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ABSTRACT: A visible-light-induced protocol for the synthesis of
phosphorothioates is developed by employing the Ir-catalyzed decarbox-
ylative phosphorothiolation of N-hydroxyphthalimide esters. This novel
synthesis method utilizes carboxylic acids as raw material, which is stable,
cheap, and commercially available. Scope studies show that this reaction
has good compatibility of functional groups. Notably, both the synthesis of
steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.

Phosphorothioates, which contain a phosphorus−sulfur
single bond, have been regarded as important compounds

in pharmaceuticals and agrochemicals.1 For example, phos-
phorothiolate insecticides such as demeton-S and omethoate
are widely used in agrochemicals.2 As pharmaceuticals,
phosphorothioates also serve as potential anticancer agents,
antivirals, cardioprotective therapeutics, and the AChE
inhibitor echothiopate (Scheme 1, top).3 Moreover, phosphor-

othioates can also service as synthetic intermediates to access
complex molecules.4 Consequently, the development of
efficient methods to access phosphorothioates is an important
topic in phosphorus chemistry. Traditional methods are
described as follows: (a) The Michaelis−Arbuzov-type
reaction, which uses sulfonyl halides or disulfides as substrates,
suffers from high temperature, sensitivity of sulfur reagents,
and pollution of the environment5 as well as the nucleophilic
substitution reaction of (RO)2P(O)Cl with thiols.6 However,
(RO)2P(O)Cl is a toxic reagent and is sensitive to moisture.
Recently, the transition-metal-catalyzed cross-coupling of

P(O)H compounds with different organic sulfides, which
circumvents the use of stoichiometric activation reagents, has
emerged as a powerful strategy to access phosphorothioates.7

So far, various organic sulfides including sulfonyl chlorides,
disulfides, sulfenyl cyanides, and sulfonylhydrazides have been
successfully introduced as coupling partners in the phosphor-
othiolation reactions.8 (b) Organic sulfides are sometimes foul-
smelling and are not readily available. An ideal approach is the
use of cheap and abundant inorganic sulfides as a surrogate.
Tang reported a copper-catalyzed phosphorothiolation of aryl
boronic acids using elemental sulfur as a sulfur source.9a Later,
the phosphorothiolation of C(sp3)−H and C(sp2)−H was also
successfully achieved by Tang’s group using the same
strategy.9b,c However, this approach was mainly restricted to
S-aryl products. (c) Another synthesis strategy is to develop
new phosphorothiolation reagents.10 So far, the successfully
developed phosphorothiolation reagents include phosphoro-
thioic acids, phosphorothiolate salts, O,O-dialkyl-S-(N-phtha-
limido) phosphorothioate, and dialkyl (2-cyanoethyl)-
phosphonate, which have enabled the phosphorothiolation of
various substrates such as alkyl halides, arylboronic acids, and
arenediazonium salts.10b However, most of the phosphor-
othiolation reagents need to be preprepared. Despite these
synthetic methods of important value to S-alkyl thiophos-
phates, the substrates are mainly limited to organic sulfides and
alkyl halides. Thus it is highly desirable to develop readily
available and low-toxicity reagents as substrates in alkyl
phosphorothiolation reactions.

Received: July 9, 2021

Scheme 1. Application and Synthesis of Thiophosphates
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Aliphatic carboxylic acids are readily available, stable, and
low-toxicity reagents. N-Hydroxyphthalimide (NHPI) esters,
which can be easily synthesized from carboxylic acids, have
recently been widely investigated as alkyl radical precursors,
which then couple to radical acceptors or nucleophiles.11,12

Various nucleophiles such as alcohols, amines, and B2Pin2 have
been successfully introduced in the decarboxylative reaction.13

With our ongoing interest in organic phosphor chemistry,14 we
envisioned that P(O)SH might serves as a nucleophile in the
decarboxylative coupling reaction, which could provide a
method for accessing phosphorothioates. Herein we disclose a
photoredox-catalyzed phosphorothiolation of NHPI esters via
the decarboxylative reaction.
To validate our concept, cyclohexyl NHPI ester (1a) and

(EtO)2P(O)SH (2a) were chosen as model substrates (Table
1). When using 2 mol % Ir(ppy)3 as a photocatalyst and 2

equiv of K2CO3 as base in CH3CN under visible light, 3a was
formed in 17% yield (entry 1). A screening of photocatalysts,
such as 4CzIPN, Eosin Y, and Rose Bengal, indicated that
Ir(ppy)2(dtbbpy)PF6 was the best photocatalyst, yielding 3a in
30% yield (entries 2−5). Subsequently, a variety of bases were
tested, and the results showed that the yield was significantly
affected. Most organic bases except Et2NH resulted in only a
trace amount of 3a (entries 6−8). Among the inorganic bases
investigated, KHF2 provided the best result (entries 9−12).
Several solvents such as dimethylformamide (DMF), dimethyl
sulfoxide (DMSO), and toluene were also screened; however,
they were all less efficient than CH3CN (entries 13−15).
Finally, a series of controlled experiments suggested that visible
light, the photocatalyst, and the base were all equally crucial for
this reaction (entries 16−18).

Having identified the optimal reaction conditions for this
decarboxylative phosphorothiolation reaction, the scope of
alkyl carboxylic acid was investigated (Scheme 2). First, various

carboxylic acids, for instance, primary, secondary, and tertiary
acids, were all compatible in this decarboxylative reaction, and
the yields were moderate to good. Primary carboxylic acids,
including a benzylic substrate (1b−1f) with different
substituents such as electron-neutral (1b−1d) and electron-
rich substituents (1e) at the para position of the aromatic
rings, all smoothly furnished the desired organothiophosphates
(3b−3e). For disubstituted aromatic rings (1f), the corre-
sponding products 3f were procured in 67% yield. A wide
range of functional groups were also evaluated. For example,
heterocycles such as thiophene, alkanes, terminal alkynes,
esters, heteroatoms, and adamantane with high steric
hindrance all proved to be compatible under the standard
reaction conditions (3g−3m). NHPI ester prepared from
trans-3-hexenoic acid, which contains CC bonds, could not
afforded the desired product. Next, we studied secondary
carboxylic acids. Cyclic acids, including three-membered, four-
membered, five-membered, and six-membered cyclic carbox-
ylic acid, fluorinated alkyl carboxylic acid, and acyclic alkyl,
were all converted to the corresponding S-aryl products in
moderate yields (3n−3s). Interestingly, other alkoxy-substi-
tuted phosphorothioic acids such as dimethyl (2b), diisopropyl
phosphorothioic acid (2c), and O-ethyl S-hydrogen phenyl-
phosphorothioic acid (2d) were also suitable coupling partners
for the decarboxylative reaction, which delivered 3u−3w in 52

Table 1. Optimization of Conditionsa

entry photocatalyst base solvent yield (%)b

1 Ir(ppy)3 K2CO3 CH3CN 17
2 4CzIPN K2CO3 CH3CN 10
3 Ir(ppy)2(dtbbpy)PF6 K2CO3 CH3CN 25
4 Eosin Y K2CO3 CH3CN 0
5 Rose Bengal K2CO3 CH3CN 0
6 Ir(ppy)2(dtbbpy)PF6 Et3N CH3CN trace
7 Ir(ppy)2(dtbbpy)PF6 DBU CH3CN trace
8 Ir(ppy)2(dtbbpy)PF6 Et2NH CH3CN 57
9 Ir(ppy)2(dtbbpy)PF6 KHF2 CH3CN 77
10 Ir(ppy)2(dtbbpy)PF6 NaOH CH3CN 36
11 Ir(ppy)2(dtbbpy)PF6 NaOAc CH3CN 44
12 Ir(ppy)2(dtbbpy)PF6 K3PO4 CH3CN 34
13 Ir(ppy)2(dtbbpy)PF6 KHF2 DMF trace
14 Ir(ppy)2(dtbbpy)PF6 KHF2 DMSO 29
15 Ir(ppy)2(dtbbpy)PF6 KHF2 toluene 17
16 KHF2 CH3CN NR
17 Ir(ppy)2(dtbbpy)PF6 CH3CN NR
18c Ir(ppy)2(dtbbpy)PF6 KHF2 CH3CN NR

aReaction conditions: 1a (0.2 mmol), 2a (2 equiv, 0.4 mmol)
photocatalyst (1 mol %, 0.002 mmol), base (2 equiv, 0.4 mmol),
solvent (2 mL) at room temperature, 5 W blue LEDs, 12 h in N2.
bIsolated yield. cWithout light.

Scheme 2. Substrate Scope for Primary and Secondary
Acidsa

aReaction conditions: 1 (0.2 mmol), 2 (2 equiv, 0.4 mmol),
[Ir(ppy)2(dtbbpy)]PF6 (1 mol %, 0.002 mmol), KHF2 (2 equiv, 0.4
mmol), CH3CN (2 mL) at room temperature, 5 W blue LEDs, 12 h
in N2.

b1a (1 mmol), 2 (2 equiv, 2 mmol), [Ir(ppy)2(dtbbpy)]PF6 (1
mol %, 0.01 mmol), KHF2 (2 equiv, 2 mmol), CH3CN (5 mL) at
room temperature, 5 W blue LEDs, 24 h in N2.
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to 71% yield. However, no desired product was observed with
diphenylphosphinothioic S-acid as a substrate.
For tertiary carboxylic acids (Scheme 3), acyclic tertiary

aliphatic acid esters were also suitable reaction substrates,

generating 4a−4d in moderate to excellent yield. In particular,
tertiary carboxylic acids in which the three carbon atoms were
tied back into a ring structure, for example, bicyclo[2.2.2]-
octane carboxylic acid, produced the corresponding products,
respectively, with good efficiency (4d). The above results
indicate that phosphorothioates with a large steric hindrance
can also be readily synthesized by our method, which were
difficult to synthesize via traditional nucleophilic substitution
methods. Some bioactive compounds and drug molecules were
evaluated to extend the substrates scope. For example, lauric
acid, which is a long-chain carboxylic acid, was readily
converted to the corresponding organothiophosphates 4e in
73% yield. Moreover, drug compounds, such as flurbiprofen
and (S)-(+)-ibuprofen, were all smoothly incorporated into the
final organothiophosphate derivatives (4f, 4g).
Several control experiments were carried out to indicate the

mechanism of this decarboxylative phosphorothiolation
reaction. As shown in Scheme 4, the reaction was completely
suppressed in the presence of radical scavengers such as
TEMPO or butylated hydroxytoluene (BHT) (Scheme 4, eq
1). When 1,1-Diphenylethylene was added, the reaction was
also completely suppressed, and the radical trapping product 5

could be detected (Scheme 4, eq 2). The above results
revealed a radical strategy in this photoredox reaction.
On the basis of control experiments and previous reports, a

plausible catalytic cycle mechanism is proposed in Scheme
5.11−15 The visible-light-excited photocatalyst Ir(III)* under-

goes single-electron transfer (SET) to NHPI ester 1 to form
radical anion A, which then gives alkyl radical B by
decarboxylation and a phthalimide anion. The coupling of
alkyl radical B to sulfur anion C affords intermediate D.
Finally, the Ir(IV) species is reduced by D to regenerate the
Ir(III) catalyst to complete the catalytic cycle.
In conclusion, we have demonstrated a visible-light-induced

photoredox-neutral decarboxylative phosphorothiolation reac-
tion. In addition to primary, secondary, and tertiary carboxylic
acids, structurally complicated natural products were all
compatible with the reaction. This method provides a mild
and straightforward entry to organothiophosphates from
readily available alkyl carboxylic acids. The mild photocatalyst
reaction not only broadens the substances scope but also
provides a new synthesis strategy for accessing phosphor-
othioates. Considering the importance of phosphorothioates, a
mechanism study and new radical phosphorothiolation
reactions are currently under way in our laboratory.
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