Enantio- and Diastereoselective Synthesis of *syn*- β -Hydroxy- α -vinyl Carboxylic Esters via Reductive Aldol Reactions of Ethyl Allenecarboxylate with 10-TMS-9-Borabicyclo[3.3.2]decane and DFT Analysis of the Hydroboration Pathway

LETTERS 2013 Vol. 15, No. 21 5436–5439

ORGANIC

Jeremy Kister,[†] Daniel H. Ess,[‡] and William R. Roush^{*,†}

Department of Chemistry, Scripps Florida, Jupiter, Florida 33458, United States, and Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States

roush@scripps.edu

Received September 2, 2013

An enantio- and diastereoselective synthesis of *syn-\beta*-hydroxy- α -vinyl carboxylate esters 3 via the reductive aldol reaction of ethyl allenecarboxylate (2) with 10-trimethylsilyl-9-borabicyclo[3.3.2]decane (1R) has been developed. Density functional theory calculations suggest that the allene hydroboration involves the 1,4-reduction of 2 with the 1R, leading directly to dienolborinate *Z*-(0)-8a.

syn- β -Hydroxy- α -vinyl carboxylic esters **3** and imides **5** (Figure 1) are versatile intermediates widely used in organic synthesis.^{1,2} Racemic **3** can be obtained with varying degrees of diastereoselectivity by allylation of aldehydes with γ -(alkoxycarbonyl)-substituted allyl metal reagents (e.g., indium,³ tin,⁴ zinc⁵ and boron⁶ reagents). Another

approach to racemic **3** involves aldol^{7,8} or Reformatsky⁹ reactions of aldehydes with ester derived dienolates.

Given the widespread use of this structural unit in organic synthesis,^{1,2} it is surprising that *direct* enantioselective methods for the synthesis of the *syn* or *anti* diastereoisomers of β -hydroxy- α -vinyl carboxylic esters **3** have not been reported. Both enantiomers of *syn*- β -hydroxy- α -vinyl

[†] Scripps Florida.

[‡]Brigham Young University.

^{(1) (}a) Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, 112, 5290. (b) McGarvey, G. J.; Mathys, J. A.; Wilson, K. J. J. Org. Chem. 1996, 61, 5704. (c) Roush, W. R.; Coffey, D. S.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 11331. (d) Roush, W. R.; Bannister, T. D.; Wendt, M. D.; Jablonowski, J. A.; Scheidt, K. A. J. Org. Chem. 2002, 67, 4275. (e) Perez, M.; del Pozo, C.; Reyes, F.; Rodriguez, A.; Francesch, A.; Echavarren, A. M.; Cuevas, C. Angew. Chem., Int. Ed. 2004, 43, 1724. (f) Fleming, K. N.; Taylor, R. E. Angew. Chem., Int. Ed. 2004, 43, 1728. (g) Packard, G. K.; Hu, Y.; Vescovi, A.; Rychnovsky, S. D. Angew. Chem., Int. Ed. 2004, 43, 2822. (h) Smith, A. B., III; Lee, D. J. Am. Chem. Soc. 2007, 129, 10957. (i) Hamel, C.; Prusov, E. V.; Gertsch, J.; Schweizer, W. B.; Altmann, K.-H. Angew. Chem., Int. Ed. 2008, 47, 10081. (j) Dunetz, J. R.; Julian, L. D.; Newcom, J. S.; Roush, W. R. J. Am. Chem. Soc. 2008, 130, 16407. (k) Pereira, C. L.; Chen, Y.-H.; McDonald, F. E. J. Am. Chem. Soc. 2009, 131, 6066.

^{(2) (}a) Hudlicky, T.; Frazier, J. O.; Seoane, G.; Tiedje, M.; Seoane, A.; Kwart, L. D.; Beal, C. J. Am. Chem. Soc. **1986**, 108, 3755. (b) Black, C. W.; Giroux, A.; Greidanus, G. Tetrahedron Lett. **1996**, 37, 4471. (c) Galatsis, P.; Millan, S. D.; Ferguson, G. J. Org. Chem. **1997**, 62, 5048. (d) Schneider, C.; Rehfeuter, M. Chem.—Eur. J. **1999**, 5, 2850. (e) Sumida, S.-i.; Ohga, M.; Mitani, J.; Nokami, J. J. Am. Chem. Soc. **2000**, 122, 1310. (f) Taylor, R. E.; Englhardt, C. F.; Schmitt, M. J.; Yuan, H. J. Am. Chem. Soc. **2001**, 123, 2964. (g) Engelhardt, F. C.; Schmitt, M. J.; Taylor, R. E. Org. Lett. **2001**, 3, 2209. (h) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. Org. Lett. **2002**, 4, 2389. (i) Nguyen, G.; Perlmutter, P.; Rose, M. L.; Vounatsos, F. Org. Lett. **2004**, 6, 893. (j) Weise, C. F.; Immel, S.; Richter, F.; Schneider, C. Eur. J. Org. Chem. **2012**, 1520.

^{(3) (}a) Isaac, M. B.; Chan, T.-H. *Tetraheron Lett.* **1995**, *36*, 8957. (b) Paquette, L. A.; Rothhaar, R. R. J. Org. Chem. **1999**, *64*, 217. (c) Tan, K.-T.; Chng, S.-S.; Cheng, H.-S.; Loh, T.-P. J. Am. Chem. Soc. **2003**, *125*, 2958. (d) Alam, J.; Keller, T. H.; Loh, T.-P. Chem. Commun. **2011**, *47*, 9066.

Figure 1. Approaches to the enantioselective synthesis of $syn-\alpha$ -vinyl- β -hydroxy esters 3 and imides 5.

imides **5** can be obtained by using enantioselective aldol reactions of chiral crotonate imides (Figure 1). Evans' chiral *N*-acyl oxazolidinones¹⁰ are widely applied for this purpose,¹ but other methods include use of Oppolzer's chiral sultam¹¹ and Crimmins' chiral oxazolidinethione reagents.¹² Here we report the development of an enantio- and diastereoselective synthesis of *syn-β*-hydroxy- α -vinyl carboxylate esters **3** via aldol reactions of aldehydes with (*Z*)-dienolborinate *Z*-(**O**)-**8a** that is generated in situ from the hydroboration of allenyl ester **2** with 10-trimethylsilyl-9-borabycyclo[3.3.2]decane (**1R**, also known as 10-TMS-9-BBD-H, and as the Soderquist borane).^{13,14} Density functional theory (DFT) calculations indicate that *Z*-(**O**)-**8a** is generated by a kinetically controlled 1,4hydroboration reaction pathway.

We have reported studies of enantioselective allylboration reactions of reagents generated by hydroboration of

(7) (a) Hertler, W. R.; Reddy, G. S.; Sogah, D. Y. J. Org. Chem. 1988, 53, 3532. (b) Kisanga, P. B.; Verkade, J. G. J. Org. Chem. 2002, 67, 426. (c) Bellassoued, M.; Grugier, J.; Lensen, N.; Catherine, A. J. Org. Chem. 2002, 67, 5611. (d) Otaka, A.; Yukimasa, A.; Watanabe, J.; Sasaki, Y.; Oishi, S.; Tamamura, H.; Fujii, N. Chem. Commun. 2003, 1834. (e) Bazan-Tejeda, B.; Bluet, G.; Broussal, G.; Campagne, J.-M. Chem. Chem. J. 2006, 12, 8358.

(8) Ramachandran, P. V.; Nicponski, D.; Kim, B. Org. Lett. 2013, 15, 1398.

(9) (a) Nelsen, S. F.; Teasley, M. F.; Kapp, D. L.; Wilson, M. R. J. Org. Chem. **1984**, 49, 1845. (b) Hudlicky, T.; Natchus, M. G.; Kwart, L. D.; Colwell, B. L. J. Org. Chem. **1985**, 50, 4300. (c) Orsini, F.; Leccioli, C. Tetrahedron: Asymmetry **1997**, 8, 4011.

(10) Evans, D. A.; Sjogren, E. B.; Bartroli, J.; Dow, R. L. Tetrahedron Lett. 1986, 27, 4957.

(11) (a) Tomooka, K.; Nagasawa, A.; Wei, S.-Y.; Nakai, T. *Tetrahedron Lett.* **1996**, *37*, 8899. (b) Ciampini, M.; Perlmutter, P.; Watson, K. *Tetrahedron: Asymmetry* **2007**, *18*, 243.

(12) Crimmins, M. T.; Tabet, E. A. J. Org. Chem. 2001, 66, 4012.

(13) (a) Gonzalez, A. Z.; Román, J. G.; Gonzalez, E.; Martinez, J.;
Medina, J. R.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2008, 130, 9218. (b) Soderquist, J. A.; Matos, K.; Burgos, C. H.; Lai, C.; Vaquer, J.;
Medina, J. R.; Huang, S. D. ACS Symp. Ser. 2001, 783, 176.

(14) Shibasaki has reported a catalytic enantioselective reductive aldol reaction of allenic esters with aromatic ketones: Zhao, D.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. **2006**, *128*, 14440.

Figure 2. Anticipated versus observed outcome of hydroboration of allenoate 2 with borane 1R and subsequent reaction with benzaldehyde.

monosubstituted allenes with the Soderquist borane 1.¹⁵ and were interested in extending these efforts to the hydroboration of allenecarboxylic ester 2 (Figure 2). Based on previous results,¹⁵ we were hopeful that the hydroboration reaction of 2 would occur on the terminal allene double bond opposite to the ester moiety, leading directly to (Z)- γ -(ethoxycarbonyl)allylborane **Z**-(**C**)-7a. Further, it was anticipated that the reaction of allylborane Z-(C)-7a with aldehydes such as benzaldehyde would result in an enantioselective synthesis of anti-3a. However, this reaction sequence provided syn- β -hydroxy- α -vinyl ester **3a** as a single diastereoisomer (dr > 40:1) in 81% ee and in 77% isolated yield. (See Supporting Information (SI) for stereochemical assignments). ¹H NMR analysis of the intermediate formed in the hydroboration step revealed the presence of a single (Z)-dienolborinate, Z-(O)-8a, and not the expected allylborane Z-(C)-7a (Figure 2). Based on this insight, the formation of *svn-\beta*-hydroxy- α -vinyl carboxylic ester 3a can be rationalized by an aldol reaction of Z-(O)-8a with benzaldehyde via the chairlike transition state TS-1.

The optimization of several reaction variables is summarized in Table 1. The use of Et_2O or toluene instead of CH_2Cl_2 as a reaction solvent was detrimental to both the yield of **3a** and overall reaction enantioselectivity (entries 1–3). Increasing the reaction concentration and the reaction time led to an increased yield of **3a**, with essentially identical results being obtained if the reactions were performed at 0.25 or 0.5 M (entries 4, 5). However, when the less reactive cyclohexanecarboxaldehyde was used, **3b** was obtained in 64% and 80% yield when the reaction was performed at 0.25 or 0.5 M (entries 6,7).

The results of reductive aldol reactions of **2** with several representative aromatic, aliphatic, α , β -unsaturated, and heteroaromatic aldehydes are presented in Scheme 1. These reactions provided **3a**-g with >40:1 d.r. in 68–91%

^{(4) (}a) Wallner, O. A.; Szabo, K. J. Org. Lett. **2002**, 4, 1563. (b) Wang, Z.; Zha, Z.; Zhou, C. Org. Lett. **2002**, 4, 1683. (c) Wallner, O. A.; Szabo, K. J. J. Org. Chem. **2003**, 68, 2934. (d) Wallner, O. A.; Szabo, K. J. Org. Lett. **2004**. 6, 1829.

⁽⁵⁾ Gosmini, C.; Rollin, Y.; Perichon, J.; Wakselman, C.; Tordeux, M.; Marival, L. *Tetrahedron* **1997**, *53*, 6027.

^{(6) (}a) Sebelius, S.; Wallner, O. A.; Szabo, K. J. Org. Lett. **2003**, *5*, 3065. (b) Sebelius, S.; Szabo, K. J. Eur. J. Org. Chem. **2005**, 2539.

^{(15) (}a) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14174. (b) Kister, J.; Nuhant, P.; Lira, R.; Sorg, A.; Roush, W. R. Org. Lett. 2011, 13, 1868. (c) Nuhant, P.; Kister, J.; Lira, R.; Sorg, A.; Roush, W. R. Tetrahedron 2011, 67, 6497.

Table 1. Optimization of the Reaction Conditions for the Synthesis of $syn-\beta$ -Hydroxy- α -vinyl Carboxylate Esters **3**

entry	RCHO	$\operatorname{product}^a$	solvent	%yield ^b	% ee ^c
1	PhCHO	3a	$\mathrm{CH}_2\mathrm{Cl}_2^{d,e}$	77	82
2	PhCHO	3a	$\mathrm{Et}_2\mathrm{O}^{d,e}$	36	72
3	PhCHO	3a	$toluene^{d,e}$	47	71
4	PhCHO	3a	$\mathrm{CH}_{2}\mathrm{Cl}_{2}^{f,g}$	83	82
5	PhCHO	3a	$\mathrm{CH}_{2}\mathrm{Cl}_{2}^{h,g}$	86	82
6	$C_6H_{11}CHO$	3b	$\mathrm{CH}_2\mathrm{Cl}_2^{f,g}$	64	83
7	$C_6H_{11}CHO$	3b	$\mathrm{CH}_{2}\mathrm{Cl}_{2}^{h,g}$	80	83

^{*a*} A single diastereoisomer (dr >40:1) was obtained in each entry (¹H NMR analysis). ^{*b*} Yield of product isolated chromatographically. ^{*c*} Determined by Mosher ester analysis. ^{*d*} Reaction concentration 0.17 M. ^{*e*} 12 h aldol reaction time. ^{*f*} Reaction concentration 0.25 M. ^{*g*} 36 h aldol reaction time. ^{*h*} Reaction concentration 0.5 M.

yields, and with very good to excellent enantioselectivity (73–89% ee). Either enantiomer of the *syn-β*-hydroxy- α -vinyl carboxylic esters, **3** and *ent-***3**, can be obtained by using the appropriate enantiomer of borane **1R** or **1S**.¹³

Another variable that significantly impacts the reaction diastereoselectivity is the borane reagent used in the hydroboration step (Table 2). For example, use of $({}^{l}Ipc)_{2}BH$ as the hydroborating agent¹⁶ resulted in an ~1:1 mixture of **3a** and *anti-3a* (80% ee), with benzaldehyde as the aldol partner (entry 1). Alternatively, use of 9-BBN lead to *anti-3a* exclusively in 90% yield (entry 2). While we have not explored the full scope of the latter reaction, it is conceivable that this process could be developed into a general, highly diastereoselective synthesis of racemic *anti-β*-hydro-xy-α-vinyl carboxylic esters.^{2,8}

¹H NMR analysis of the hydroboration of allene 2 with $(^{I}\text{Ipc})_{2}\text{BH}$ (toluene- d_{8} , 0 °C) revealed that a 2.3:0.05:1 mixture of Z-(O)-8b, E-(O)-8b, and Z-(C)-7b was formed. In contrast. Z-(C)-7c was formed exclusively when 9-BBN was used as the hydroborating agent (THF- d_8 , 0 °C) (Figure 3). The exclusive formation of the *anti-\beta*-hydroxy- α -vinyl carboxylic ester *anti*-3a from the hydroboration of 2 with 9-BBN (entry 2) is easily understood since intermediate Z-(C)-7c (Figure 3) would be expected to undergo allylboration reactions to give anti-3a with high selectivity. Alternatively, a mixture of 3a and anti-3a is produced when (¹Ipc)₂BH is used as the hydroborating agent (entry 1), since allylborane Z-(C)-7b should react with benzaldehyde to give anti-3a with high selectivity, while the dienolate Z-(O)-8b would be expected to undergo a syn-selective aldol reaction, leading to syn aldol 3.

Scheme 1. Diastereo- and Enantioselective Synthesis of syn- β -Hydroxy- α -vinyl Carboxylate Esters **3a**-g

We have used M06-2X/6-31G(d,p)¹⁷ density functional theory (DFT)¹⁸ to examine the hydroboration reaction and isomerization pathways in order to rationalize the selective formation of intermediates Z-(C)-7 or Z-(O)-8 using 9-BBN or 1R, respectively. For 1R, the direct and stereospecific 1,4-hydroboration of allenyl ester 2 to give Z-(O)-8a is 2–4 kcal/mol lower in energy than potentially competitive 3,4-, and 5,4-hydroboration transition states (Scheme 2). This concerted 1,4-addition transition state is

Table 2. Influence of the Borane Reagent on Reaction

 Diastereoselectivity

^{*a*} Isolated yield of the mixture of **3** and *anti*-**3**. ^{*b*} Racemic *anti*-**3a** was the only product detected.

akin that proposed for the formation of boron (*Z*)-enolates via 1,4-hydroboration of α , β -unsaturated ketones with alkylboranes¹⁹ or catecholborane.^{20,21} The alternative

^{(16) (}a) Nuhant, P.; Allais, C.; Roush, W. R. *Angew. Chem., Int. Ed.* **2013**, *52*, 8703 and references therein. (b) Allais, C.; Nuhant, P.; Roush, W. R. *Org. Lett.* **2013**, *15*, 3922.

^{(17) (}a) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* 2008, *120*, 215.
(b) Zhao, Y.; Truhlar, D. G. *Acc. Chem. Res.* 2008, *41*, 157.

^{(18) (}a) All calculations were carried out in *Gaussian 09*. (b) Frisch, M. J.; et al. *Gaussian 09*, revision B.01; Gaussian, Inc.: Wallingford, CT, 2009. (c) Free energies are reported for 298 K and relative to separated reactants. Methyl allenecarboxylate was used as a model for allenyl ester 2.

⁽¹⁹⁾ Boldrini, G. P.; Bortolotti, M.; Mancini, F.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. **1991**, 56, 5820.

⁽²⁰⁾ Evans, D. A.; Fu, G. C. J. Org. Chem. 1990, 55, 5678.

Figure 3. Intermediates formed in the hydroboration of allene 2 with $(^{l}Ipc)_{2}BH$ (left) and 9-BBN (right).

3,4- and 5,4-hydroboration pathways also require either a single 1,5-boratropic shift or multiple 1,3-boratropic shifts in order to produce **Z-(O)-8a**. We have previously shown that the steric bulk of the 10-TMS group in products of hydroboration reactions of **1R** retards the 1,3-boratropic rearrangement transition state.²² Here also, the 10-TMS group provides large kinetic stability to intermediate **Z-(O)-8a** with > 20 kcal/mol free energy barriers for 1,3- and 1,5-rearrangement pathways. In addition, **Z-(O)-8a** is 8–10 kcal/mol more stable than **Z-(C)-7a** and **E-(C)-7a**.²³

For the 9-BBN hydroboration sequence, 1,4-addition also provides the lowest energy hydroboration transition state. However, in this case there is a low free energy barrier (9 kcal/mol) for the 1,5-boratropic shift to directly convert Z-(O)-8c to Z-(C)-7c. To our knowledge, this is the first prediction of a 1,5-boratropic shift. Importantly, Z-(C)-7c is 5 kcal/mol more stable than Z-(O)-8c and 9 kcal/mol more stable than E-(C)-7c due to intramolecular coordination of boron by the ester carbonyl. In Z-(C)-7a this interaction is prevented due to the steric bulk of the 10-TMS group. The alternative route via two 1,3-boratropic shifts requires > 6 kcal/mol higher free energy barriers than the direct 1,5-boratropic shift pathway.

Additional experiments were performed to explore the origin of 7 and the proposed equilibria between 8 and 7 (Figure 4). First, ¹H NMR studies demonstrated that the 2.3:0.05:1 mixture of Z-(O)-8b, E-(O)-8b, and Z-(C)-7b generated by the hydroboration of **3** with $(^{l}Ipc)_{2}BH$ (see Figure 3 and SI) did not change over time, suggesting that this is the equilibrium mixture. Second, treatment of ethyl but-3-enoate (10) with $(^{l}Ipc)_{2}BCl$ and Et₃N in toluene- d_{8} , conditions known to generate ester enolborinates,²⁴ provided after 10 min a 2.7:0.7:1 mixture of Z-(O)-8b, E-(O)-8b, and Z-(C)-7b that over a ca. 2 h period isomerized to a 2.3:0.1:1 mixture that remained constant over a 12 h period. Finally, treatment of 10 with B-iodo-9-BBN and Et₃N in THF- d_6 provided **Z**-(C)-7c exclusively, with no change observed over a 1 h monitoring period. These data are consistent with our proposal that allylborane Z-(C)-7 can arise by isomerization of dienolborinate 8 as suggested by the computational studies (Scheme 2). These observations Scheme 2. M06-2X Free Energies (kcal/mol) for Hydroboration of Methyl Allenylcarboxylate with 1R (series a) and 9-BBN (series b; data in parentheses are for 9-BBN)^{18c}

Figure 4. Studies concerning the origin of 7 and the proposed equilibration of 8 and 7.

may also be relevant to understanding the 'unusual' stereochemical course of the 'aldol' reactions of ethyl but-3-enoate and di(bicyclo[2.2.1]heptan-2-yl)chloroborane recently reported by Ramachandran.⁸

In conclusion, hydroboration of allenecarboxylate **2** with borane **1R** provides stereoselective formation of (*Z*)-dienolborinate *Z*-(**O**)-**8a**, which upon treatment with aldehydes provides *syn* α -vinyl- β -hydroxy esters **3a**-**g** in 68–91% yields with excellent diastereoselectivities (dr > 40:1) and with good to excellent enantioselectivity (73–89% ee). DFT calculations and NMR evidence support the proposed 1,4-hydroboration pathway.

Acknowledgment. Financial support provided by the NIH (GM038436) is gratefully acknowledged. D.H.E. thanks BYU and the Fulton Supercomputing Lab for support.

Supporting Information Available. Experimental procedures and tabulated spectroscopic data for new compounds. Full ref 18b and *xyz* coordinates for the calculations summarized in Scheme 2. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽²¹⁾ Citations of other methods for reductive aldol reactions are provided in ref 16.

⁽²²⁾ Ess, D. H.; Kister, J.; Chen, M.; Roush, W. R. Org. Lett. 2009, 11, 5538.

⁽²³⁾ A 3,4-addition pathway has been proposed for the borylcupration of allenamides: Yuan, W.; Zhang, X.; Yu, Y.; Ma, S. *Chem.—Eur. J.* **2013**, *19*, 7193.

⁽²⁴⁾ Ganesan, K.; Brown, H. C. J. Org. Chem. 1994, 59, 2336.

The authors declare no competing financial interest.