPh}_3~(2~mc)\\ \mbox{R}^2 & \mbox{THF}~(1~mL), 3 \end{array}$ | 1 mol%)<br>pl%) R <sup>1</sup> ∽<br>equiv) ►<br>h, 60 °C | <sup>Me</sup><br>R <sup>2</sup> | R <sup>1</sup><br>3             |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|---------------------------------|
| Entry                 | <b>1</b> R <sup>1</sup> , R <sup>2</sup>                                                                                                 | Product                                                  | <b>2/3 (%)</b> <sup>b</sup>     | <b>2</b> Yield (%) <sup>c</sup> |
| 1                     | <b>1a</b> Ph, Ph                                                                                                                         | 2a                                                       | 99:1                            | 85                              |
| 2                     | <b>1b</b> 2-MeC <sub>6</sub> H <sub>4</sub> , Ph                                                                                         | 2b                                                       | 99:1                            | 81                              |
| 3                     | <b>1c</b> 3-MeC <sub>6</sub> H <sub>4</sub> , Ph                                                                                         | 2c                                                       | 99:1                            | 87                              |
| 4                     | <b>1d</b> 4-MeC <sub>6</sub> H <sub>4</sub> , Ph                                                                                         | 2d                                                       | 99:1                            | 83                              |
| 5                     | <b>1e</b> 2-MeOC <sub>6</sub> H <sub>4</sub> , Ph                                                                                        | 2e                                                       | 99:1                            | 79                              |
| 6                     | <b>1f</b> 2-ClC <sub>6</sub> H <sub>3</sub> , Ph                                                                                         | 2f                                                       | 99:1                            | 88                              |
| 7                     | <b>1g</b> 4-ClC <sub>6</sub> H <sub>4</sub> , Ph                                                                                         | 2g                                                       | 99:1                            | 87                              |
| 8                     | <b>1h</b> 4-BrC <sub>6</sub> H <sub>4</sub> , Ph                                                                                         | 2h                                                       | 99:1                            | 88                              |
| 9                     | <b>1i</b> 4-F <sub>3</sub> CC <sub>6</sub> H <sub>4</sub> , Ph                                                                           | 2i                                                       | 99:1                            | 83                              |
| 10                    | <b>1j</b> 1-naphthyl, Ph                                                                                                                 | 2j                                                       | 99:1                            | 80                              |
| 11                    | <b>1k</b> 2-naphthyl, Ph                                                                                                                 | 2k                                                       | 99:1                            | 78                              |
| 12                    | <b>1I</b> <i>n</i> -pentyl, Ph                                                                                                           | 21                                                       | 99:1                            | 83                              |
| 13                    | <b>1m</b> Ph, Me <sub>3</sub> Si                                                                                                         | 2m                                                       | 99:1                            | 88                              |
| 14                    | <b>1n</b> 4-MeC <sub>6</sub> H <sub>4</sub> , Me <sub>3</sub> Si                                                                         | 2n                                                       | 99:1                            | 81                              |
| 15                    | <b>1o</b> 4-ClC <sub>6</sub> H <sub>4</sub> , Me <sub>3</sub> Si                                                                         | 2o                                                       | 99:1                            | 87                              |
| 16                    | <b>1p</b> 2-naphthyl, Me₃Si                                                                                                              | 2р                                                       | 99:1                            | 79                              |

<sup>a</sup> Ratio of 1/AIMe<sub>3</sub>/Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>/PPh<sub>3</sub> = 0.5:0.6:0.005.0.01 mmol, 3 h.

<sup>b</sup> The ratio of **2/3** was determined by <sup>1</sup>H NMR analysis.

<sup>c</sup> Isolated yield, two runs.

Encouraged by the good performance of the current catalyst system shown above, the  $S_N2'$  substitution reactions of 2-methyl-4-phenylbut-3-yn-2-yl acetate (**4a**) with AlMe<sub>3</sub> was subsequently investigated. The reaction of propargyl acetate **4a** with AlMe<sub>3</sub>, employing the catalyst of 1 mol% Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> and 2 mol% PPh<sub>3</sub>, yielded the  $S_N2'$  product 1,1,3-trimethyl-3-phenylallene (**5a**) in 80% yield and good selectivity (**5a/6a** = 95:5) (Table 4, entry 1). Pleasingly, when the reaction time was extended to 4 hours, the reaction proceeded smoothly to give the products **5a** and **6a** in a ratio of 97:3 in favor of **5a** and the product **5a** in 85% yield (entry 2). Thus, the optimized catalytic system was 1 mol% Pd (PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, 2 mol% PPh<sub>3</sub>, 1.0 mmol K<sub>2</sub>CO<sub>3</sub>, 0.5 mmol substituted propargyl acetate, and 0.6 mmol trimethylaluminum in THF (1 mL) at 60 °C for 4 hours.

 $\label{eq:constraint} \begin{array}{l} \mbox{Table 4} & \mbox{Pd}(\mbox{PPh}_3)_2Cl_2/\mbox{Ph}_3\mbox{P-Catalyzed }S_N2' \mbox{ Substitution Reaction of Propargyl Acetates 4 with }AlMe_3^a \end{array}$ 

| R <sup>3</sup> Me | $\begin{array}{c} \mbox{Pd}(\mbox{PPh}_3)_2\\ \mbox{PPh}_3 (;\\ \mbox{PPh}_3 (;\\ \mbox{F}_2 \\ \mbox{HF} (1 \mbox{ mL} \\ \mbox{THF} (1 \mbox{mL} \\ \mbox{THF} (1 \mbox{mL} \\ \mbox{Phi}_3 \\ \mbox{Phi}_3$ | Cl₂ (1 mol%)<br>2 mol%)<br>2.0 equiv) <sub>➤</sub> M<br>.), 4 h, 60 °C | He <sup>rry</sup> Me | + R <sup>3</sup> Me                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|--------------------------------------------------|
| Entry             | <b>4</b> R <sup>2</sup> , R <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Product                                                                | Ratio of <b>5/6</b>  | (%) <sup>ь</sup> <b>5</b> Yield (%) <sup>с</sup> |
| 1 <sup>d</sup>    | <b>4a</b> Ph, Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5a                                                                     | 95:5                 | 80                                               |
| 2                 | <b>4a</b> Ph, Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5a                                                                     | 97:3                 | 85                                               |
| 3                 | <b>4b</b> 4-MeC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5b                                                                     | 98:2                 | 89                                               |
| 4                 | <b>4c</b> 3-ClC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5c                                                                     | 99:1                 | 94                                               |
| 5                 | <b>4d</b> 3-FC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5d                                                                     | 99:1                 | 94                                               |
| 6                 | <b>4e</b> 2-FC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5e                                                                     | 99:1                 | 90                                               |
| 7                 | <b>4f</b> 3-BrC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5f                                                                     | 99:1                 | 86                                               |
| 8                 | <b>4g</b> 4-BrC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5g                                                                     | 99:1                 | 93                                               |
| 9                 | <b>4h</b> 4-FC <sub>6</sub> H <sub>4</sub> , Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5h                                                                     | 99:1                 | 94                                               |
| 10                | 4i 2-thienyl, Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5i                                                                     | 99:1                 | 88                                               |
| 11                | <b>4j</b> Ph, Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5j                                                                     | 99:1                 | 83                                               |
| 12                | <b>4k</b> 3-FC <sub>6</sub> H <sub>4</sub> , Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5k                                                                     | 99:1                 | 86                                               |
| 13                | <b>4I</b> 3-CIC <sub>6</sub> H <sub>4</sub> , Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                     | 99:1                 | 92                                               |
| 14                | <b>4m</b> 4-FC <sub>6</sub> H <sub>4</sub> , Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5m                                                                     | 99:1                 | 93                                               |
| 15                | <b>4n</b> 2-FC <sub>6</sub> H <sub>4</sub> , Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5n                                                                     | 99:1                 | 90                                               |
| 16                | <b>4o</b> 3-BrC <sub>6</sub> H <sub>4</sub> , Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5o                                                                     | 99:1                 | 87                                               |
| 17                | <b>4p</b> 4-MeC <sub>6</sub> H <sub>4</sub> , Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5р                                                                     | 97:3                 | 84                                               |
| 18                | <b>4q</b> Ph, Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5q                                                                     | 96:4                 | 75                                               |
| 19                | <b>4r</b> Ph, 4-FC <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5r                                                                     | 97:3                 | 80                                               |
| 20                | <b>4s</b> Ph, 4-ClC <sub>6</sub> H₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5s                                                                     | 97:3                 | 81                                               |

<sup>a</sup> Ratio of 4/AIMe<sub>3</sub>/Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>/PPh<sub>3</sub> = 0.5:0.6:0.005:0.01 mmol, 4 h.

<sup>b</sup> The ratio of **5/6** was determined by <sup>1</sup>H NMR analysis.

<sup>c</sup> Isolated yield, two runs.

<sup>d</sup> Reaction time: 3 h.

Paper

## Z. Zhang et al.

Under the optimized reaction conditions, the reaction scope was further explored with the substituted propargyl acetates 4a-s and AlMe<sub>3</sub>, and the results are summarized in Table 4. The S<sub>N</sub>2' substitution reactions of propargyl acetates 4a-s with AlMe<sub>3</sub> gave tetrasubstituted allenes 5a-s with >95% selectivity in excellent isolated yields (78-94%, Table 4, entries 2-20). The results indicate that the reactions of aromatic propargyl acetates with both electron-donating groups 4b, 4p and electron-withdrawing groups 4c**h**,**k**–**o**) on the aromatic rings underwent the S<sub>N</sub>2' substitution reactions smoothly to give the tetrasubstituted allenes (i.e., **5c-h.k-o**) with high selectivity (up to 99:1) and in good to excellent isolated yields (86-94%, Table 4, entries 4–9, 12–16). In addition, the tetrasubstituted allene bearing a thienvl group **5i** resulting from propargyl acetate **4i** was obtained in 88% yield and 99% selectivity (entry 10). More importantly, the tetrasubstituted allene bearing biaryl group **5a**-**s** resulting from propargyl acetate **4a**-**s** were obtained in 78-81% yield and 96-97% selectivity (entries 18-20).

For comparison, coupling reactions of other propargyl ester 1q-s and 4t,u with trimethylaluminum catalyzed by the optimum catalytic system were conducted. Results showed that the reactions of propargyl carbonate or sulfonic acid ester underwent the  $S_N2'$  substitution reactions smoothly to give the tri- and tetrasubstituted allenes (i.e., **2a** or **5a**) with high selectivity (up to 99:1) and in good isolated yields (78–82%, Table 5, entries 1–4).

 Table 5
  $Pd(PPh_3)_2Cl_2/Ph_3P$ -Catalyzed  $S_N2'$  Substitution Reaction of

 Other Types of Propargyl Ester 1 or 4) with Organoaluminum Reagent<sup>a</sup>

| $R^{1}$ $R^{2}$ $R^{2}$ $R^{2}$ $1 \circ$ | + AIMe <sub>3</sub><br>Ph                              | Pd(PPh <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub><br>PPh <sub>3</sub> (2 n<br>K <sub>2</sub> CO <sub>3</sub> (2.0<br>THF (1 mL), | (1 mol%)<br>nol%)<br>• equiv) ➤<br>3 h, 60 °C | R <sup>1</sup> He +<br>2 or 5 | R <sup>1</sup><br>R <sup>1</sup><br>B or 6  |
|-------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------|
| Entry                                     | <b>1</b> or <b>4</b> R <sup>1</sup> , R <sup>2</sup> , | R <sup>3</sup>                                                                                                                    | Product                                       | 2/3 or 5/6 (%) <sup>b</sup>   | <b>2</b> or <b>5</b> Yield (%) <sup>c</sup> |
| 1 <sup>d</sup>                            | <b>1q</b> Ph, H, O                                     | CO <sub>2</sub> Me                                                                                                                | 3a                                            | 98: 2                         | 78                                          |
| 2                                         | <b>1r</b> Ph, H, Ol                                    | Иs                                                                                                                                | 3a                                            | 99: 1                         | 82                                          |
| 3                                         | <b>4t</b> Me, Me,                                      | OCO <sub>2</sub> Me                                                                                                               | 5a                                            | 98: 2                         | 81                                          |
| 4                                         | <b>4u</b> Me, Me,                                      | OMs                                                                                                                               | 5a                                            | 97: 3                         | 80                                          |

<sup>a</sup> Ratio of **4**/AIMe<sub>3</sub>/Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>/PPh<sub>3</sub> = 0.5:0.6:0.005:0.01 mmol, 4 h.

<sup>b</sup> The ratio of **2/3** or **5/6** was determined by <sup>1</sup>H NMR analysis.

<sup>c</sup> Isolated yield, two runs.

<sup>d</sup> Reaction time: 3 h.

In conclusion, we have developed a highly selective  $S_N 2'$ substitution reaction of propargyl acetates with organoaluminum reagents catalyzed by palladium. The  $S_N 2'$  substitution reactions of propargyl acetates with organoaluminum afforded tri- and tetrasubstituted allenes in excellent yields with high selectivities. Coupling reactions of propargyl acetates bearing *n*-pentyl group produced the trisubstituted allene product of **2l** in 83% yield with 99% selectivity. Coupling reactions of 4-aryl-2-methylbut-3-yn-2-yl acetates **4** with trimethylaluminum gave smoothly the tetrasubstituted allenes **5** in excellent yields (up to 94%) with high selectivities (up to 99%). This methodology provides a useful procedure for the synthesis of tri- and tetrasubstituted allenes. Further studies on the application of this catalyst to other organoaluminum reagents are currently under way.

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a Varian 400 MHz spectrometer. The chemical shifts are reported relative to TMS. Analytical TLC was performed on silica 60F-254 plates. Flash column chromatography was carried out on silica gel (200–400 mesh). HRMS were recorded on a Bruker Micro TOF spectrometer equipped with an ESI ion source. All reactions were carried out under N<sub>2</sub> atmosphere. Chemical reagents and solvents were purchased from Adamas-beta and Aldrich, and were used without further purification with the exception of the following reagents: THF, hexane, and toluene, which were distilled from Na under N<sub>2</sub>. Propargyl acetates **1a**–**p**<sup>6h,13</sup> and **4a–s**<sup>14</sup> were prepared according to literature procedures. Purification of reaction products was carried out by flash chromatography.

All known compounds have been clearly identified by comparing their <sup>1</sup>H NMR data with the corresponding literature data, and new products have been characterized with spectroscopic analysis (see Supporting Information).

#### Propargyl Acetates 1a-p; General Procedure

*n*-BuLi (5.16 mL, 8.25 mmol, 1.6 M in hexane) was added to a solution of the respective alkyne (8.25 mmol) in anhyd THF (15 mL) at -78 °C under N<sub>2</sub> atmosphere. The reaction mixture was stirred for 20 min at -78 °C, then for 1 h at r.t. The corresponding aldehyde (7.5 mmol) was added at -78 °C, and the mixture was stirred for 1 h at r.t. After the addition of Ac<sub>2</sub>O (1.53 g, 1.42 mL, 15.0 mmol) at 0 °C, the reaction mixture was warmed to r.t. and stirred for 2 h. Then, sat. aq NH<sub>4</sub>Cl was added and the mixture was extracted with EtOAc (3 × 15 mL). The combined EtOAc layers were washed with brine (20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated under vacuum. The crude product was chromatographed on silica gel (hexane or EtOAc and hexane) to afford the desired propargyl acetate **1a–p**.

#### 1,3-Diphenylprop-2-ynyl Acetate (1a)<sup>6h</sup>

Yield: 1.57 g (84%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.63–7.57 (m, 2 H), 7.49–7.45 (m, 2 H), 7.43–7.36 (m, 3 H), 7.35–7.28 (m, 3 H), 6.71 (s, 1 H), 2.15 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.7, 137.1, 131.8, 128.9, 128.7, 128.6, 128.2, 127.7, 122.0, 87.0, 85.5, 66.0, 21.0.

#### 3-Phenyl-1-(o-tolyl)prop-2-ynyl Acetate (1b)<sup>6h</sup>

Yield: 1.74 g (88%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.68–7.65 (m, 1 H), 7.49–7.45 (m, 2 H), 7.34–7.27 (m, 5 H), 7.23–7.18 (m, 1 H), 6.78 (s, 1 H), 2.46 (s, 3 H), 2.15 (s, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 169.8, 136.3, 135.2, 131.9, 130.8, 128.9, 128.7, 128.3, 128.1, 126.3, 122.2, 86.9, 85.4, 64.2, 21.0, 19.1

## 3-Phenyl-1-(m-tolyl)prop-2-ynyl Acetate (1c)<sup>6h</sup>

Yield: 1.64 g (83%); yellow oil.

Syn<mark>thesis</mark>

Z. Zhang et al.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.51–7.46 (m, 2 H), 7.43–7.39 (m, 2 H), 7.35–7.28 (m, 4 H), 7.19 (d, *J* = 7.6 Hz, 1 H), 6.67 (s, 1 H), 2.38 (s, 3 H), 2.14 (s, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 169.9, 138.5, 137.1, 131.9, 129.8, 128.8, 128.6, 128.5, 128.3, 124.9, 122.2, 86.9, 85.7, 66.1, 21.4, 21.2.

## 3-Phenyl-1-(p-tolyl)prop-2-ynyl Acetate (1d)<sup>6h</sup>

Yield: 1.46 g (74%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.51–7.43 (m, 4 H), 7.37–7.29 (m, 3 H), 7.25–7.21 (m, 2 H), 6.67 (s, 1 H), 2.38 (s, 3 H), 2.13 (s, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.9, 138.9, 134.2, 131.8, 129.3, 128.7, 128.2, 127.8, 122.1, 86.8, 85.7, 65.9, 21.2, 21.1.

#### 1-(2-Methoxyphenyl)-3-phenylprop-2-ynyl Acetate (1e)<sup>6h</sup>

Yield: 1.76 g (84%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.75 (dd, *J* = 1.6, 7.6 Hz, 1 H), 7.51–7.44 (m, 2 H), 7.39–7.32 (m, 1 H), 7.31–7.27 (m, 3 H), 7.05 (s, 1 H), 7.04–7.01 (m, 1 H), 6.91 (dd, *J* = 1.2, 8.4 Hz, 1 H), 3.84 (s, 3 H), 2.12 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.8, 156.7, 131.9, 130.4, 129.0, 128.6, 128.2, 125.2, 122.4, 120.6, 110.8, 86.4, 85.7, 60.9, 55.6, 21.1.

#### 1-(2-Chlorophenyl)-3-phenylprop-2-ynyl Acetate (1f)<sup>6h</sup>

Yield: 1.77 g (83%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.86–7.84 (m, 1 H), 7.51–7.45 (m, 2 H), 7.44–7.39 (m, 1 H), 7.38–7.29 (m, 5 H), 6.97 (s, 1 H), 2.15 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.5, 134.6, 133.5, 132.0, 130.3, 129.7, 129.54, 128.8, 128.3, 127.2, 122.0, 87.4, 84.6, 63.3, 20.9.

#### 1-(4-Chlorophenyl)-3-phenylprop-2-ynyl Acetate (1g)<sup>6h</sup>

Yield: 1.73 g (81%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.56–7.50 (m, 2 H), 7.48–7.44 (m, 2 H), 7.41–7.35 (m, 2 H), 7.34–7.28 (m, 3 H), 6.67 (s, 1 H), 2.14 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.7, 135.7, 134.9, 131.8, 129.2, 128.9, 128.8, 128.3, 121.8, 87.3, 85.0, 65.3, 21.1.

## 1-(4-Bromophenyl)-3-phenylprop-2-ynyl Acetate (1h)

Yield: 2.09 g (85%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.55–7.51 (m, 2 H), 7.49–7.45 (m, 2 H), 7.41–7.38 (m, 2 H), 7.36–7.32 (m, 3 H), 6.67 (s, 1 H), 2.14 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.4, 143.4, 131.9, 131.8, 128.4, 128.3, 128.2, 122.7, 119.8, 90.3, 84.0, 72.5, 22.1.

#### 3-Phenyl-1-[4-(trifluoromethyl)phenyl]prop-2-ynyl Acetate (1i)<sup>6h</sup>

Yield: 1.79 g (89%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.68 (d, *J* = 8.8, 20.0 Hz, 4 H), 7.51–7.44 (m, 2 H), 7.38–7.29 (m, 3 H), 6.74 (s, 1 H), 2.14 (s, 3 H).

 $^{13}C{^1H}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.5, 141.1, 131.8, 131.1 (q, J = 32.5 Hz), 129.1, 128.2, 128.1, 125.6 (q, J = 3.9 Hz), 123.9 (q, J = 271 Hz), 121.8, 87.6, 84.8, 65.4, 20.3.

#### 1-(Naphthalen-1-yl)-3-phenylprop-2-ynyl Acetate (1j)<sup>6h</sup>

Yield: 1.80 g (80%); yellow solid; mp 56–58 °C.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 8.27 (d, J = 8.0 Hz, 1 H), 7.91–7.88 (m, 3 H), 7.63–7.45 (m, 5 H), 7.35–7.28 (m, 4 H), 2.14 (s, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.9, 134.0, 132.4, 131.9, 130.6, 130.0, 128.9, 128.8, 128.3, 126.69, 126.66, 126.0, 125.2, 123.8, 122.2, 87.6, 85.7, 64.6, 21.1.

#### 1-(Naphthalen-2-yl)-3-phenylprop-2-ynyl Acetate (1k)<sup>6h</sup>

Yield: 1.80 g (80%); yellow solid; mp 65–67 °C.

<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ):  $\delta = 8.04$  (s, 1 H), 7.91–7.81 (m, 3 H), 7.71 (dd, J = 1.6, 8.4 Hz, 1 H), 7.54–7.46 (m, 4 H), 7.35–7.29 (m, 3 H), 6.88 (s, 1 H), 2.14 (s, 3 H).

 $^{13}C{^{1}H}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.9, 134.5, 133.3, 133.1, 131.9, 128.9, 128.6, 128.3, 128.2, 127.8, 127.2, 126.7, 126.4, 125.1, 122.1, 87.4, 85.6, 66.4, 21.2.

#### 1-Phenyloct-1-yn-3-yl Acetate (11)<sup>6h</sup>

Yield: 1.47 g (85%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.46–7.42 (m, 2 H), 7.35–7.28 (m, 3 H), 5.61 (t, J = 6.8 Hz, 1 H), 2.12 (s, 3 H), 1.89–1.83 (m, 2 H), 1.55–1.47 (m, 2 H), 1.38–1.32 (m, 4 H), 0.95–0.89 (m, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 170.2, 131.8, 128.5, 128.3, 122.3, 86.7, 85.2, 64.6, 34.9, 31.4, 24.7, 22.5, 21.2, 14.0.

## 1-Phenyl-3-(trimethylsilyl)prop-2-ynyl Acetate (1m)<sup>6h</sup>

Yield: 1.51 g (82%); colorless oil.

 $^1H$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.54–7.51 (m, 2 H), 7.42–7.32 (m, 3 H), 6.48 (s, 1 H), 2.11 (s, 3 H), 0.21 (m, 9 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.7, 136.9, 128.9, 128.7, 127.8, 101.3, 92.5, 65.8, 21.2, -0.3.

#### 1-(p-Tolyl)-3-(trimethylsilyl)prop-2-ynyl Acetate (1n)<sup>6h</sup>

Yield: 1.56 g (80%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.41 (d, *J* = 8.0 Hz, 2 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 6.44 (s, 1 H), 2.35 (s, 3 H), 2.09 (s, 3 H), 0.19 (s, 9 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.7, 138.9, 134.1, 129.4, 127.8, 101.4, 92.2, 65.7, 21.2, 21.1, -0.3.

## 1-(4-Chlorophenyl)-3-(trimethylsilyl)prop-2-ynyl Acetate (10)<sup>6h</sup>

Yield: 1.52 g (72%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.46 (d, *J* = 8.0 Hz, 2 H), 7.34 (d, *J* = 8.4 Hz, 2 H), 6.45 (s, 1 H), 2.11 (s, 3 H), 0.21 (s, 9 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.6, 135.7, 134.8, 129.3, 128.8, 100.8, 92.8, 65.2, 21.2, -0.3.

## 1-(Naphthalen-2-yl)-3-(trimethylsilyl)prop-2-ynyl Acetate (1p)<sup>6h</sup>

Yield: 1.82 g (82%); white solid; mp 54-56 °C.

 $^1\text{H}$  NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.98 (s, 1 H), 7.88–7.81 (m, 3 H), 7.63–7.60 (m, 1 H), 7.51–7.45 (m, 2 H), 6.66 (s, 1 H), 2.12 (s, 3 H), 0.21 (s, 9 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.8, 134.3, 133.4, 132.9, 128.5, 128.3, 127.6, 127.3, 126.6, 126.4, 125.2, 101.3, 92.7, 66.1, 21.1, -0.3.

#### Propargyl Acetates 4a-s; General Procedure

*n*-BuLi (9.5 mL, 15.2 mmol, 1.6 M in hexane) was added to anhyd THF (30 mL) under an argon atmosphere and the flask was cooled to -78 °C. Then, the respective alkyne (12.2 mmol) was added dropwise and the mixture was stirred for 30 min at -78 °C. Subsequently, acetone (0.92 g, 1.16 mL, 15.85 mmol) or other corresponding ketone

Paper

(15.85 mmol) was added dropwise. The reaction mixture was stirred for 2 h at r.t. Then, Ac<sub>2</sub>O (1.68 g, 1.56 mL, 16.5 mmol) was added dropwise at 0 °C. The mixture was stirred overnight at r.t. After completion of the reaction, sat. aq NH<sub>4</sub>Cl (15 mL) was added and the mixture was extracted with Et<sub>2</sub>O (3 × 15 mL). The combined Et<sub>2</sub>O layers were washed with sat. aq NaHCO<sub>3</sub> (10 mL) and H<sub>2</sub>O (10 mL), and dried (Na<sub>2</sub>SO<sub>4</sub>). The crude product was chromatographed on silica gel (EtOAc/hexane) to afford the corresponding propargyl acetate **4a–s**.

## 2-Methyl-4-phenylbut-3-yn-2-yl Acetate (4a)

Yield: 2.07 g (84%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.41–7.39 (m, 2 H), 7.25–7.23 (m, 3 H), 2.01 (s, 3 H), 1.73 (s, 6 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.1, 131.7, 128.3, 128.1, 122.6, 90.2, 83.9, 72.3, 28.9, 21.9.

HRMS (EI): m/z calcd for  $C_{13}H_{15}O_2^+$  (M + H)<sup>+</sup>: 203.10666; found: 203.10670.

## 2-Methyl-4-(4-methylphenyl)but-3-yn-2-yl Acetate (4b)

Yield: 2.24 g (85%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.31 (d, J = 8 Hz, 2 H), 7.07 (d, J = 8 Hz, 2 H), 2.31 (s, 3 H), 2.02 (s, 3 H), 1.73 (s, 6 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 169.4, 138.4, 131.8, 129.0, 119.7, 89.6, 84.15, 72.6, 29.2, 22.1, 21.5.

HRMS (ESI): m/z calcd for  $C_{14}H_{17}O_2^+$  (M + H)<sup>+</sup>: 217.11503; found: 217.11492.

## 2-Methyl-4-(3-chlorophenyl)but-3-yn-2-yl Acetate (4c)

Yield: 2.45 g (85%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.42 (s, 1 H), 7.31–7.20 (m, 3 H), 2.04 (s, 3 H), 1.74 (s, 6 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 169.5, 134.2. 131.9, 130.1, 129.6, 128.8, 124.6, 91.7, 82.9, 72.4, 29.2, 22.2.

HRMS (ESI): m/z calcd for  $C_{13}H_{14}ClO_2^+$  (M + H)<sup>+</sup>: 237.06768; found: 237.06754.

#### 2-Methyl-4-(3-fluorophenyl)but-3-yn-2-yl Acetate (4d)

Yield: 2.31 g (86%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.24–7.20 (m, 2 H), 7.18–7.13 (m, 1 H), 7.01–6.98 (m, 1 H), 2.03 (s, 3 H), 1.74 (s, 6 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.2, 163.5, 161.0, 129.8 (d, J = 9 Hz), 127.6 (d, J = 3 Hz), 124.6 (d, J = 9 Hz), 118.5 (d, J = 22 Hz), 115.6 (d, J = 21 Hz), 91.2, 82.8, 72.1, 28.9, 21.8.

HRMS (ESI): m/z calcd for  $C_{13}H_{14}FO_2^+$  (M + H)<sup>+</sup>: 221.09723; found: 221.09747.

## 2-Methyl-4-(2-fluorophenyl)but-3-yn-2-yl Acetate (4e)

Yield: 2.20 g (82%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.44–7.40 (m, 1 H), 7.28–7.24 (m, 1 H), 7.08–7.01 (m, 2 H), 2.05 (s, 3 H), 1.77 (s, 6 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.4, 162.2 (d, J = 250.2 Hz ), 133.8 (d, J = 2.0 Hz ), 130.2 (d, J = 7.9 Hz ), 123.8 (d, J = 4.8 Hz ), 115.4 (d, J = 20.1 Hz ), 111.3 (d, J = 15.5 Hz), 95.5 (d, J = 3 Hz), 77.6, 72.4, 29.0, 22.0.

HRMS (ESI): m/z calcd for  $C_{13}H_{14}FO_2^+$  (M + H)<sup>+</sup>: 221.09723; found: 221.09702.

## 2-Methyl-4-(3-bromophenyl)but-3-yn-2-yl Acetate (4f)

Yield: 2.71 g (79%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.57 (s, 1 H), 7.41 (d, *J* = 2.6 Hz, 1 H), 7.33 (d, *J* = 2 Hz, 1 H), 7.15–7.12 (m, 1 H), 2.03 (s, 3 H), 1.73 (s, 6 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.3, 134.6, 131.5, 130.4, 129.7, 128.2, 124.7, 122.0, 91.6, 82.5, 72.2, 29.0, 22.0.

HRMS (ESI): m/z calcd for  $C_{13}H_{14}BrO_2^+$  (M + H)<sup>+</sup>: 281.01717; found: 281.01813.

## 2-Methyl-4-(4-bromophenyl)but-3-yn-2-yl Acetate (4g)

Yield: 2.85 g (83%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.32 (d, *J* = 8 Hz, 2 H), 7.22 (d, *J* = 8 Hz, 2 H), 2.01 (s, 3 H), 1.71 (s, 6 H).

 $^{13}C{^1H}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.5, 131.9, 128.4, 128.3, 122.8, 90.3, 84.1, 72.6, 29.2, 22.2.

HRMS (ESI): m/z calcd for  $C_{13}H_{14}BrO_2^+$  (M + H)<sup>+</sup>: 281.01717; found: 281.01694.

## 2-Methyl-4-(4-fluorophenyl)but-3-yn-2-yl Acetate (4h)

Yield: 2.36 g (88%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.42–7.39 (m, 2 H), 7.00–6.96 (m, 2 H), 2.04 (s, 3 H), 1.74 (s, 6 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.4, 162.5 (d, J = 247.9 Hz), 133.8 (d, J = 8.4Hz), 118.8 (d, J = 3.5 Hz), 115.5 (d, J = 22 Hz), 90.0, 83.0, 72.4, 29.1, 22.1.

HRMS (ESI): m/z calcd for  $C_{13}H_{14}FO_2^+$  (M + H)<sup>+</sup>: 221.09723; found: 221.09711.

## 2-Methyl-4-(2-thienyl)but-3-yn-2-yl Acetate (4i)

Yield: 2.11 g (83%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.21–7.17 (m, 2 H), 6.92–6.90 (m, 1 H), 2.00 (s, 3 H), 1.71 (s, 6 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.3, 132.4, 127.3, 125.9, 122.5, 94.0, 77.5, 72.4, 28.9, 22.0.

HRMS (ESI): m/z calcd for  $C_{11}H_{13}SO_2^+$  (M + H)<sup>+</sup>: 209.06308; found: 209.06319.

## 3-Methyl-1-phenylpent-1-yn-3-yl Acetate (4j)

Yield: 2.11 g (80%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.44–7.42 (m, 2 H), 7.28–7.27 (m, 3 H), 2.34 (s, 3 H), 1.92 (q, J = 3.6 Hz, 2 H), 1.74 (s, 3 H), 1.07 (t, J = 3.6 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 169.4, 131.9, 128.3, 128.2, 122.8, 89.3, 85.1, 76.2, 34.6, 26.1, 22.0, 8.8.

HRMS (ESI): m/z calcd for  $C_{13}H_{15}O_2^+$  (M + H)<sup>+</sup>: 217.12231; found: 217.12178.

## 3-Methyl-1-(3-fluorophenyl)pent-1-yn-3-yl Acetate (4k)

Yield: 2.49 g (87%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.28–7.15 (m, 2 H), 7.14–7.14 (m, 1 H), 7.12–6.97 (m, 1 H), 2.05 (s, 3 H), 1.92 (q, *J* = 3.6 Hz, 2 H), 1.73 (s, 3 H), 1.07 (t, *J* = 3.6 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.4, 162.3 (d, J = 244.8 Hz), 129.8 (d, J = 8.6 Hz), 127.8 (d, J = 12 Hz), 124.7 (d, J = 9.4 Hz), 118.7 (d, J = 22.6 Hz), 115.7 (d, J = 21 Hz), 90.4, 83.9, 76.0, 34.6, 26.0, 21.9, 8.7.

Z. Zhang et al.

HRMS (ESI): m/z calcd for  $C_{14}H_{16}FO_2^+$  (M + H)<sup>+</sup>: 235.11288; found: 235.11235.

## 3-Methyl-1-(3-chlorophenyl)pent-1-yn-3-yl Acetate (41)

Yield: 2.39 g (78%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.43–7.39 (d, J = 4 Hz, 1 H), 7.32–7.16 (m, 3 H), 2.04 (s, 3 H), 2.02–1.99 (m, 1 H), 1.89 (q, J = 3.6 Hz, 2 H), 1.70 (s, 3 H), 1.05 (t, J = 1.8 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 169.3, 133.9, 131.6, 129.9, 129.4, 128.5, 124.4, 90.5, 83.6, 75.8, 34.5, 25.9, 21.9, 8.6.

HRMS (ESI): m/z calcd for  $C_{14}H_{16}ClO_2^+$  (M + H)<sup>+</sup>: 251.08333; found: 251.08340.

## 3-Methyl-1-(4-fluorophenyl)pent-1-yn-3-yl Acetate (4m)

Yield: 2.29 g (80%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.43–7.39 (m, 2 H), 6.99–6.95 (m, 2 H), 2.07–2.02 (m, 1 H), 2.03 (s, 3 H), 1.94–1.90 (m, 1 H), 1.73 (s, 3 H), 1.07 (t, *J* = 3 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.4, 162.5 (d, J = 247.9 Hz), 133.8 (d, J = 8.3 Hz), 118.8 (d, J = 3.4 Hz), 115.4 (d, J = 21 Hz), 89.0, 84.0, 76.1, 34.6, 26.1, 22.0, 8.7.

HRMS (ESI): m/z calcd for  $C_{14}H_{16}FO_2^+$  (M + H)<sup>+</sup>: 235.11288; found: 235.11250.

#### 3-Methyl-1-(2-fluorophenyl)pent-1-yn-3-yl Acetate (4n)

Yield: 2.29 g (81%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.45–7.41 (m, 1 H), 7.30–7.24 (m, 1 H), 7.08–7.01 (m, 2 H), 2.10–2.03 (m, 1 H), 2.05 (s, 3 H), 1.97–1.90 (m, 1 H), 1.75 (s, 3 H), 1.10 (t, J = 2 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 169.4, 162.5 (d, J = 250.2 Hz), 133.8 (d, J = 2.0 Hz), 130.1 (d, J = 7.9 Hz), 123.8 (d, J = 3.7 Hz), 115.4 (d, J = 20.8 Hz), 111.4 (d, J = 15.6 Hz), 94.6 (d, J = 3.4 Hz), 78.6, 76.2, 34.6, 26.0, 22.0, 8.7.

HRMS (ESI): m/z calcd for  $C_{14}H_{16}FO_2^+$  (M + H)<sup>+</sup>: 235.11288; found: 235.11340.

## 3-Methyl-1-(3-bromophenyl)pent-1-yn-3-yl Acetate (40)

Yield: 2.84 g (79%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.46–7.42 (m, 1 H), 7.36–7.18 (m, 3 H), 2.07 (s, 3 H), 2.04–2.00 (m, 1 H), 1.94–1.88 (m, 2 H), 1.73 (s, 3 H), 1.07 (t, J = 1.8 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 169.4, 134.1, 131.7, 130.0, 129.5, 128.6, 124.5, 90.6, 83.7, 76.0, 34.6, 26.0, 22.0, 8.8.

HRMS (ESI): m/z calcd for  $C_{14}H_{16}BrO_2^+$  (M + H)<sup>+</sup>: 295.03282; found: 295.03207.

#### 3-Methyl-1-(4-methylphenyl)pent-1-yn-3-yl Acetate (4p)

Yield: 2.16 g (77%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.36 (d, *J* = 2 Hz, 2 H), 7.11 (d, *J* = 2 Hz, 2 H), 2.36 (s, 3 H), 2.12–2.06 (m, 1 H), 2.05 (s, 3 H), 1.99–1.92 (m, 1 H), 1.76 (s, 3 H), 1.11 (t, *J* = 1.8 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 168.5, 137.4, 130.8, 128.0, 118.8, 87.7, 84.2, 75.4, 33.7, 25.2, 21.1, 20.5, 7.8.

HRMS (ESI): m/z calcd for  $C_{15}H_{19}O_2^+$  (M + H)<sup>+</sup>: 231.13796; found: 231.13725.

## 2,4-Diphenylbut-3-yn-2-yl Acetate (4q)

#### Yield: 2.32 g (72%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.65–7.63 (m, 2 H), 7.52–7.50 (m, 2 H), 7.38–7.34 (m, 2 H), 7.31–7.28 (m, 4 H), 2.07 (s, 3 H), 1.97 (s, 3 H). HRMS (ESI): *m/z* calcd for  $C_{18}H_{17}O_2^+$  (M + H)<sup>+</sup>: 265.12231; found: 265.12219.

#### 4-(4-Fluorophenyl)-2-phenylbut-3-yn-2-yl Acetate (4r)

Yield: 2.12 g (75%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.64–7.60 (m, 2 H), 7.52–7.50 (m, 2 H), 7.33–7.31 (m, 3 H), 7.06–7.02 (m, 2 H), 2.07 (s, 3 H), 1.96 (s, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 168.7, 162.3 (d, J = 245.1 Hz), 138.7, 132.0, 128.8, 128.4, 127.1 (d, J = 8.2 Hz), 122.4, 115.3 (d, J = 20.5 Hz), 88.3, 87.5, 75.7, 32.2, 21.9.

HRMS (ESI): m/z calcd for  $C_{18}H_{16}FO_2^+$  (M + H)<sup>+</sup>: 283.11288; found: 283.11273.

#### 4-(4-Chlorophenyl)-2-phenylbut-3-yn-2-yl Acetate (4s)

Yield: 2.15 g (72%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.58–7.55 (m, 2 H), 7.52–7.49 (m, 2 H), 7.34–7.30 (m, 5 H), 2.07 (s, 3 H), 1.94 (s, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 168.6, 141.5, 133.7, 132.0, 128.8, 128.6, 128.4, 126.6, 122.3, 88.1, 87.5, 75.6, 32.1, 21.8.

HRMS (ESI): m/z calcd for  $C_{18}H_{16}CIO_2^+$  (M + H)<sup>+</sup>: 299.08333; found: 299.08298.

# $\rm S_N2'$ Substitution Reaction of Propargyl Acetates with Trimethylal-uminum; General Procedure

Under a dry argon atmosphere, a mixture of Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.0035 g, 0.005 mmol), PPh<sub>3</sub> (0.0026 g, 0.0100 mmol), and K<sub>2</sub>CO<sub>3</sub> (0.138 g, 1.0 mmol) were stirred in THF (2 mL). Then, AlMe<sub>3</sub> (0.6 mmol) and propargyl acetate (0.50 mmol) were added, respectively. The mixture was stirred for 3–4 h at 60 °C. After completion of the reaction, sat. aq NH<sub>4</sub>Cl (5 mL) was added and extracted with EtOAc (3 × 15 mL). The combined EtOAc layers was dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and evaporated under vacuum. The crude product was chromatographed on silica gel (hexane or EtOAc and hexane) to afford the corresponding allene product **2** or **5**.

#### 1,3-Diphenylbuta-1,2-diene (2a)<sup>6h</sup>

Yield: 0.088 g (85%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.47–7.43 (m, 2 H), 7.35–7.30 (m, 6 H), 7.24–7.16 (m, 2 H), 6.47 (q, *J* = 2.8 Hz, 1 H), 2.22 (d, *J* = 2.8 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 206.8, 136.3, 134.5, 128.7, 128.5,

127.03, 127.02, 126.9, 125.8, 104.5, 96.6, 16.8.

### 1-(2-Methylphenyl)-3-phenylbuta-1,2-diene (2b)<sup>6h</sup>

Yield: 0.089 g (81%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.47 (d, *J* = 7.6 Hz, 2 H), 7.37–7.31 (m, 3 H), 7.25–7.21 (m, 1 H), 7.17–7.11 (m, 3 H), 6.67 (q, *J* = 3.2 Hz, 1 H), 2.40 (s, 3 H), 2.23 (d, *J* = 3.2 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 207.4, 136.6, 135.3, 132.7, 130.7, 128.4, 127.5, 126.95, 126.90, 126.2, 125.8, 103.5, 94.1, 20.0, 16.9.

#### 1-(3-Methylphenyl)-3-phenylbuta-1,2-diene (2c)<sup>6h</sup>

Yield: 0.095 g (87%); yellow oil.

Syn<mark>thesis</mark>

Z. Zhang et al.

<sup>1</sup>H NMR (400 MHz,  $CDCI_3$ ):  $\delta$  = 7.45 (d, *J* = 8.0 Hz, 2 H), 7.34 (t, *J* = 7.2 Hz, 2 H), 7.23 (dd, *J* = 8.4, 16.4 Hz, 2 H), 7.20–7.12 (m, 2 H), 7.02 (d, *J* = 7.2 Hz, 1 H), 6.44 (q, *J* = 2.8 Hz, 1 H), 2.32 (s, 3 H), 2.23 (d, *J* = 2.8 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 206.8, 138.3, 136.4, 134.4, 128.6, 128.4, 127.9, 127.5, 127.0, 125.8, 124.1, 104.3, 96.6, 21.4, 16.8.

## 1-(4-Methylphenyl)-3-phenylbuta-1,2-diene (2d)<sup>6h</sup>

Yield: 0.091 g (83%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.46–7.44 (m, 2 H), 7.34–7.30 (m, 2 H), 7.25–7.21 (m, 3 H), 7.13 (d, J = 8.0 Hz, 2 H), 6.46 (q, J = 2.8 Hz, 1 H), 2.33 (s, 3 H), 2.21 (d, J = 2.8 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 206.5, 136.7, 136.5, 131.6, 129.5, 128.4, 126.9, 126.8, 125.8, 104.4, 96.4, 21.2, 16.8.

## 1-(2-Methoxyphenyl)-3-phenylbuta-1,2-diene (2e)<sup>6h</sup>

Yield: 0.093 g (79%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.47–7.45 (m, 2 H), 7.38–7.30 (m, 3 H), 7.24–7.18 (m, 2 H), 6.90–6.86 (m, 3 H), 3.86 (s, 3 H), 2.22 (d, J = 3.3 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 207.2, 156.1, 136.6, 128.4, 128.1, 127.8, 126.8, 125.7, 122.8, 120.7, 111.0, 103.7, 90.5, 55.6, 16.8.

## 1-(2-Chlorophenyl)-3-phenylbuta-1,2-diene (2f)<sup>6h</sup>

Yield: 0.106 g (88%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.47–7.41 (m, 3 H), 7.37–7.32 (m, 3 H), 7.26–7.22 (m, 1 H), 7.18–7.11 (m, 2 H), 6.91 (q, J = 2.8 Hz, 1 H), 2.23 (d, J = 2.6 Hz, 3 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 207.8, 135.9, 132.2, 129.8, 128.5, 128.4, 128.0, 127.2, 126.8, 125.8, 104.8, 93.0, 16.6.

## 1-(4-Chlorophenyl)-3-phenylbuta-1,2-diene (2g)<sup>6h</sup>

Yield: 0.105 g (87%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.45–7.43 (m, 2 H), 7.35–7.32 (m, 2 H), 7.30–7.22 (m, 5 H), 6.44 (q, *J* = 2.6 Hz, 1 H), 2.22 (d, *J* = 2.6 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 206.9, 136.0, 133.1, 132.6, 128.8, 128.5, 128.0, 127.2, 125.8, 105.0, 95.7, 16.7.

## 1-(4-Bromophenyl)-3-phenylbuta-1,2-diene (2h)

Yield: 0.125 g (88%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.45–7.43 (m, 2 H), 7.35–7.32 (m, 2 H), 7.30–7.22 (m, 5 H), 6.44 (q, *J* = 2.7 Hz, 1 H), 2.24 (d, *J* = 2.6 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 206.9, 136.0, 133.1, 132.6, 128.8, 128.5, 128.0, 127.2, 125.8, 105.0, 95.7, 16.7.

## 1-(4-Trifluoromethylphenyl)-3-phenylbuta-1,2-diene (2i)<sup>6h</sup>

Yield: 0.114 g (83%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.56–7.52 (m, 2 H), 7.45–7.39 (m, 4 H), 7.36–7.32 (m, 2 H), 7.25–7.21 (m, 1 H), 6.51 (q, J = 3.3 Hz, 1 H), 2.24 (d, J = 3.4 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 207.8, 138.5, 135.7, 128.9 (q, *J* = 32.5 Hz), 128.6, 127.4, 127.0, 125.9, 125.6 (q, *J* = 3.9 Hz), 124.2 (q, *J* = 270 Hz), 105.3, 95.8, 16.6.

## 1-(Naphthylen-1-yl)-3-phenylbuta-1,2-diene (2j)<sup>6h</sup>

Yield: 0.103 g (80%); yellow solid; mp 39-41 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.80 (d, *J* = 7.8 Hz, 1 H), 7.78–7.86 (m, 1 H), 7.74 (d, *J* = 8.2 Hz, 1 H), 7.56 (d, *J* = 6.6 Hz, 1 H), 7.51–7.43 (m, 4 H), 7.42 (t, *J* = 7.8 Hz, 1 H), 7.36 (t, *J* = 7.8 Hz, 2 H), 7.23 (t, *J* = 7.8 Hz, 1 H), 7.21 (q, *J* = 3.0 Hz, 1 H), 2.27 (d, *J* = 2.6 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 208.2, 136.4, 134.0, 130.9, 130.6, 128.7, 128.5, 127.6, 127.0, 126.2, 125.9, 125.73, 125.68, 125.6, 122.7, 103.4, 93.4, 16.9.

## 1-(Naphthylen-2-yl)-3-phenylbuta-1,2-diene (2k)<sup>6h</sup>

Yield: 0.10 g (78%); yellow solid; mp 40-42 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.79–7.70 (m, 4 H), 7.52–7.50 (m, 3 H), 7.48–7.42 (m, 2 H), 7.36–7.32 (m, 2 H), 7.25–7.22 (m, 1 H), 6.66 (q, J = 2.6 Hz, 1 H), 2.27 (d, J = 2.6 Hz, 3 H).

 $^{13}$ C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 207.4, 136.3, 133.7, 132.7, 132.0, 128.5, 128.3, 127.69, 127.68, 127.1, 126.2, 125.9, 125.63, 125.62, 124.8, 104.7, 96.9, 16.8.

## 2-Phenylnona-2,3-diene (21)<sup>6h</sup>

Yield: 0.077 g (83%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.43–7.41 (m, 2 H), 7.33–7.25 (m, 2 H), 7.19–7.16 (m, 1 H), 5.46–5.41 (m, 1 H), 2.13–2.10 (m, 2 H), 2.08 (d, J = 2.6 Hz, 3 H), 1.54–1.43 (m, 2 H), 1.37–1.28 (m, 4 H), 0.89 (t, J = 7.4 Hz, 3 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 204.1, 137.8, 128.2, 126.2, 125.6, 100.2, 93.1, 31.4, 28.93, 28.88, 22.5, 17.2, 14.1.

## Phenyl-3-trimethylsilylbuta-1,2-diene (2m)<sup>6h</sup>

Yield: 0.089 g (88%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.28–7.20 (m, 4 H), 7.14–7.10 (m, 1 H), 5.82 (q, *J* = 2.7 Hz, 1 H), 1.80 (d, *J* = 2.6 Hz, 3 H), 0.15 (s, 9 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 205.6, 136.1, 128.5, 125.9, 125.7, 95.5, 88.3, 15.1, -1.7.

## 1-(4-Methylphenyl)-3-trimethylsilylbuta-1,2-diene (2n)<sup>6h</sup>

Yield: 0.088 g (81%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.12–7.07 (m, 4 H), 5.80 (q, *J* = 3.0 Hz, 1 H), 2.32 (s, 3 H), 1.81 (d, *J* = 3.3 Hz, 3 H), 0.14 (s, 9 H).

 $^{13}C\{^{1}H\}$  NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 205.6, 135.4, 133.0, 129.2, 125.8, 95.4, 88.1, 21.1, 15.2, –1.7.

## 1-(4-Chlorophenyl)-3-trimethylsilylbuta-1,2-diene (20)<sup>6h</sup>

Yield: 0.103 g (87%); colorless oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.23–7.20 (m, 2 H), 7.14–7.11 (m, 2 H), 5.77 (q, *J* = 3.0 Hz, 1 H), 1.82 (d, *J* = 2.7 Hz, 3 H), 0.13 (s, 9 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 205.4, 134.7, 131.1, 128.6, 127.0, 96.0, 87.5, 15.0, -1.8.

## 3-(Naphthalen-2-yl)-3-trimethylsilylbuta-1,2-diene (2p)<sup>6h</sup>

Yield. 0.099 g (79%); white solid; mp 41–43 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.77–7.72 (m, 3 H), 7.57 (s, 1 H), 7.45–7.35 (m, 3 H), 6.00 (q, J = 2.7 Hz, 1 H), 1.85 (d, J = 2.7 Hz, 3 H), 0.18 (s, 9 H).

 $^{13}C$  {  $^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 206.1, 133.8, 133.7, 132.1, 128.0, 127.6, 127.4, 126.0, 125.0, 124.4, 124.0, 95.7, 88.8, 15.2, –1.7.

Paper

## 1-(4-Methylpenta-2,3-dien-2-yl)benzene (1,1,3-Trimethyl-3-phenylallene, 5a)

Yield: 0.068 g (85%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.76–7.71 (m, 3 H), 7.56 (s, 1 H), 7.42–7.36 (m, 3 H), 6.00 (q, J = 2.7 Hz, 1 H), 1.85 (d, J = 2.7 Hz, 3 H), 0.17 (s, 9 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 202.1, 138.7, 128.2, 126.1, 125.8, 98.1, 96.9, 20.5, 17.4.

HRMS (ESI): m/z calcd for  $C_{12}H_{15}^+$  (M + H)<sup>+</sup>: 159.11683; found: 159.11682.

## 1-Methyl-4-(4-methylpenta-2,3-dien-2-yl)benzene (5b)

Yield: 0.077 g (89%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.34–7.30 (m, 2 H), 7.18–7.14 (m, 2 H), 2.38 (s, 3 H), 2.09 (s, 3 H), 1.84 (s, 6 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 201.8, 135.9, 135.8, 129.0, 125.7, 98.0, 96.8, 21.2, 20.6, 17.5.

HRMS (ESI): m/z calcd for  $C_{13}H_{17}^+$  (M + H)<sup>+</sup>: 173.12520; found: 173.12508.

## 1-Chloro-3-(4-methylpenta-2,3-dien-2-yl)benzene (5c)

Yield: 0.091 g (94%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.32 (s, 1 H), 7.22–7.17 (m, 2 H), 7.14–7.11 (m, 1 H), 2.02 (s, 3 H), 1.79 (s, 6 H).

 $^{13}C$  { <sup>1</sup>H } NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 202.3, 141.0, 134.3, 129.4, 126.1, 125.9, 123.9, 97.7, 97.4, 20.4, 17.3.

HRMS (ESI): m/z calcd for  $C_{12}H_{14}Cl^+$  (M + H)\*: 193.07785; found: 193.07784.

## 1-Fluoro-3-(4-methylpenta-2,3-dien-2-yl)benzene (5d)

Yield: 0.086 g (94%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.26–7.22 (m, 1 H), 7.14–7.12 (d, *J* = 8.1 Hz, 1 H), 7.06–7.03 (d, *J* = 12.0 Hz, 1 H), 6.88–6.83 (m, 1 H), 2.03 (s, 3 H), 1.79 (s, 6 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 201.7, 164.5, 162.1, 141.8 (d, J = 7.4 Hz), 129.6 (d, J = 8.3 Hz), 121.3 (d, J = 2.6 Hz), 112.7 (q, J = 38.6 Hz), 104.1, 99.7, 22.6, 18.9.

HRMS (ESI): m/z calcd for  $C_{12}H_{14}F^{+}$  (M + H)<sup>+</sup>: 177.10741; found: 177.10742.

## 1-Fluoro-2-(4-methylpenta-2,3-dien-2-yl)benzene (5e)

Yield: 0.079 g (90%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.15–7.11 (m, 1 H), 7.02–6.99 (m, 1 H), 6.88–6.83 (m, 2 H), 1.94 (s, 3 H), 1.63 (s, 6 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 203.7 (d, J = 1.5 Hz), 160.4 (d, J = 247.5 Hz), 129.4 (d, J = 3.8 Hz), 127.9 (d, J = 8.2 Hz), 127.5 (d, J = 11.6 Hz), 123.9 (q, J = 3.6 Hz), 116.1 (d, J = 22.7 Hz), 95.1 (d, J = 1.5 Hz), 93.8, 20.6, 19.5.

HRMS (ESI): m/z calcd for  $C_{12}H_{14}F^{+}$  (M + H)<sup>+</sup>: 177.10741; found: 177.10725.

## 1-Bromo-3-(4-methylpenta-2,3-dien-2-yl)benzene (5f)

Yield: 0.101 g (86%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.44–7.41 (m, 2 H), 7.29–7.26 (m, 2 H), 2.05 (s, 3 H), 1.84 (s, 6 H).

 $^{13}C$  {  $^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 202.1, 138.8, 137.8, 128.3, 127.0, 125.8, 123.0, 98.2, 96.8, 20.5, 17.4.

HRMS (ESI): m/z calcd for  $C_{12}H_{14}Br^+$  (M + H)<sup>+</sup>: 237.02734; found: 237.02737.

## 1-Bromo-4-(4-methylpenta-2,3-dien-2-yl)benzene (5g)

Yield: 0.11 g (93%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.44–7.41 (m, 2 H), 7.29–7.26 (m, 2 H), 2.05 (s, 3 H), 1.75 (s, 6 H).

 $^{13}C$  {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 202.1, 138.9, 128.3, 125.8, 122.8, 98.2, 97.0, 20.6, 17.4.

HRMS (ESI): m/z calcd for  $C_{12}H_{14}Br^+$  (M + H)<sup>+</sup>: 237.02734; found: 237.02730.

## 1-Fluoro-4-(4-methylpenta-2,3-dien-2-yl)benzene (5h)

Yield: 0.086 g (94%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.32–7.29 (m, 2 H), 6.99–6.95 (m, 2 H), 2.02 (s, 3 H), 1.78 (s, 6 H).

 $^{13}{\rm C}$  {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 201.8 (d, J = 2 Hz), 162.8, 160.3, 134.7 (d, J = 3.1 Hz), 127.2 (d, J = 7.8 Hz), 115.0 (d, J = 21.3 Hz), 97.3, 97.2, 20.5, 17.5.

HRMS (ESI): m/z calcd for  $C_{12}H_{14}F^+$  (M + H)<sup>+</sup>: 177.10741; found: 177.10733.

## 2-(4-Methylpenta-2,3-dien-2-yl)thiophene (5i)

Yield: 0.072 g (88%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.12–7.10 (m, 1 H), 6.95–6.93 (m, 1 H), 2.04 (s, 3 H), 1.78 (s, 6 H).

 $^{13}C$  {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 201.1, 145.1, 127.5, 124.0 122.4, 98.0, 99.4, 20.6, 178.3.

HRMS (ESI): m/z calcd for  $C_{10}H_{13}S^+$  (M + H)\*: 165.07325; found: 165.07307.

## 1-(4-Methylhexa-2,3-dien-2-yl)benzene (5j)

Yield: 0.071 g (83%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.41–7.39 (m, 2 H), 7.33–7.28 (m, 2 H), 7.19–7.18 (m, 1 H), 2.07 (s, 6 H), 1.81 (s, 2 H), 1.07–1.03 (m, 3 H).

 $^{13}C$  {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 201.1, 138.8, 128.1, 126.0, 125.5, 103.2, 99.9, 27.4, 18.8, 17.4, 12.3.

HRMS (ESI): m/z calcd for  $C_{13}H_{17}^+$  (M + H)<sup>+</sup>: 173.13248; found: 173.13249.

## 1-Fluoro-3-(3-methylhexa-2,3-dien-2-yl)benzene (5k)

Yield: 0.082 g (86%); yellow oil.

<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ):  $\delta$  = 7.24–7.20 (m, 1 H), 7.14 (d, *J* = 8 Hz, 1 H), 7.08–7.05 (m, 1 H), 6.87–6.82 (m, 1 H), 2.11–2.05 (m, 2 H), 2.03 (s, 3 H), 1.79 (s, 3 H), 1.03 (t, *J* = 4 Hz, 3 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 201.6, 164.5, 162.0, 141.7 (d, J = 7.2 Hz), 129.6 (d, J = 8.2 Hz), 121.2 (d, J = 2.6 Hz), 112.6 (q, J = 38.6 Hz), 104.0, 99.6 (d, J = 2.5 Hz), 27.6, 18.9, 17.4, 12.4.

HRMS (ESI): m/z calcd for  $C_{13}H_{16}F^{+}$  (M + H)<sup>+</sup>: 191.12306; found: 191.12244.

## 1-Chloro-3-(4-methylhexa-2,3-dien-2-yl)benzene (51)

Yield: 0.095 g (92%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.32 (s, 1 H), 7.23–7.19 (m, 2 H), 7.14–7.12 (m, 1 H), 2.10–2.06 (m, 2 H), 2.04 (s, 3 H), 1.79 (s, 3 H), 1.03 (t, *J* = 3 Hz, 3 H).

 $^{13}C$  {1H} NMR (100 MHz, CDCl\_3):  $\delta$  = 201.6, 141.1, 134.3, 129.4, 126.1, 125.7, 123.8, 104.1, 99.4, 27.5, 18.9, 17.4, 12.4.

HRMS (ESI): m/z calcd for  $C_{13}H_{16}Cl^+$  (M + H)\*: 207.09350; found: 207.09361.

## 1-Fluoro-4-(4-methylhexa-2,3-dien-2-yl)benzene (5m)

Yield: 0.088 g (93%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.34–7.31 (m, 2 H), 7.00–6.95 (m, 2 H), 2.12–2.08 (m, 2 H), 2.05 (s, 3 H), 1.78 (s, 3 H), 1.03 (t, J = 3 Hz, 3 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 201.0, 161.6 (d, *J* = 243.5 Hz), 127.1 (d, *J* = 7.8 Hz), 115.2, 115.0, 103.7, 99.4, 27.6, 19.1, 17.8, 12.5. HRMS (ESI): *m*/*z* calcd for  $C_{13}H_{16}F^{+}$  (M + H)<sup>+</sup>: 191.12306; found: 191.12381.

## 1-Fluoro-2-(4-methylhexa-2,3-dien-2-yl)benzene (5n)

Yield: 0.086 g (90%); yellow oil.

<sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ):  $\delta$  = 7.31–7.27 (m, 1 H), 7.15–7.12 (m, 1 H), 7.08–6.97 (m, 2 H), 2.11 (s, 3 H), 2.06–2.01 (m, 2 H), 1.77 (s, 3 H), 1.06 (t, *J* = 4 Hz, 3 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 202.9 (d, *J* = 1.7 Hz), 160.4 (d, *J* = 247.6 Hz), 129.3 (d, *J* = 4.0 Hz), 127.8 (d, *J* = 8.2 Hz), 127.5 (d, *J* = 11.7 Hz), 123.8 (d, *J* = 3.6 Hz), 116.1 (d, *J* = 22.7 Hz), 101.4 (d, *J* = 1.3 Hz), 95.8, 27.5, 19.6, 19.0, 12.3.

HRMS (ESI): m/z calcd for  $C_{13}H_{16}F^+$  (M + H)<sup>+</sup>: 191.12306; found: 191.12286.

#### 1-Bromo-3-(4-methylhexa-2,3-dien-2-yl)benzene (50)

Yield: 0.109 g (87%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.42–7.40 (m, 1 H), 7.34–7.30 (m, 1 H), 7.24–7.21 (m, 1 H), 7.18–7.01 (m, 1 H), 2.11–2.09 (m, 2 H), 2.08 (s, 3 H), 1.81 (s, 3 H), 1.06 (t, J = 4 Hz, 3 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 201.3, 142.8, 139.4, 128.3, 128.2, 125.7, 123.0, 103.2, 100.2, 27.6, 19.0, 17.6, 12.4.

HRMS (ESI): m/z calcd for  $C_{13}H_{16}Br^+$  (M + H)<sup>+</sup>: 251.04299; found: 251.04298.

#### 1-Methyl-4-(4-methylpenta-2,3-dien-2-yl)benzene (5p)

Yield: 0.078 g (84%); yellow oil.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 7.27 (d, J = 2 Hz, 2 H), 7.10 (d, J = 2 Hz, 2 H), 2.32 (s, 3 H), 2.05 (s, 3 H), 2.07–2.03 (m, 2 H), 1.77 (s, 3 H), 1.03 (t, J = 1.8 Hz, 3 H).

 $^{13}C$  {  $^{1}H\}$  NMR (100 MHz, CDCl\_3):  $\delta$  = 201.0, 136.0, 135.8, 129.0, 125.6, 103.2, 100.0, 27.7, 21.2, 19.0, 17.6, 12.5.

HRMS (ESI): m/z calcd for  $C_{14}H_{19}^+$  (M + H)<sup>+</sup>: 187.14813; found: 187.14836.

#### 2,4-Diphenylpenta-2,3-diene (5q)

Yield: 0.083 g (75%); yellow oil.

 $^{1}\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.44–7.42 (m, 4 H), 7.33–7.29 (m, 4 H), 7.21–7.18 (m, 2 H), 2.19 (s, 6 H).

HRMS (ESI): m/z calcd for  $C_{17}H_{17}^+$  (M + H)<sup>+</sup>: 221.13248; found: 221.13303.

## 2-Phenyl-4-(4-fluorophenyl)penta-2,3-diene (5r)

Yield: 0.095 g (80%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.42–7.41 (m, 1 H), 7.40–7.39 (m, 1 H), 7.38–7.35 (m, 2 H), 7.33–7.29 (m, 2 H), 7.23–7.18 (m, 1 H), 7.01–6.96 (m, 2 H), 2.19 (s, 3 H), 2.17 (s, 3 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 205.6 (d, J = 2.1 Hz), 162.0 (d, J = 244.3 Hz), 137.2, 133.3 (d, J = 3.2 Hz), 128.6, 127.4 (d, J = 7.9 Hz), 127.0, 125.9, 115.4 (d, J = 21.4 Hz), 102.7, 101.7, 17.1, 17.0.

HRMS (ESI): m/z calcd for  $C_{17}H_{16}F^+$  (M + H)<sup>+</sup>: 239.12306; found: 239.12309.

#### 2-Phenyl-4-(4-chlorophenyl)penta-2,3-diene (5s)

Yield: 0.103 g (81%); yellow oil.

 $^1\text{H}$  NMR (400 MHz, CDCl\_3):  $\delta$  = 7.43–7.40 (m, 2 H), 7.35–7.33 (m, 3 H), 7.32–7.30 (m, 1 H), 7.29–7.27 (m, 1 H), 7.24–7.21 (m, 1 H), 2.20 (s, 3 H), 2.18 (s, 3 H).

<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ = 205.9, 137.0, 135.9, 132.6, 128.64, 128.61, 127.2, 127.0, 126.0, 103.0, 101.8, 16.94, 16.89.

HRMS (ESI): m/z calcd for  $C_{17}H_{16}Cl^+$  (M + H)<sup>+</sup>: 255.09350; found: 255.09341.

## **Funding Information**

Sichuan Provincial Department of Science and Technology support program (2015NZ0033)

Southwest University for Nationalities graduate student innovation funds (CX2016SZ052)

## **Supporting Information**

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588177.

## References

- (a) Modern Allene Chemistry; Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, **2004**. (b) Ma, S. M. Palladium-Catalyzed Two- or Three-Component Cyclization of Functionalized Allenes, In Palladium in Organic Synthesis; Tsuji, J., Ed.; Springer: Berlin, **2005**, 183–210. (c) Brasholz, M.; Reissig, H.-U.; Zimmer, R. Acc. Chem. Res. **2009**, 42, 45. (d) Ye, J. T.; Ma, S. M. Acc. Chem. Res. **2014**, 47, 989. (e) Bruneau, C.; Renaud, J.-L. Allenes and Cumulenes, In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R.; Taylor, R. J. K..; Cossy, J., Eds.; Elsevier: Oxford, **2005**, 1019–1081.
- (2) For some recent reviews on the chemistry of allenes, see:
  (a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (c) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12. (d) Ma, S. M. Acc. Chem. Res. 2003, 36, 701.
  (e) Brandsma, L.; Nedolya, N. A. Synthesis 2004, 735. (f) Ma, S. M. Chem. Rev. 2005, 105, 2829. (g) Ma, S. M. Aldrichimica Acta 2007, 40, 91. (h) Ma, S. M. Acc. Chem. Res. 2009, 42, 1679. (i) Yu, S. C.; Ma, S. M. Angew. Chem. Int. Ed. 2012, 51, 3074; Angew. Chem. 2012, 128, 3128. (j) Alcaide, B.; Almendros, P.; Cembellín, S.; Martinez del Campo, T.; Fernández, I. Chem. Commun. 2013, 49, 1282. (k) Alcaide, B.; Almendros, P.; Alonso, J. M.; Fernández, I. J. Org. Chem. 2013, 78, 6688. (l) Lechel, T.; Pfrengle, F.; Reissig, H.

U.; Zimmer, R. *ChemCatChem* **2013**, *5*, 2100. (m) Alcaide, B.; Almendros, P.; Aragoncillo, C. *Chem. Soc. Res.* **2014**, *43*, 3106. (n) Lledó, A.; Pla-Quintana, A.; Roglans, A. *Chem. Soc. Res.* **2016**, *45*, 2010.

- (3) For a review on the natural products and pharmaceuticals containing allene unit(s), see: (a) Hoffmann-Röder, A.; Krause, N. Angew. Chem. Int. Ed. 2004, 43, 1196; Angew. Chem. 2004, 116, 1216. (b) Kim, H.; Williams, L. J. Curr. Opin. Drug Discovery Dev. 2008, 11, 870. (c) Ugurchieva, T. M.; Veselovsky, V. V. Russ. Chem. Rev. 2009, 78, 337. (d) Saito, N.; Tanaka, Y.; Sato, Y. Org. Lett. 2009, 11, 4124.
- (4) (a) Leclère, M.; Fallis, A. G. Angew. Chem. Int. Ed. 2008, 47, 568; Angew. Chem. 2008, 120, 578. (b) Rivera-Fuentes, P.; Diederich, F. Angew. Chem. Int. Ed. 2012, 51, 2818; Angew. Chem. 2012, 124, 2872.
- (5) For recent reviews on the synthesis of allenes, see: (a) Sydnes, L. K. Chem. Rev. 2003, 103, 1133. (b) Krause, N.; Hoffmann-Röder, A. Tetrahedron 2004, 60, 11671. (c) Brummond, K. M.; Deforrest, J. E. Synthesis 2007, 795. (d) Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H.; Gockel, B.; Hoffmann-Röder, A.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (e) Ogasawara, M. Tetrahedron: Asymmetry 2009, 20, 259. (f) Yu, S. C.; Ma, S. M. Chem. Commun. 2011, 47, 5384. (g) Neff, R. K.; Frantz, D. E. ACS Catal. 2014, 4, 519.
- (6) For selected recent reports on the synthesis of allenes, see:
  (a) Kolakowski, R. V.; Bolte, B.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 7294. (b) Kalek, M.; Stawinski, J. Adv. Synth. Catal. 2011, 353, 1741. (c) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2011, 50, 1114; Angew. Chem. 2011, 123, 1146. (d) Yu, X. Z.; Zhang, J. L. Adv. Synth. Catal. 2011, 353, 1265. (e) Hossain, M. L.; Ye, F.; Zhang, Y.; Wang, J. B. J. Org. Chem. 2013, 78, 1236. (f) Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M. J.; Maruoka, K. Nat. Chem. 2013, 5, 240. (g) Wu, Z.; Berhal, F.; Zhao, M. M.; Zhang, Z. G.; Ayad, T.; Ratovelomanana-

Paper

Vidal, V. ACS Catal. **2014**, *4*, 44. (h) Li, Q. H.; Jeng, J. Y.; Gau, H. M. *Eur. J. Org. Chem.* **2014**, 7916. (i) Li, Q. H.; Liao, J. W.; Huang, Y. L.; Chiang, R. T.; Gau, H. M. Org. *Biomol. Chem.* **2014**, *12*, 7634. (j) Gangadhararao, G.; Kumara Swamy, K. C. *Tetrahedron* **2014**, *70*, 2643. (k) Wei, W.; Wen, J. W.; Yang, D. S.; Guo, M. Y.; Wang, Y. Y.; You, J. M.; Wang, H. *Chem. Commun.* **2015**, *51*, 768. (l) Tang, X. J.; Han, Y. L.; Ma, S. M. Org. *Lett.* **2015**, *18*, 1176. (m) Ruchti, J.; Carreria, E. M. Org. *Lett.* **2016**, *18*, 2174. (n) Periasamy, M.; Reddy, P. O.; Satyanarayana, I.; Mohan, L.; Athukuri Edukondalu, A. J. Org. Chem. **2016**, *81*, 987.

- (7) (a) Ma, S. M.; Yu, S. C.; Yin, S. H. J. Org. Chem. 2003, 68, 8996.
  (b) Yokota, M.; Fuchibe, K.; Ueda, M.; Mayumi, Y.; Ichikawa, J. Org. Lett. 2009, 11, 3994.
- (8) (a) Brossat, M.; Heck, M. P.; Mioskowski, C. J. Org. Chem. 2007, 72, 5938. (b) Phadke, N.; Findlater, M. Organometallics 2014, 33, 16.
- (9) (a) Kuang, J. K.; Ma, S. M. J. Am. Chem. Soc. 2010, 132, 1786.
  (b) Jiang, G. J.; Zheng, Q. H.; Dou, M.; Zhuo, L. G.; Meng, W.; Yu, Z. X. J. Org. Chem. 2013, 78, 11783. (c) Gurubrahamam, R.; Periasamy, M. J. Org. Chem. 2013, 78, 1463.
- (10) Wang, Y. L.; Zhang, W. L.; Ma, S. M. J. Am. Chem. Soc. **2013**, 135, 11517.
- (11) (a) Deutsch, C.; Lipshutz, B. H.; Krause, N. Angew. Chem. Int. Ed. **2007**, 46, 1650; Angew. Chem. **2007**, 119, 1677. (b) Ito, H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. **2008**, 130, 15774.
  (c) Li, H. L.; Müller, D.; Guénée, L.; Alexakis, A. Org. Lett. **2013**, 15, 334.
- (12) (a) Li, Q.-H.; Ding, Y.; Yang, X.-J. Chin. Chem. Lett. 2014, 25, 1296.
  (b) Li, Q.-H.; Ding, Y.; Huang, N. W. Chin. Chem. Lett. 2014, 25, 1469.
- (13) Mahrwald, R.; Quint, S. Tetrahedron 2000, 56, 7463.
- (14) Kessler, S. N.; Bäckvall, J. E. Angew. Chem. Int. Ed. 2016, 55, 3734; Angew. Chem. 2016, 128, 3798.