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Multisubstituted pyrazoles were efficiently synthesized by cyclocondensation of b-thioalkyl-a,b-unsatu-
rated ketones with hydrazines under relatively mild conditions. A one-pot synthetic protocol through
tandem Liebeskind–Srogl cross-coupling/cyclocondensation using a-oxo ketene dithioacetals as the
starting materials was also realized for the same purpose.

� 2011 Elsevier Ltd. All rights reserved.
Pyrazoles and their derivatives usually possess vital pharmaceu-
tical and biological activities,1 and are also widely used in coordina-
tion and materials chemistry.2 Versatile synthetic routes have been
developed for the synthesis of pyrazoles, including cyclocondensa-
tion of 1,3-diketones and related derivatives with hydrazines,3

1,3-dipolar cycloaddition of diazo compounds with alkynes and al-
kyne equivalents,4 and other procedures.5 However, it remains a
challenge to reach sufficient regioselectivity for the target pyrazoles
in a synthetic task. Recently, Junjappa and co-workers reported the
synthesis of substituted 1-aryl-5(or 3)-N-(cycloamino) pyrazoles by
condensation of N,S-acetal precursors with unsymmetrical phen-
ylhydrazines in a regiocontrolled fashion.3a Kimpe and co-workers
documented the preparation of fluorinated pyrazoles with rela-
tively poor regioselectivity by means of a similar strategy.3c A
new access to 3,4-disubstituted pyrazoles from FeCl3-catalyzed
aminolysis of b-carbonyl-1,3-dithianes with hydrazine hydrate
has also been developed.3d Very recently, our group realized an effi-
cient palladium(0)-catalyzed, Cu(I)-mediated regio- and stereose-
lective approach to b-thioalkyl-a,b-unsaturated ketones via oxo
directing Liebeskind–Srogl cross-coupling reactions of a-oxo ke-
tene dithioacetals with aryl or alkenylboronic acids.6 With their
determined molecular structures in hand, we envisioned that b-thi-
oalkyl-a,b-unsaturated ketones may be viewed as the equivalents
of 1,3-diketones.

As part of our ongoing work on the development of pyrazole-
based NNN ligands7 and transformation of a-oxo ketene dithio-
acetals,8 herein we report an efficient synthetic protocol to
regioselectively multisubstituted pyrazoles by cyclocondensation
of b-thioalkyl-a,b-unsaturated ketones6 with hydrazines
(Eq. (1)).
ll rights reserved.
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The reactions of b-thioalkyl-a,b-unsaturated ketones (1) with
hydrazines (2) were carried out in the presence of t-BuOK or HOAc
in refluxing t-BuOH, efficiently affording multisubstituted pyra-
zoles (Table 1). When R1 was methyl, the reactions of 1a–g with
phenylhydrazine (2a) underwent under the basic conditions (con-
dition A), forming 1,3,5-trisubstituted pyrazoles 3a–g in 76–92%
yields (entries 1–7). Methoxy, tert-butyl, chloro, and fluoro groups
on R2 substituents, that is, b-aryls in 1, can be tolerated during the
reaction. Diene 1g reacted with 2a to give rare 3-styryl-pyrazole 3g
(83%, entry 7). Altering R1 to aryls and heteroaryls, the cyclocon-
densation reactions of 1h–l with phenylhydrazine were also effi-
ciently carried out under condition A, forming the desired
products 3h–l in 78–95% yields (entries 8–12). Under slightly
acidic conditions (condition B), the reactions of 1a with benzylhy-
drazine (2b) and 2-hydrazinopyridine (2c) produced the target
N-benzyl and 2-pyridyl trisubstituted pyrazoles 3m and 3n in
96% and 75% yields, respectively, (entries 13–14). In order to obtain
N-unprotected multisubstituted pyrazoles, hydrazine hydrate (2d)
was used to react with b-thioalkyl-a,b-unsaturated ketones (1).
Thus, N-unprotected 3,5-disubstituted pyrazoles 3o–r were ob-
tained in 80–95% yields (entries 15–18). Notably, the (E)/(Z)-con-
figurations of 1 did not affect the formation of pyrazoles 3, and
the synthetic methodology was exclusively regioselective to afford
N-protected 1,3,5-trisubstituted or 1H-3,5-disubstituted pyrazoles,
forming no tautomers of the desired products 3, that is, 30. As com-
pared to 1,3-diketones, the different electrophilicity of ethylthio
from that of carbonyl toward hydrazines may facilitate such regio-
selective reactions of 1 with 2. It is proposed that the more acidic
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Table 1
Synthesis of pyrazoles (3)a,b
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R1 =: Me (4a)
         Ph (4b)
         4-ClC6H4 (4c)
         2-furyl (4d)
         2-thienyl (4e)

R2 =: 4-MeOC6H4 (5a)
         Ph (5b)
         4-ClC6H4 (5c)
         4-ClC6H4 (5c)
         4-ClC6H4 (5c)

Scheme 1. One-pot synthesis of pyrazoles via Liebeskind–Srogl cross-coupling/
cyclocondensation reactions. Reagents and conditions: (a) 4 (0.50 mmol), 5
(0.75 mmol), Pd(PPh3)4 (7.5 mol %), copper(I) thiophene-2-carboxylate (CuTC10,
1.0 mmol), Cs2CO3 (1.0 mmol), THF (5 mL), 50 �C, 2 h; (b) t-BuOK (1.0 mmol),
t-BuOH (5 mL), reflux, 9–16 h.

Table 1 (continued)
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a Condition (A): 1 (0.5 mmol), 2 (0.6 mmol), t-BuOK (1.0 mmol), t-BuOH (5 mL), reflux, 7–16 h. Condition (B): 1 (0.3 mmol), 2 (0.45 mmol), AcOH (18 lL), t-BuOH (3 mL),
reflux, 5–9 h.

b Isolated yields.
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N–H in 2 undergoes nucleophilic substitution with 1 to form an
intermediate hydrazino-a,b-unsaturated ketone which is then
dehydrated to give the pyrazole product.3a

Finally, a one-pot, two-step three-component tandem reactions
via Liebeskind–Srogl cross-coupling9/cyclocondensation sequence
starting from 411 was developed to prepare highly functionalized
pyrazoles (Scheme 1). After the first step Liebeskind–Srogl cross-
coupling reaction was completed by TLC monitoring, all the vola-
tiles were pumped off under reduced pressure, and then t-BuOK
base and a new solvent t-BuOH were added to initiate the next step
transformation. Thus, trisubstituted pyrazoles 3b, 3h, and 3j–l
were efficiently generated in 77–89% yields. Although a one-step
condensation of symmetrical 1,3-diketones with hydrazines has
been extensively applied for the synthesis of 3,5-disubstituted pyr-
azoles, unsymmetrical and functionalized 1,3-diketones are not
readily available that no ready access has been developed for the
preparation of multisubstituted pyrazoles. To the best of our
knowledge, the present protocol has demonstrated an efficient reg-
ioselective route to highly functionalized pyrazoles.
In summary, an efficient regioselective synthetic route to multi-
substituted pyrazoles has been developed by cyclocondensation of
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b-thioalkyl-a,b-unsaturated ketones with hydrazines.12–14 The
present methodology has exhibited exclusive regioselectivity for
the target products, generating no pyrazole tautomers. The
one-pot synthetic procedure via tandem Liebeskind–Srogl cross-
coupling/cyclocondensation sequence using a-oxo ketene dithio-
acetals as the starting materials has also shown promising
potentials in the preparation of highly functionalized pyrazoles.
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