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ABSTRACT: We report the rational design and synthesis of a     
water-stable metal-organic framework (MOF), Fe-HAF-1, 
constructed from supramolecular, Fe3+-hydroxamate-based 
polyhedra with mononuclear metal nodes. Owing to its chelate-
based construction, Fe-HAF-1 displays exceptional chemical 
stability in organic and aqueous solvents over a wide pH range 
(pH 1-14), including in the presence of 5 M NaOH. Despite the 
charge-neutrality of the Fe3+-tris(hydroxamate) centers, Fe-HAF-1 
crystals are negatively charged above pH 4. This unexpected 
property is attributed to the formation of defects during 
crystallization that results in uncoordinated hydroxamate ligands 
or hydroxide-coordinated Fe centers. The anionic nature of Fe-
HAF-1 crystals enables selective adsorption of positively charged 
ions in aqueous solution, resulting in efficient separation of 
organic dyes and other charged species in a size-selective fashion. 
Fe-HAF-1 presents a new addition to a small group of chelate-
based MOFs and provides a rare framework whose 3D 
connectivity is exclusively formed by metal-hydroxamate 
coordination. 

Metal-organic frameworks (MOFs) are a class of porous, 
crystalline materials1-3 with many potential applications in 
catalysis,4-9 gas storage,10-11 drug delivery,12-13 molecular 
separation,14-17 and molecular sensing.18-19 MOFs are comprised 
of metal nodes and bridging organic ligands that form highly 
ordered structures.20-21 Each node is comprised commonly of 
polynuclear clusters of metal atoms, also known as secondary 
building units (SBUs). The introduction of the SBU concept has 
allowed access to diverse node geometries, ultimately leading to 
MOFs with greater structural complexity.22 Early SBUs were 
primarily composed of divalent transition metals (Zn2+ or Cu2+) 
and carboxylate groups.23-24 The metal-ligand bonds in these 
nodes are relatively weak and prone to hydrolysis in aqueous 
conditions.1 Infiltration of water molecules into the SBUs of these 
MOFs undermines the structural integrity of the materials, 
eventually leading to collapse of the crystalline framework. One 
successful approach to improve the aqueous stability of the 
framework is to selectively design nodes with stronger metal-
ligand bonds.25

Chelating ligands, such as catecholates and hydroxamates, are 
well known for their ability to form strong bonds with a wide 

range of metals.26 These functional groups are found in 
siderophores, which are small organic molecules produced by 
bacteria to scavenge metal ions, most notably Fe3+, with 
remarkable affinities.27-28 Hydroxamates are an attractive 
chelating group for the synthesis of extended structures since they 
are rotationally flexible and sterically unencumbered with a 
coordination footprint similar to commonly used carboxylates.

A previous example of a hydroxamate-containing MOF was 
reported by Farha and Hupp, whereby 1,4-benzenedihydroxamic 
acid (p-H2bdh) was incorporated into a Zr-based MOF (UiO-66) 
via postsynthetic exchange,29 with the resulting framework stable 
under alkaline conditions. Recently, Martí-Gastaldo reported a Ti-
p-H2bdh-based MOF, MUV-11, prepared by direct synthesis.30 
However, the hydroxamate-mediated connectivity of this 
framework only extended in two dimensions. Indeed, most MOFs 
containing chelating motifs, such as those based on catechol 
groups, form either 2D sheets connected by noncovalent 
interactions (π-π stacking or H-bonding) or employ monodentate 
ligands to facilitate connectivity in the third dimension.31-34 A rare 
exception was provided by protein-MOFs in which p-H2bdh 
linkers were employed to link spherical ferritin molecules into 
porous, crystalline 3D lattices.35-36 In comparison to extended 3D 
frameworks, chelate-based ligands are more prevalent in metal-
organic polyhedra (MOPs).37-39 In fact, MOPs have been 
previously used as building blocks (or SBUs) for construction of 
MOFs with diverse structures and properties.40 In this work, we 
employed this strategy to generate the first example of a 3D Fe-
hydroxamate framework, namely Fe-HAF-1. Inspiration for the 
chelate-based SBU was derived from a tetrahedral M4L6 
coordination cluster reported by Raymond.39 This cluster was 
based on the isophthal-di-N-(4-methylphenyl)hydroxamic acid as 
the linker and Fe3+/Ga3+ as the metal node, with four 
dimethylformamide (DMF) molecules partially filling the rigid 
cavity. This design successfully demonstrated that a combination 
of a three-fold symmetry at a pseudo-octahedral metal center with 
a rigid linker containing two-fold symmetry can create a 
symmetry-driven tetrahedral cluster.39

We prepared a nearly identical cluster by combining m-
benzenedihydroxamic acid (m-H2bdh) and FeCl3 in DMF at room 
temperature (Figure 1). m-H2bdh lacks the N-toluyl groups used in 
the previously reported ligand,39 forming the desired cluster with 
reduced steric bulk. Fe4(m-bdh)6 clusters crystallized readily into 
a lattice with P213 symmetry. As expected, each Fe-
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tris(hydroxamate) center formed a C3 vertex of the discrete 
cluster. Because each metal center is chiral, each discrete cluster 
can have T (∆∆∆∆ or ΛΛΛΛ), C3 (∆∆∆Λ or ΛΛΛ∆), or S4 
(∆∆ΛΛ) symmetry in solution. Each unit cell is comprised of 
eight clusters with T symmetry (four ∆∆∆∆ and four ΛΛΛΛ). On 
average, the Fe-carbonyl and Fe-hydroxyl bond lengths are 2.05 Å 
and 1.98 Å, respectively. The clusters in this crystal lattice are 
held together by a series of H-bonding and π-π stacking 
interactions (Figure S3). Each cluster has an interior cavity that is 
ca. 7.5 Å in diameter (Figure 1).

Figure 1. Ball-and-stick representation of a single discrete cluster 
of ∆-Fe4(m-bdh)6. The blue sphere highlights the central cavity of 
the cluster. Gray, red, blue, white, and orange spheres represent C, 
O, N, H, and Fe atoms, respectively. 

To connect Fe4(m-bdh)6 clusters into an extended 3D 
framework (Fe-HAF-1), we synthesized a linear dimer of m-
H2bdh, biphenyl tetrahydroxamic acid (H4BPTH) (Figure 2a). 
Reaction of the H4BPTH linker with FeCl3 in a solution of N,N-
diethylformamide (DEF) and 1,4-dioxane at 70 °C for 24 h 
yielded a dark-red microcrystalline powder of Fe-HAF-1, which 
consisted of 4-6 µm cube-shaped particles (Figure S4). Powder X-
ray diffraction (PXRD) measurements indicated a face-centered 
cubic lattice with a = 34.566 Å (Figure 2b). Through slow 
temperature-ramping and -cooling steps during synthesis, we 
obtained ca. 100-μm-sized crystals that were suitable for single-
crystal X-ray diffraction (sc-XRD). Much like the 
microcrystalline powder, these crystals all exhibit a cubic 
morphology (Figure S5) with a chiral lattice  (F432), in which 
each tetrahedral, hydroxamate-based SBU is connected to six 
adjacent SBUs through the bridging ligand. The pores that form 
between individual clusters are approximately 16 Å in diameter 
(Figure 2c), with 8 Å apertures. Each cluster maintains a cavity 
with a 7.5 Å diameter. The topology of Fe-HAF-1 is twisted 
boracite (tbo), with the underlying net consisting of C3 vertices at 
each metal and C4 vertices at each ligand, yielding a similar lattice 
architecture as the canonical Cu-based MOF, HKUST-1.41 The 
phenyl-phenyl dihedral angle is 20.4°, which is similar to other 
MOFs (such as UiO-67) containing biphenyl bridging ligands.42 
Unlike the discrete Fe4(m-bdh)6 cluster, which possesses T, C3, or 
S4 symmetry in solution and exists as a racemic mixture of ∆ and 
Λ in the crystal lattice, the linker connectivity in Fe-HAF-1 leads 
to enantiopure (either ∆ or Λ) crystals. Because there is no 
preference for either ∆ or Λ during MOF synthesis, the bulk 
sample exists as a racemic mixture.

The thermal stability of Fe-HAF-1 was evaluated by 
thermogravimetric analysis (TGA). The TGA curves displayed no 
significant weight loss up to 120 °C (Figure S6). Despite the 

calculated accessible surface area of 2160 m2/g, the N2 adsorption 
isotherm at 77 K for the Fe-HAF-1 revealed no significant gas 
uptake (BET <10 m2 g-1); similar results were reported with a 3D 
Fe-catecholate framework (Fe-CAT-5).34 We ascribe the low N2 
adsorption uptake  to DEF molecules retained in the pores as well 
as within the individual tetrahedral SBUs (Figure S12). 
Conventional activation protocols led to the structural collapse of 
Fe-HAF-1 upon evacuation of solvent molecules (SI Methods). 

The ability of MOFs to resist degradation under harsh chemical 
conditions is directly linked to the strength of the metal-ligand 
bonds at their nodes.25 In particular, hard, carboxylate-based 
linkers are known to give rise to a wide variety of stable 
frameworks43 with hard, high-valent metal ions, including MIL-53 
(Cr3+), MIL-100 (Fe3+), and UiO-66 (Zr4+).44-46 Accordingly, we 
expected that Fe-HAF-1 would also exhibit high chemical 
stability, which could be further bolstered by the chelating nature 
of the hydroxamate ligands. As shown in Figure 3a, Fe-HAF-1 
retained its crystallinity under both highly acidic (pH 1) and 
highly basic conditions (5 M NaOH), which compares favorably 
to the very stable carboxylate-based MOFs, such as UiO-66 
(Figure S10)47 and the highly alkaline-stable frameworks, ZIF-8, 
PCN-601, and ZrPP-1.48  In addition to providing excellent 
aqueous stability, the strong bonds of the chelate-based node also 
resist decomposition across a range of coordinating solvents, such 
as carboxylic acids and amines as well as other common organic 
solvents (Figure 3b). To further confirm the structural integrity of 
the frameworks, we analyzed the samples by scanning electron 
microscopy (SEM) after incubation under different conditions. 
SEM images indicated that Fe-HAF-1 maintained its cubic 
morphology in all cases (Figure S11). Our findings illustrate that 
it is possible to attain very high chemical stability in a porous 
framework even with mononuclear metal nodes.

Figure 2. (a) The chemical structure of H4BPTH. (b) PXRD 
pattern for Fe-HAF-1 is consistent with a face-centered cubic 
lattice. (c) The unit cell of the Fe-HAF-1. The internal pore is 
highlighted by a yellow sphere (16 Å), and the cavity of the 
cluster is highlighted with a blue sphere (7.5 Å). (d) A 
representation of the 3D network of Fe-HAF-1.

Interestingly, despite an expected neutral charge based on its 
composition, we observed that Fe-HAF-1 behaved as an ionic 
MOF. Zeta potential measurements (Figure S7) indicated that Fe-
HAF-1 was highly negatively charged above a pH of 4. We 
attribute this property to the formation of defects49 during 
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synthesis (owing to the highly chelating nature of the BPTH 
linker), which likely results in free  hydroxamate groups or Fe3+ 
centers with hydroxide ligands.50 Notably, although the pKa of the 
free hydroxamic acid is >8.5, polyhydroxamic acid polymers were 
previously shown to display negative zeta potentials above pH 

3.8.51 Further implicating the formation of defects, FTIR spectra 
of Fe-HAF-1 displayed O−H stretching vibrations as a broad peak 
at 3180 cm-1 similar to the 

Figure 3. PXRD patterns of Fe-HAF-1 after exposure to (a) aqueous solutions at different pH and (b) different organic solvents for one 
week. All organic solvents were neat except for ammonium hydroxide (50% v/v). The simulated pattern was calculated using Λ-Fe-HAF-
1.  

H4BPTH linker (Figure S8), consistent with the presence of free 
hydroxamic acid groups.52 The possibility of mixed-valence Fe-
clusters (i.e., the presence of Fe2+ species), which could also give 
rise to an overall negative charge, was ruled out by X-ray 
photoelectron spectroscopy (XPS) measurements (Figure S9).

53

Ionic MOFs have been explored as platforms for selective 
uptake of organic dyes.54-63 To evaluate the accessibility of 
charged molecules to the pores of Fe-HAF-1, we chose four 
cationic organic dyes (Methylene Blue (MLB+), Lauth’s Violet 
(LV+), Rhodamine B (RB+), and Alcian Blue (AB4+)), a cationic 
metal complex (Ru(bpy)3

2+), and two anionic organic dyes, 
(Orange G (OG2-) and Rose Bengal (RB2-)) as potential guest 
molecules. The size of all dyes except (AB4+) is suitable for pore 
permeation (Figure S13). A typical sample used in uptake 
measurements contained 5 mg of Fe-HAF-1 and initial dye 
concentrations of 10 ppm, and the change in UV-vis absorbance 
was monitored over time. As shown in Figures 4 and S14-19, the 
cationic species (MLB+, LV+, RB+ and Ru(bpy)3

2+) were 
efficiently taken up by Fe-HAF-1 over the course of 2-6 h, while 
both anionic dyes (OG2- and RB2-) and the large cationic dye 
AB4+ remained in solution. These results confirmed the anion- 
and size-selectivity of Fe-HAF-1 for dye uptake. The selective 
cation uptake by Fe-HAF-1 was further corroborated by 
competition experiments using an equimolar (0.025 mmol) 
mixture of the similarly sized by oppositely charged MLB+ and 
OG2- dyes (Figure 4c), which showed that 97% of the former but 
none of the latter was sequestered from solution over the course of 
2 h. Similar competitive selectivity between cationic dye and 
anionic dye was also observed with mixture of MLB+ and RB2- 
(Figure S20).

PXRD measurements indicated that Fe-HAF-1 remained 
crystalline after dye uptake (Figure S21), which prompted us to 

test the recyclability of the MOF. In these experiments, LV+ was 
first fully adsorbed into Fe-HAF-1 powders to obtain a colorless 
solution, followed by a treatment with DEF or saturated NaNO3 to 
induce the release of LV+ from the MOF. The results showed that 
the uptake and release of the cationic dye were quantitative and 
fully reversible over at least three cycles (Figure S22), whereby 
the crystallinity of Fe-HAF-1 was largely preserved (Figure S21).

In summary, we have rationally designed a new MOF, Fe-
HAF-1, which was constructed from tetrahedral, Fe3+-
hydroxamate-based clusters. This chelate-based, cubic MOF was 
found to be not only stable in different organic solvents, but also 
in water over a wide pH range (pH = 1 to 5 M NaOH), making it 
one of the most alkaline-stable MOFs. High crystallinity could be 
achieved despite the chelating nature of the tetra-hydroxamate 
ligand H4BPTH, which led to the formation of defects during 
crystallization and an attendant anionic character for Fe-HAF-1 
MOFs. Consequently, Fe-HAF-1 crystals were highly selective 
for the reversible uptake of positively charged dye molecules. Our 
results, along with previous reports on protein-35-36 and Ti-based 
MOFs,30 further establish hydroxamate functionalities as a 
valuable addition to the synthetic toolkit for MOFs. In addition, 
the large number of symmetry-driven coordination cages 
described in the literature64-67 open up many opportunities for new 
MOFs based on these supramolecular SBUs.
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Figure 4. UV-vis spectra of MOF uptake experiments with dyes: (a) 10 ppm of MLB+, (b) 10 ppm of OG2-, and (c) mix of MLB+ and OG2- 
in water in the presence of Fe-HAF-1 over time. 
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