

Green Organocatalytic Dihydroxylation of Alkenes

Alexis Theodorou,^[a] Ierasia Triandafillidi,^[a] and Christoforos G. Kokotos*^[a]

Abstract: A cheap, green and metal-free one-pot procedure for the dihydroxylation of alkenes is described. H_2O_2 was employed as the oxidant and 2,2,2-trifluoroacetophenone as the organocatalyst, leading to a highly sustainable protocol, where a variety of homoallylic alcohols, amino-alkenes and double bonds were converted into the corresponding polyalcohols in high to excellent yields. This manifold takes advantage of an epoxidation reaction, followed by an *in situ* acidic treatment of the reaction mixture, upon which water ring opens the three-membered ring, leading to the desired products.

Introduction

1.2-Diols represent a repeatedly occurring moiety in numerous natural products and compounds with active biological properties. Bengazole A is a natural product isolated from a marine sponge that exhibits anthelmintic activity (Scheme 1).^[1] Gonodiol is isolated from Goniothalamus gigantus and presents a selective cytotoxic potency against human lung carcinoma cells.^[2] Lipoxin A₄ is a member of the bioactive family of Lipoxins, that derives from arachidonic acid, and has been shown to exhibit immunomodulatory and anti-inflammatory action,^[3] while ceramides, which are isolated from female hair crabs have been shown to induce guard and copulatory behavior in male hair crabs.^[4] Furthermore, glycerophospholipids and sphingophospholipids and their bilayers, important molecules in signal transmission and cell recognition, consist mainly by polyalcohols and aminoalcohols.^[5] As a consequence of their synthetic versatility, a plethora of synthetic approaches have been devised for the synthesis of 1,2-alcohols. The most common methods include the two-step process, known as the Woodward-Prevost reaction (Scheme 2, path a), the direct dihydroxylation (path b) and ring opening of epoxides (path c). The Woodward-Prevost pathway relies on a substitution reaction taking place on an iodo-hydroxy compound.^[6]

Unquestionably, the most studied pathway is the dihydroxylation of alkenes.^[7] It is without say, that the most famous dioxygenation delivery methods are the OsO₄-catalyzed dioxygenation^[8] and the Sharpless asymmetric dihydroxylation.^[9] Unfortunately, the use of osmium suffers from its expense, toxicity and the volatility of the catalyst. Thus, a number of

 [a] Alexis Theodorou, Ierasia Triandafillidi and Prof. Dr. Christoforos G. Kokotos
 Laboratory of Organic Chemistry
 Department of Chemistry
 National and Kapodistrian University of Athens
 Panepistimiopolis 15771, Athens, Greece
 E-mail: ckokotos@chem.uoa.gr

Supporting information for this article is given via a link at the end of the document.

Scheme 1. Natural products containing the 1,2-diol motif.

reactions that mimic the action of the dihydroxylation has arised.^[10] Notable success has been achieved with various transition metals including palladium,^[11] iron,^[12] ruthenium,^[13] manganese,^[14] copper^[15] and boron.^[16] Despite the widespread popularity of these reactions, the toxicity of metals and high levels of inorganic waste represent important limitations that have hindered its application on an industrial scale.

A few metal-free methods for the dihydroxylation of alkenes have been reported, using cyclic malonoyl peroxides^[17] and fluorinated alcohols as catalysts.^[18] In order to access *anti* 1,2-diols, pathway (c), ring-opening of epoxides, is the most widespread method. In addition, very recently, the use of malonoyl peroxides for the alkenes' *anti*-dihydroxylation was reported.^[19]

Our group has contributed in the field of Organocatalysis and very recently reported a cheap, green metal-free and environmentally friendly protocol for oxidations, employing H_2O_2 as the oxidant and 2,2,2-trifluoroacetophenone as the

Scheme 2. Synthetic pathways to 1,2-diols.

WILEY-VCH

catalyst.^[20] Except from the oxidation of silanes to silanols,^[20a] azines and tertiary amines to *N*-oxides,^[20b] and protected allylic alcohols,^[20d] alkenes were readily oxidized in short reaction time.^[20c] We envisaged we could introduce an one-pot protocol for the isolation of diols and polyalcohols, just by a ring opening reaction of the *in situ* formed intermediate-epoxides utilizing the aqueous environment required for the epoxidation (Scheme 2 bottom). Thus, our goal is to take advantage of a metal-free activation of H₂O₂ that could lead to the introduction of a sustainable protocol for the production of polyhydroxylated products.

Results and Discussion

dihydroxylation of alkenes.

Initially, we begun with our previous optimized reaction conditions for the epoxidation reaction,^[20c] followed by addition of aqueous HCI (1N) in the reaction mixture. After addition of the acid, the reaction mixture was left stirring for 2 h at room temperature affording the desired triol **2a** in 55% yield (entry 1, Table 1). The presence of the organocatalyst is apparent, since omission of 2,2,2-trifluoroacetophenone from the reaction mixture led to traces of the product (Table 1, entry 2). This is expected, since H_2O_2 is a poor oxidant by itself and it has to be coupled with a catalyst to further activate it in order to perform

the oxidation. The amount of MeCN and H_2O_2 was reinvestigated, in order this one-pot dihydroxylation to proceed in higher reaction yields (entries 1 and 2-5, Table 1). Decreasing the catalyst loading to 5 mol% led to a noticeable decrease of reaction efficiency (Table 1, entry 6). Increasing the amount of catalyst to 20 mol% had no impact on the yield (Table 1, entry 7). Although, this already constitutes a highly sustainable metal-free process to access dihydroxylated alkenes from double bonds in one-pot, other acid promoters were also studied (entries 8-10, Table 1). Among them, (+)-camphorsulfonic acid (CSA) provided the best results.

Having in hand the ideal reaction conditions, we turned our focus in exploring the substrate scope of this method (Scheme 3). In almost all cases, a 1:1 mixture of diastereomers was obtained. A number of homoallylic alcohols bearing an aromatic substituent were tested, providing the corresponding products in high yields (Scheme 3, **2a-h**). Various substituents at the *para* position had no significant impact in the reaction outcome. Both electron-rich and electron-poor aromatic moieties were employed leading to similarly high yields. In the case of *ortho*-substituted aromatic groups, the yield was slightly dropped, but still, high yield was obtained (compound **2h**). Changing the substitution pattern on the allylic moiety by building up on the steric hindrance did not alter the behavior of the reaction (compounds **2i-k**). Even quaternary dimethyl substituted carbon atom next to the alkene led to high yield of the product.

Table 1. Optimization of the reaction conditions for the organocatalytic

	mol (%)	(equiv.)		
1	10	5	HCI	55
2	0	5	HCI	traces
3	10	8	HCI	58
4	10	12	HCI	62
5	10	16	HCI	69
6	5	16	HCI	57
7	20	16	HCI	69
8	10	16	AcOH	73
9	10	16	TFA	78
10	10	16	(+)-CSA	85

[a] Isolated yield. AcOH: acetic acid, TFA: trifluoroacetic acid, (+)-CSA: (+)-camphorsulfonic acid.

Scheme 3. Substrate scope of the organocatalytic dihydroxylation of alkenes.

Scheme 4. Substrate scope of the organocatalytic dihydroxylation of alkenes.

Furthermore, the use of aliphatic side chains further expanded the substrate scope leading to high yields (compounds 21-n, Scheme 4). When the double bond is placed on a cyclic ring, almost quantitative dihydroxylation took place, leading to a mixture of four diastereomers (50:25:20:5, compound 20). Utilizina tetrasubstituted homoallylic alcohols led to dihydroxylation in good yields (compounds 2p and 2q). The lower yield in the case of 2q can be attributed to the difficulty in the purification and isolation. The high versatility and sustainability of this process was further demonstrated in two additional examples (compounds 2r and 2s). Thus, the presence of a free hydroxy group is not necessary. Aiming at products that could be used as building blocks in lipids and sphingophospholipids, amino-alkenes and protected allylic alcohols were employed. Along with monoglycerides, diacetyl glycerol derivatives (DAG) and triacetyl glycerol compounds (TAG) are considered rich fuel additives that are used to improve cold flow and the viscosity properties of fuel when they are employed with gasoline.^[21] Along these lines, we are glad to report that products 2r and 2s, which have high synthetic value, were isolated in good to high yields. In total, various substitution patterns were well tolerated, affording the dihydroxylated products in good to high yields.

In an effort to further expand the possibilities of this method, additional alkenes were tested (Scheme 5). Starting from a variety of substituted styrenes, diols 3a-3g were isolated in good to excellent yields with sufficient purity (95%), after simple extractions. In most cases, no column chromatography was necessary, since all by-products, including acetamide, can be removed by simple extractions. When the aromatic moiety was replaced by an cyclic alkene, the desired diols were isolated in

excellent yields (compounds 3g-3j). Finally, poly-alcohol 3k and triol 3I were obtained in very good yields.

Conclusions

In conclusion, a highly sustainable one-pot green protocol for the dihydroxylation of alkenes is presented. H₂O₂, a green oxidant, since its only byproduct is water, was activated employing a cheap organic molecule (2,2,2-trilfuoroacetophenone) and a plethora of aromatic and aliphatic homoallylic alcohols were employed successfully leading to triols in high yields. Furthermore, simple alkenes, amino-alkenes and allylic alcohols were also excellent substrates for this transformation. In total, an easily-operated protocol for the intermolecular ring opening of epoxides, prepared in situ from alkenes, from water was demonstrated.

Experimental Section

General methods: Chromatographic purification of products was accomplished using forced-flow chromatography on Merck® Kieselgel 60 F254 230-400 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F254). Visualization of the developed chromatogram was performed by fluorescence quenching using phosphomolybdic acid, anisaldehyde or potassium permanganate stains. Melting points were determined on a Buchi® 530 hot stage apparatus and are uncorrected. Mass spectra (ESI) were recorded on a Finningan® Surveyor MSQ LC-MS spectrometer. HRMS spectra were recorded on Bruker[®] Maxis Impact QTOF spectrometer. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Varian® Mercury (200 MHz, 50 MHz and 188 MHz

WILEY-VCH

respectively), and are internally referenced to residual solvent signals. Data for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad signal, bs m = broad signal multiplet), coupling constant and integration. Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ ppm). Mass spectra and conversions of the reactions were recorded on a Shimadzu[®] GCMS-QP2010 Plus Gas Chromatograph Mass Spectrometer utilizing a MEGA[®] column (MEGA-5, F.T: 0.25µm, I.D.: 0.25mm, L: 30m, Tmax: 350 °C, Column ID# 11475).

General Procedure A for the Synthesis of Homoallylic Alcohols: A flame dry round-bottom flask was charged with a solution of the allylbromide (0.61 mL, 7.00 mmol) in anhydrous THF (2 mL) under argon atmosphere. Zinc dust (210 mg, 7.00 mmol) was added slowly at 0 °C. A solution of aldehyde (2.00 mmol) in anhydrous THF (1 mL) was added to the reaction mixture. The resulting suspension was stirred for 2 hours at 0 °C and then overnight at room temperature. The reaction was quenched with saturated aqueous NH₄Cl carefully at 0 °C, filtered and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude homoallylic alcohol product was purified by column chromatography (5-20% EtOAc in Pet. Ether).

General Procedure B for the Synthesis of Homoallylic Alcohols: To a stirring solution of the magnesium (84 mg, 7.00 mmol) and I_2 (small crystal), allylbromide (0.61 mL, 7.00 mmol) in anhydrous THF (2 mL) was added slowly. The reaction mixture was heated at 60 °C for 1 hour. Aldehyde (2.00 mmol) was dissolved in anhydrous THF (1 mL) and added to the reaction mixture at 0 °C. The resulting suspension was stirred for 2 hours at 0 °C and then overnight at room temperature. The reaction was quenched with saturated aqueous NH₄Cl carefully at 0 °C, filtered and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude homoallylic alcohol product was purified by column chromatography (5-20% EtOAc in Pet. Ether).

1-Phenylbut-3-en-1-ol (1a).^[22] Following Procedure A. Colorless oil; 72% yield; ¹H NMR (CDCl₃): δ 7.38-7.25 (5H, m, ArH), 5.98-5.67 (1H, m, =CH), 5.22-5.06 (2H, m, =CH₂), 4.75-4.64 (1H, m, CHPh), 2.56-2.44 (2H, m, CH₂), 2.36 (1H, s, OH) ppm. ¹³C NMR (CDCl₃): δ 143.7, 134.2, 127.9, 127.0, 125.6, 117.3, 73.0, 43.2 ppm.

1-(4-Bromophenyl)but-3-en-1-ol (1b).^[22] Following Procedure B. Colorless oil; 71% yield; ¹H NMR (CDCl₃): δ 7.40 (2H, d, J = 8.4 Hz, ArH), 7.09 (2H, d, J = 8.4 Hz, ArH), 5.79-5.54 (1H, m, =CH), 5.11-4.98 (2H, m, =CH₂), 4.51 (1H, t, J = 6.7 Hz, CHPh), 3.57 (1H, s, OH), 2.36 (2H, t, J = 6.7 Hz, CH₂) ppm. ¹³C NMR (CDCl₃): δ 142.5, 133.6, 131.0, 127.3, 120.8, 118.0, 72.4, 43.1 ppm.

1-(4-Chlorophenyl)but-3-en-1-ol (1c).^[22] Following Procedure B. Colorless oil; 52% yield; ¹H NMR (CDCl₃): δ 7.26 (2H, d, J = 8.4 Hz, ArH), 7.17 (2H, d, J = 8.4 Hz, ArH), 5.82-5.57 (1H, m, =CH), 5.13-5.00 (2H, m, =CH₂), 4.57 (1H, t, J = 6.5 Hz, CHPh), 3.19 (1H, s, OH), 2.38 (2H, t, J = 6.5 Hz, CH₂) ppm. ¹³C NMR (CDCl₃): δ 142.1, 133.8, 132.7, 128.2, 127.0, 118.2, 72.4, 43.4 ppm.

1-(4-Fluorophenyl)but-3-en-1-ol (1d).^[22] Following Procedure B. Colorless oil; 57% yield; ¹H NMR (CDCl₃): δ 7.27-7.15 (2H, m, ArH), 7.04-6.89 (2H, m, ArH) 5.70 (1H, ddt, *J* = 16.6, 9.4 and 6.5 Hz, =CH), 5.12-4.96 (=CH₂), 4.58 (1H, t, *J* = 6.5 Hz, CHPh), 3.38 (1H, br s, OH), 2.39 (2H, t, *J* = 6.5 Hz, CH₂) ppm. ¹³C NMR (CDCl₃): δ 161.8 (d, *J* = 245.0 Hz), 139.5 (d, *J* = 3.0 Hz), 134.0, 127.3 (d, *J* = 8.0 Hz), 117.8, 114. 8 (d, *J* = 21.3 Hz), 72.5, 43.4 ppm. ¹⁹F NMR (CDCl₃): δ -59.8 - 60.6 (m) ppm.

1-(4-(Trifluoromethyl)phenyl)but-3-en-1-ol (1e).^[23] Following Procedure A. Colorless oil; 83% yield; ¹H NMR (CDCl₃): δ 7.56 (2H, d, J = 8.2 Hz, ArH), 7.39 (2H, d, J = 8.2 Hz, ArH), 5.83-5.59 (1H, m, =CH), 5.18-5.04 (2H, m, =CH₂), 4.74 (1H, t, J = 6.4 Hz, CHPh), 3.27 (1H, s, OH), 2.46 (2H, t, J = 6.4 Hz, CH₂) ppm. ¹³C NMR (CDCl₃): δ 147.1, 133.3, 129.9 (q, J = 32.4 Hz), 126.1, 125.5 (q, J = 3.8 Hz), 124.3 (q, J = 272.3 Hz), 119.0, 77.9, 43.4 ppm. ¹⁹F NMR (CDCl₃): δ 7.52 (s) ppm.

1-([1,1'-Biphenyl]-4-yl)but-3-en-1-ol (**1f**).^[24] Following Procedure B. Colorless oil; 67% yield; ¹H NMR (CDCl₃): δ 7.74-7.37 (9H, m, ArH), 6.05-5.83 (1H, m, =CH), 5.33-5.18 (2H, m, =CH₂), 4.81 (1H, t, *J* = 6.5 Hz, CHPh), 3.20 (1H, br s, OH), 3.20 (2H, t, *J* = 6.5 Hz, CH₂) ppm. ¹³C NMR (CDCl₃): δ 142.8, 140.4, 139.9, 134.3, 128.5, 127.0, 126.7, 126.7, 126.1, 117.8, 72.9, 43.4 ppm.

1-(4-IsopropyIphenyI)but-3-en-1-ol (1g).^[24] Following Procedure A. Colorless oil; 42% yield; ¹H NMR (CDCl₃): δ 7.29 (2H, d, J = 8.2 Hz, ArH), 7.21 (2H, d, J = 8.2 Hz, ArH), 5.95-5.70 (1H, m, =CH), 5.24-5.09 (2H, m, =CH₂), 4.70 (1H, t, J = 6.5 Hz, CHPh), 2.91 [1H, sept, J = 6.9 Hz, CH(CH₃)₂], 2.51 (2H, t, J = 6.5 Hz, CH₂), 1.98 (1H, br s, OH), 1.25 (6H, d, J = 6.9 Hz, 2 x CH₃) ppm. ¹³C NMR (CDCl₃): δ 147.8, 141.2, 134.6, 126.2, 125.7, 117.6, 73.1, 43.4, 33.6, 23.8 ppm.

1-(2-Bromophenyl)but-3-en-1-ol (**1h**).^[24] Following Procedure B. Colorless oil; 50% yield; ¹H NMR (CDCl₃): δ 756-7-47 (2H, m, ArH), 7.31 (1H, m, ArH), 7.11 (1H, td, J = 7.6 and 1.7 Hz, ArH), 5.97-5.75 (1H, m, =CH), 5.24-5.12 (2H, m, =CH₂), 5.07 (1H, dd, J = 8.3 and 3.8 Hz, CHPh) 2.68-2.53 (1H, m, C*H*H), 2.47 (1H, s, OH) 2.42-2.23 (1H, m, C*H*H) ppm. ¹³C NMR (CDCl₃): δ 142.6, 134.0, 132.3, 128.5, 127.3, 127.1, 121.5, 118.0, 71.6, 41.7 ppm.

3-Methyl-1-phenylbut-3-en-1-ol (1i).^[25] Following Procedure A. Colorless oil; 87% yield; ¹H NMR (CDCl₃): *δ* 7.40-7.22 (5H, m, ArH), 4.95-4.74 (3H, m, CHPh and =CH₂), 2.72 (1H, br s, OH), 2.43 (2H, d, *J* = 7.6 Hz, CH₂), 1.79 (3H, s, CH₃) ppm. ¹³C NMR (CDCl₃): *δ* 143.9, 142.1, 128.1, 127.2, 125.6, 113.7, 71.3, 48.0, 22.2 ppm.

2-Methyl-1-phenylbut-3-en-1-ol (1j).^[26] Following Procedure A. 1:1 mixture of diastereomers; Colorless oil; 92% yield; ¹H NMR (CDCl₃): δ 7.38-7.22 (5H, m, ArH), 5.92-5.65 (1H, m, =CH), 5.25-4.98 (2H, m, =CH₂), 4.55 (0.5H, d, J = 5.7 Hz, OCHPh), 4.34 (0.5H, d, J = 7.7 Hz, OCHPh), 2.66-2.36 (2H, m, CHCH₃ and OH), 1.02 (1.5H, d, J = 6.8 Hz, CH₃), 0.88 (1.5H, d, J = 6.8 Hz, CH₃) ppm. 1³C NMR (CDCl₃): δ 142.5, 142.3, 140.5, 140.2, 128.0, 127.8, 127.4, 127.1, 126.7, 126.4, 116.5, 115.2, 77.7, 77.1, 46.0, 44.5, 16.3, 14.1 ppm.

2,2-Dimethyl-1-phenylbut-3-en-1-ol (1k).^[27] Following Procedure A. Colorless oil; 88% yield; ¹H NMR (CDCl₃): δ 7.36-7.26 (5H, m, ArH), 5.92 (1H, dd, *J* = 17.4 and 7.8 Hz, =CH), 5.14 (1H, dd, *J* = 7.8 and 1.4 Hz, =CHH), 5.07 (1H, dd, *J* = 17.4 and 1.4 Hz, =CHH), 4.40 (1H, s, CHPh), 1.23 (1H, br s, OH), 1.02 (3H, s, CH₃) 0.97 (3H, s, CH₃) ppm. ¹³C NMR (CDCl₃): δ 145.0, 140.7, 127.7, 127.4, 127.3, 113.7, 80.5, 42.1, 24.3, 21.0 ppm.

1-Phenylhex-5-en-3-ol (11).^[27] Following Procedure A. Colorless oil; 75% yield; ¹H NMR (CDCl₃): δ 7.37-7.20 (5H, m, ArH), 5.97-5.75 (1H, m, =CH), 5.23-5.10 (2H, m, =CH₂), 3.77-3.62 (1H, m, OCH), 2.96-2.62 (2H, m, CH₂Ph), 2.43-2.04 (3H, m, OH and CH₂), 1.88-1.74 (2H, m, CH₂) ppm. ¹³C NMR (CDCl₃): δ 141.9, 134.5, 128.3, 128.2, 125.7, 118.0, 69.8, 41.9, 38.3, 31.9 ppm.

Dec-1-en-4-ol (1m).^[28] Following Procedure A. Colorless oil; 35% yield; ¹H NMR (CDCl₃): δ 5.88-5.63 (1H, m, =CH), 5.08-4.92 (2H, m, =CH₂), 3.62-

3.46 (1H, m, OCH), 2.43-1.55 (3H, m, OH and CH₂), 1.59-1.12 (10H, m, 5 7.17 (2H, d, J = 7.7 Hz, ArH), 5.05-4.89 (1H, m, OCHPh), 4.10-3.86 (1H, x CH₂), 0.81 (3H, t, J = 5.0 Hz, CH₃) ppm. ¹³C NMR (CDCl₃): δ 134.9, 117.4, 70.5, 41.8, 36.6, 31.7, 29.2, 25.5, 22.4, 13.9 ppm.

1-Cyclohexylbut-3-en-1-ol (1n).^[27] Following Procedure A. Colorless oil; 87% yield; ¹H NMR (CDCl₃): δ 5.87 (1H, ddt, J = 15.0, 10.6 and 7.5 Hz, =CH), 5.18-5.02 (2H, m, =CH2), 3.37-3.22 (1H, m, OCH), 2.20 (2H, m, =CHCH₂), 1.70-1.16 (12H, m, OH, CH and 5 x CH₂) ppm. ¹³C NMR (CDCl₃): δ 135.4, 117.5, 74.7, 42.9, 38.6, 28.9, 27.9, 26.3, 26.1, 26.0 ppm.

Cyclohex-2-en-1-yl(phenyl)methanol (10).[29] Following Procedure A. 1:1 mixture of diastereomers; Colorless oil; 56% yield; ¹H NMR (CDCl₃): δ 7.43-7.22 (5H, m, ArH), 5.92-5.73 (1H, m, CH=), 5.47-5.31 (1H, m, =CH), 4.57 (0.5H, d, J = 7.0 Hz, CHPh), 4.52 (0.5H, d, J = 6.7 Hz, CHPh), 2.61-2.22 (2H, m, OH and CH), 2.09-1.92 (2H, m, CH₂) 1.88-1.65 (2H, m CH₂), 1.62-1.44 (2H, m, CH₂) ppm. ¹³C NMR (CDCl₃): δ 142.8, 130.0, 128.0, 127.2, 126.4, 126.2, 77.3, 42.8, 25.1, 23.9, 21.0 ppm.

1-Allylcyclohexan-1-ol (1p).^[26] Following Procedure A. Colorless oil; 45% yield; ¹H NMR (CDCl₃): δ 5.98-5.73 (1H, m, =CH), 5.18-5.02 (2H, m, $=CH_2$), 2.20 (2H, d, J = 7.5 Hz, $=CHCH_2$), 1.73-1.10 (10H, m, 5 x CH₂) ppm. ^{13}C NMR (CDCl_3): δ 133.7, 118.4, 70.8, 46.6, 37.3, 25.7, 22.1 ppm.

3-Allyl-3-hydroxy-1-methylindolin-2-one (1q).^[30] Following Procedure A. Yellow solid; 34% yield; ¹H NMR (CD₃OD): δ 7.40-7.26 (2H, m, ArH), 7.10 (1H, dd, J = 10.7 and 4.3 Hz, ArH), 6.94 (1H, d, J = 7.7 Hz, ArH), 5.40 (1H, m, =CH), 5.02-4.84 (3H, m, OH and =CH₂), 3.13 (3H, s, NCH₃), 2.65 (2H, m, CH₂) ppm. ¹³C NMR (CD₃OD): δ 179.5, 144.5, 132.1, 131.8, 130.6, 124.9, 124.1, 119.9, 109.6, 77.2, 43.3, 26.3 ppm.

N-(1-Phenylbut-3-en-1-yl)methanesulfonamide (1r).^[31] Yellow oil; 32% yield (4 steps); ¹H NMR (CDCl₃): δ 7.33-7.16 (5H, m, ArH), 5.76-5.51 (2H, m, NH and =CH), 5.12-4.93 (2H, m, =CH₂), 4.53-4.35 (1H, m, NCHPh), 2.57-2.40 (5H, m, CH₃ and CH₂) ppm. 13 C NMR (CDCl₃): δ 141.4, 133.8, 129.0, 128.1, 126.9, 118.9, 57.9, 42.1, 41.9 ppm. MS (ESI) m/z 224 [(M-H) , 100%].

General Procedure for the One-pot Organocatalytic Oxidative Dihydroxylation of Alkenes (2a-2s, 3a-3l). Alkene (0.50 mmol) was placed in a round bottom flask and dissolved in tert-butanol (0.4 mL). 2,2,2-Trifluoro-1-phenylethanone (8.7 mg, 0.10 mmol), aqueous buffer solution (0.4 mL, 0.6M K₂CO₃ - 4x10⁻⁴M EDTA disodium salt), acetonitrile (0.40 mL, 8.00 mmol) and 30% aqueous H₂O₂ (0.84 mL, 8.00 mmol) were added consecutively. The reaction mixture was left stirring for 18 hours at room temperature and then (+)-CSA (232 mg, 1.00 mmol) was added. The reaction mixture was stirred for 2 hours. The crude product was purified using flash column chromatography (50-100% EtOAc in Pet. Ether) to afford the desired product. Alternatively, if the starting alkene is fully consumed, after reaction completion, the reaction mixture can be diluted with CH₂Cl₂ (10 mL) and washed with HCl (1N, 10 mL) and brine (10 mL). The crude organic layers can be dried (Na₂SO₄) and the product can be obtained with sufficient purity.

4-Phenylbutane-1,2,4-triol (2a).^[32] 1:1 mixture of diasteromers; Colorless oil; 85% yield; ¹H NMR (CDCl₃): δ 7.26-7.14 (5H, m, ArH), 4.92-4.82 (0.5H, m, OCHPh), 4.77 (0.5H, dd, J = 9.1 and 3.6 Hz, OCHPh), 4.51 (2H, br s, 2 x OH), 3.98-3.72 (2H, m, OH and OCH), 3.49-3.26 (2H, m, OCH2), 1.84-1.53 (2H, m, CH₂) ppm. ^{13}C NMR (CDCl₃): δ 144.4, 143.9, 128.4, 128.3, 127.5, 127.2, 125.7, 125.5, 73.3, 71.7, 70.3, 69.1, 66.6, 66.3, 41.6, 41.3 ppm. MS (ESI) *m/z* 181 (M-H⁻, 100%).

4-(4-Bromophenyl)butane-1,2,4-triol (2b). 1:1 mixture of diasteromers; Yellow solid; 86% yield; ¹H NMR (CDCl₃): δ 7.40 (2H, d, J = 7.7 Hz, ArH),

m, OCH), 3.70-3.42 (2H, m, OCH2), 2.61 (3H, br s, 3 x OH), 1.97-1.62 (2H, m, CH₂) ppm. ^{13}C NMR (CDCl_3): δ 143.4, 143.0, 131.4, 131.3, 127.4, 127.2, 121.1, 120.8, 72.7, 71.6, 69.6, 68.9, 66.4, 66.2, 41.3, 41.1 ppm. HRMS (ESI): *m*/z calcd. for C₁₀H₁₃BrNaO₃ [M+Na]⁺ 282.9940; found 282.9940.

4-(4-Chlorophenyl)butane-1,2,4-triol (2c). 1:1 mixture of diasteromers; Low melting point solid; 93% yield; ¹H NMR (CDCl₃): δ 7.23-7.15 (4H, m, ArH), 4.89-4.73 (1H, m, OCHPh), 4.41 (3H, br s, 3 x OH), 3.98-3.72 (1H, m, OCH), 3.55-3.28 (2H, m, OCH₂), 1.84-1.53 (2H, m, CH₂) ppm. ¹³C NMR $(\mathsf{CDCI}_3):\ \overline{o}\ 142.9,\ 142.4,\ 133.0,\ 132.7,\ 128.4,\ 128.4,\ 127.0,\ 126.8,\ 72.6,$ 71.6, 69.6, 68.9, 66.5, 66.2, 41.3, 41.0 ppm. HRMS (ESI): m/z calcd. for C₁₀H₁₃ClNaO₃ [M+Na]⁺ 239.0445; found 239.0444.

4-(4-Fluorophenyl)butane-1,2,4-triol (2d). 1:1 mixture of diasteromers; White solid; 84% yield; ¹H NMR (CDCl₃): δ 7.29-7.17 (2H, m, ArH), 7.02-6.86 (2H, m, ArH), 4.91-4.76 (1H, m, OCHPh), 3.94-3.65 (4H, br s, OCH and 3 x OH), 3.54-3.32 (2H, m, OCH₂), 1.88-1.56 (2H, m, CH₂) ppm. ¹³C NMR (CDCl₃): δ 162.0 (d, J = 236.8 Hz), 161.9 (d, J = 236.8 Hz), 140.1 (d, J = 22.3 Hz), 140.0 (d, J = 22.3 Hz), 127.3 (d, J = 8.1 Hz), 127.0 (d, J = 8.1 Hz), 115.3 (d, J = 3.0 Hz), 114.8 (d, J = 3.0 Hz), 72.7, 71.7, 69.7, 69.0, 66.5, 66.3, 41.5, 41.3 ppm. ^{19}F NMR (CDCl_3): δ -60.1 - -60.3 (m), -60.6 --60.8 (m) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₀H₁₃FNaO₃ [M+H]⁺ 223.0741; found 223.0738.

4-(4-(Trifluoromethyl)phenyl)butane-1,2,4-triol (2e). 1:1 mixture of diasteromers; Colorless oil; 67% yield; ¹H NMR (80% CDCI₃:20% CD₃OD): δ 7.52 (2H, d, J = 8.1 Hz, ArH), 7.41 (2H, d, J = 8.1 Hz, ArH), 5.03-4.86 (1H, m, OCHPh), 3.92-3.78 (1H, m, OCH), 3.67 (3H, br s, 3 x OH), 3.55-3.32 (2H, m, OCH_2), 1.88-1.65 (2H, m, CH_2) ppm. ^{13}C NMR (80% CDCl₃:20% CD₃OD): δ 148.9, 148.3, 129.4 (q, J = 32.4 Hz), 129.1 (q, J = 32.2 Hz), 125.9, 125.7, 125.2 (q, J = 3.1 Hz), 125.1 (q, J = 3.6 Hz), 124.1 (q, J = 271.9 Hz), 124.0 (q, J = 271.9 Hz), 72.6, 71.6, 69.8, 68.9, 66.4, 66.2, 41.6, 41.3 ppm. ¹⁹F NMR (80% CDCl₃:20% CD₃OD): δ -15.05 (s), -15.08 (s); HRMS (ESI): *m/z* calcd. for C₁₁H₁₃F₃NaO₃ [M+Na]⁺ 273.0709; found 273.0708.

4-([1,1'-Biphenyl]-4-yl)butane-1,2,4-triol (2f). 1:1 mixture of diasteromers; White solid; 86% yield; ¹H NMR (50% CDCl₃:50% CD₃OD): δ 7.44-7.22 (9H, m, ArH), 5.06-4.95 (0.5H, m, OCHPh) 4.94-4.83 (0.5H, m, OCHPh), 4.59 (3H, br s, 3 x OH), 4.15-4.02 (0.5H, m, OCH), 4.00-3.85 (0.5H, m, OCH), 3.68-3.36 (2H, m, OCH₂), 2.02-1.61 (2H, m, CH₂) ppm. ¹³C NMR (50% CDCl₃:50% CD₃OD): δ 143.6, 143.0, 140.4, 140.3, 139.9, 139.6, 128.4, 126.8, 126.8, 126.6, 126.6, 126.5, 125.9, 125.6, 72.5, 71.1, 69.8, 68.8, 66.2, 65.9, 41.6, 41.2 ppm. HRMS (ESI): m/z calcd. for C16H18NaO3 [M+Na]⁺ 281.1148; found 281.1147.

4-(4-Isopropylphenyl)butane-1,2,4-triol (2g). 1:1 mixture of diasteromers; Yellow solid; 86% yield; ¹H NMR (CDCl₃): δ 7.20 (2H, d, J = 8.3, ArH), 7.12 (2H, d, J = 8.3 Hz, ArH), 4.97-4.76 (1H, m, OCHPh), 4.52-3.81 (4H, m, 3 x OH and OCH), 3.57-3.33 (2H, m, OCH2), 2.83 [1H, sept, J = 6.9 Hz, CH(CH₃)₂], 1.93-1.57 (2H, m, CH₂), 1.19 (6H, d, J = 6.9 Hz, 2 x CH₃) ppm. ¹³C NMR (CDCl₃): δ 148.2, 147.9, 141.8, 141.4, 126.4, 126.4, 125.7, 125.5, 73.6, 72.0, 70.4, 69.3, 66.8, 66.5, 41.2, 41.4, 33.7, 23.9 ppm. HRMS (ESI): *m*/*z* calcd. for C₁₃H₁₉O₃ [M-H]⁻ 223.1340; found 223.1340.

4-(2-Bromophenyl)butane-1,2,4-triol (2h). 1:1 mixture of diasteromers; Yellow oil; 74% yield; ¹H NMR (CDCl₃): δ 7.55-7.34 (2H, m, ArH), 7.28-7.15 (1H, m, ArH), 7.08-6.95 (1H, m, ArH), 5.33-5.10 (1H, m, OCHPh), 4.55-3.83 (4H, m, 3 x OH and OCH), 2.66-3.01 (2H, m, OCH2), 1.89-1.50 (2H, m, CH₂) ppm. ¹³C NMR (CDCl₃): δ 143.0, 142.9, 132.5, 132.5, 128.8, 128.7, 127.8, 127.7, 127.2, 127.2, 121.3, 121.2, 72.6, 72.4, 69.9, 69.5,

66.6, 66.5, 39.7, 39.2 ppm. HRMS (ESI): m/z calcd. for C10H13BrNa 48.7, 48.5, 41.9, 27.2, 27.1, 23.3, 22.8, 19.3, 19.2, 18.1, 18.0 ppm. MS [M+Na]⁺ 282.9940; found 282.9937.

(2i).^[33] 2-Methyl-4-phenylbutane-1,2,4-triol 55.45 mixture of diasteromers; Colorless oil; 95% yield; ¹H NMR (CDCl₃): δ 7.29-7.18 (5H, m, ArH), 5.15-4.75 (2H, m, OH and OCHPh), 3.67 (1H, d, J = 11.3 Hz, CHHO), 3.47 (1H, d, J = 11.3 Hz, OCHH), 3.36 (2H, br s, 2 x OH), 2.08-1.96 (0.45H, m, CHH), 1.94-1.75 (0.55H, m, CHH), 1.76-1.64 (0.55H, m, CHH), 1.64-1.46 (0.45H, m, CHH), 1.20 (1.35H, s, CH₃), 1.13 (1.65H, s, CH3) ppm. ^{13}C NMR (CDCl3): δ 144.3, 144.1, 128.4, 127.5, 127.4, 125.7, 125.6, 73.6, 73.4, 71.5, 71.0, 70.2, 68.7, 46.8, 46.0, 25.0, 23.5 ppm. MS (ESI) m/z 195 (M-H⁻, 100%).

3-Methyl-4-phenylbutane-1,2,4-triol (2j). 1:1:1:1 mixture of diasteromers; Viscous colorless oil; 87% yield; ¹H NMR (CDCl₃): δ 7.32-7.10 (5H, m, ArH), 5.08 (0.5H, d, J = 2.1 Hz, OCHPh), 4.98 (0.5H, d, J = 2.5 Hz, OCHPh), 4.82 (2H, br s, OH), 4.54-4.44 (1H, m, OCH), 4.16-4.02 (0.25H, m, OCHH), 3.95-3.85 (0.25H, m, OCHH), 3.77-3.42 (2.5H, m, OCH2 and OH), 1.98-1.76 (1H, m, CHCH₃), 0.69 (0.75H, d, J = 7.1 Hz, CH₃), 0.60 (0.75H, d, J = 7.0 Hz, CH₃), 0.52 (0.75H, d, J = 7.0 Hz, CH₃), 0.44 (0.75H, d, J = 6.9 Hz, CH₃) ppm. ¹³C NMR (CDCl₃): δ 142.8, 142.7, 142,4, 142.2, 128.4, 128.1, 128.0, 127.8, 127.7, 127.1, 127.0, 126.9, 126.8, 125.9, 125.7, 78.6, 76.7, 76.2, 75.8, 75.7, 74.2, 73.6, 72.4, 65.0, 64.9, 64.6, 64.4, 41.8, 41.6, 41.5, 41.4, 12.7, 10.9, 9.7 ppm. HRMS (ESI): m/z calcd. for $C_{11}H_{16}NaO_3 [M+Na]^+ 219.0992$; found 219.1001.

3,3-Dimethyl-4-phenylbutane-1,2,4-triol (2k). 1:1 mixture of diasteromers; White solid; 82% yield; ¹H NMR (CDCl₃): δ 7.27-7.21 (5H, m, ArH), 5.15-5.12 (2H, br s, 2 x OH), 4.63 (1H, s, OCHPh), 3.75-3.42 (4H, m, OH, OCH and OCH₂), 0.84 (1.5H, s, CH₃), 0.76 (3H, s, CH₃), 0.58 (1.5H, s, CH₃) ppm. ¹³C NMR (CDCl₃): δ 140.6, 128.1, 127.9, 127.5, 127.4, 127.4, 80.4, 80.2, 79.8, 77.6, 63.1, 62.7, 40.7, 39.8, 22.5, 21.1, 19.8, 15.0 ppm. HRMS (ESI): *m/z* calcd. for C₁₂H₁₇O₃ [M-H]⁻ 209.1183; found 209.1183.

6-Phenylhexane-1,2,4-triol (21).^[34] 1:1 mixture of diasteromers; Yellow oil; 70% yield; ¹H NMR (CDCl₃): δ 7.32-7.10 (5H, m, ArH), 4.12-3.35 (7H, m, 3 x OH and 2 x OCH and OCH₂), 2.86-2.49 (2H, m, CH₂Ph), 1.85-1.68 (2H, m, CH_2), 1.66-1.43 (2H, m, CH_2) ppm. ^{13}C NMR (CDCl_3): δ 141.9, 141.7, 128.3, 128.3, 125.8, 122.3, 72.3, 70.9, 69.2, 67.7, 66.8, 66.5, 39.5, 39.4, 39.0, 38.9, 32.0, 31.6 ppm. MS (ESI) m/z 209 (M-H⁻, 100%).

Decane-1,2,4-triol (2m).[32] 1:1 mixture of diasteromers; Viscous orange oil; 89% yield; ¹H NMR (CDCl₃): δ 4.65-4.32 (3H, br s, 3 x OH), 3.98-3.67 (2H, m, 2 x OCH), 3.59-3.25 (2H, m, OCH₂), 1.57-1.12 (12H, m 6 x CH₂), 0.91-0.74 (3H, m, CH₃) ppm. ¹³C NMR (CDCl₃): δ 72.4, 71.6, 69.2, 68.2, 66.9, 66.5, 39.5, 39.0, 38.0, 37.8, 31.8, 29.3, 25.8, 25.4, 22.6, 14.0 ppm. MS (ESI) m/z 189 (M-H⁻, 100%).

4-Cyclohexylbutane-1,2,4-triol (2n).^[16] 1:1 mixture of diasteromers; Viscous white oil; 80% yield; ¹H NMR (CDCl₃): δ 4.07-3.87 (1H, m, OCH), 3.73-3.42 (3H, m, 1 x OCH and OCH₂), 2.73 (3H, br s, 3 x OH), 1.92-1.52 (5H, m, 1 x CH and 2 x CH_2), 0.42-0.83 (8H, m, 4 x CH_2) ppm. $^{13}\!C$ NMR (CDCl₃): δ 76.0, 72.7, 72.2, 69.4, 67.0, 66.6, 44.1, 43.9, 36.4, 35.8, 29.0, 28.8, 28.2, 28.0, 26.4, 26.2, 26.1 ppm. MS (ESI) m/z 187 (M-H⁻, 100%).

(20).^[16] 3-(Hydroxy(phenyl)methyl)cyclohexane-1,2-diol 50:25:20:5 mixture of diastereomers; Colorless oil; 91% yield; ¹H NMR (CDCl₃): δ 7.31-7.12 (5H, m, ArH), 5.83 (2H, br s, 2 x OH), 5.10 (0.25H, d, J = 0.7 Hz, OCHPh), 4.96 (0.5H, d, J = 2.6 Hz, OCHPh), 4.76 (0.2H, d, J = 9.9 Hz, OCHPh), 4.52 (0.05H, d, J = 8.8 Hz, OCHPh), 3.98-3.76 (1H, m, OCH), 3.62-3-31 (1H, m, OCH), 2.24-0.90 (7H, m, OH and 3 x CH₂) ppm. ¹³C NMR (CDCl₃): δ 142.8, 142.5, 142.4, 128.4, 128.1, 128.0, 127.1, 127.0, 126.9, 126.0, 125.8, 77.5, 77.4, 75.8, 75.8, 75.7, 75.5, 74.3, 72.7, 70.0,

(ESI) m/z 221 (M-H⁻, 100%).

3-(1-Hydroxycyclohexyl)propane-1,2-diol (2p).^[35] 1:1 mixture of diasteromers; Colorless solid; 71% yield; ¹H NMR (CDCl₃): δ 4.45 (1H, br s, OH), 4.06 (1H, ddd, J = 9.3 and 6.9 and 3.6 Hz, OCH), 3.56 (1H, dd, J = 11.6 and 3.3 Hz, OCHH), 3.46 (2H, br s, 2 x OH), 3.42 (1H, dd, J = 11.6 and 6.6 Hz, OCHH), 1.77-1.17 (12H, m, 6 x CH_2) ppm. ^{13}C NMR (CDCl_3): δ 72.2, 69.2, 67.1, 42.0, 39.7, 36.0, 25.7, 22.2, 22.0 ppm. MS (ESI) m/z 197 (M+Na⁺, 100%).

3-(2,3-Dihydroxypropyl)-3-hydroxy-1-methylindolin-2-one (2q). 1:1 mixture of diasteromers; Orange oil; 50% yield; ¹H NMR (CDCl₃): δ 7.49-7.38 (1H, m, ArH), 7.37-7.18 (1H, m, ArH), 7.13-6.96 (1H, m, ArH), 6.85-6.71 (1H, m, ArH), 5.07 (1H, br s, OH), 4.51-4.30 (1H, m, OCH), 4.17 (1H, br s, OH), 3.70-3.39 (3H, m, OH and OCH₂), 3.15 (1.5H, s, NCH₃), 3.12 (1.5H, s, NCH₃), 2.46-2.23 (1H, m CHH), 2.21-1.96 (1H, m, CHH) ppm. ¹³C NMR (CDCl₃): δ 178.7, 178.5, 142.6, 142.3, 130.7, 129.7, 124.3, 123.6, 123.5, 108.8, 108.7, 75.8, 75.7, 68.6, 68.3, 66.3, 66.2, 39.8, 39.2, 26.3, 26.2 ppm. HRMS (ESI): *m*/z calcd. for C₁₂H₁₄NO₄ [M-H]⁻ 236.0928; found 236.0922.

N-(3.4-Dihydroxy-1-phenylbutyl)methanesulfonamide 55.45 (2r). mixture of diasteromers; Colorless oil; 74% yield; ¹H NMR (CDCl₃): δ 7.40-7.17 (5H, m, ArH), 6.57 (0.45H, d, J = 6.4 Hz, NH), 6.51 (0.55H, d, J = 8.8 Hz, NH), 4.83-4.55 (1H, m, NCHPh), 4.36-3.93 (2H, m, OH and OCH), 3.80-3.37 (3H, m, OH and OCH_2), 2.55 (1.65H, s, CH_3), 2.45 (1.35H, s, CH₃), 2.15-1.63 (2H, m, CH₂) ppm. ¹³C NMR (CDCl₃): δ 141.7, 141.2, 128.9, 128.0, 127.7, 126.9, 126.4, 70.2, 68.7, 66.5, 66.3, 56.7, 54.8, 41.6, 41.5, 40.1, 40.0 ppm. HRMS (ESI): *m/z* calcd. for C₁₁H₁₆NO₄S [M-H]⁻ 258.0806; found 258.0805.

2,3-Dihydroxypropyl benzoate (2s).^[36] Yellow oil. 51% yield; ¹H NMR (CDCl₃): δ 8.01 (2H, d, J = 7.0 Hz, ArH), 7.60-7.48 (1H, m, ArH), 7.46-7.33 (2H, m, ArH), 4.39 (2H, d, J = 5.4 Hz, OCH₂), 4.14-3.99 (1H, m, OH), 3.97-3.90 (1H, m, OCH), 3.82-3.50 (4H, m, 2 x OH and OCH₂) ppm. $^{13}\!C$ NMR (CDCl₃): δ 167.7, 133.3, 129.7, 129.5, 128.4, 70.3, 65.6, 63.4 ppm. MS (ESI) m/z 219 (M+Na⁺, 100%).

1-Phenylethane-1,2-diol (3a).^[18] Colorless oil; 98% yield; ¹H NMR (CDCl₃): δ 7.25 (5H, m, ArH), 4.75 (1H, dd, J = 7.8 and 3.9 Hz, OCHPh), 4.19 (2H, br s, 2 x OH), 3.70-3.51 (2H, m, OCH_2) ppm. ^{13}C NMR (CDCl_3): δ 140.0, 128.4, 127.9, 126.0, 74.7, 67.8 ppm. MS (ESI) m/z 137 (M-H⁻, 100%).

1-(4-Chlorophenyl)ethane-1,2-diol (3b).^[37] Colorless oil; 41% yield; ¹H NMR (CDCl₃): δ 7.36-7.17 (4H, m, ArH), 5.15-4.52 (3H, m, 2 x OH and PhCH), 3.79-3.42 (2H, m, CH₂) ppm. ^{13}C NMR (CDCl₃): δ 138.8, 133.6, 128.6, 127.5, 73.9, 67.6 ppm. MS (ESI) m/z 171 (M-H⁻, 100%).

1-(4-(tert-Butyl)phenyl)ethane-1,2-diol (3c).^[38] White solid; 86% yield; ¹H NMR (CDCl₃): δ 7.36 (2H, d, J = 8.4 Hz, ArH), 7.25 (2H, d, J = 8.4 Hz, ArH), 4.85-4.66 (1H, m, PhCH), 3.92-3.40 (4H, m, CH₂ and 2 x OH), 1.30 [9H, s, C(CH₃)₃] ppm. ¹³C NMR (CDCl₃): δ 150.8, 137.5, 125.8, 125.4, 74.9, 67.9, 34.5, 31.3 ppm. MS (ESI) m/z 193 (M-H⁻, 100%).

1-(p-Tolyl)ethane-1,2-diol (3d).^[37] White solid; 88% yield; ¹H NMR (CDCl₃): δ 7.19 (2H, d, J = 8.2 Hz, ArH), 7.11 (2H, d, J = 8.2 Hz, ArH), 4.72 (1H, dd, J = 7.8 and 3.9 Hz, PhCH), 3.68 (2H, br s, 2 x OH), 3.69-3.52 (2H, m, CH₂), 2.32 (3H, s, CH₃) ppm. ¹³C NMR (CDCl₃): δ 137.5, 137.3, 129.1,126.0, 74.5, 67.9, 21.1 ppm. MS (ESI) m/z 151 (M-H⁻, 100%).

1-(3-Bromophenyl)ethane-1,2-diol (3e).^[39] Colourless oil; 65% yield; ¹H NMR (CDCl₃): δ 7.45 (1H, s, ArH), 7.42-7.35 (1H, m, ArH), 7.24-7.11 (2H, m, ArH), 5.39 (2H, br s, 2 x OH), 4.74 (1H, dd, J = 8.4 and 3.3 Hz, PhCH), 3.68 (1H, dd, J = 11.6 and 3.3 Hz, C*H*H), 3.55 (1H, dd, J = 11.6 and 8.4 Hz, PhC*H*H) ppm. ¹³C NMR (CDCl₃): δ 142.4, 131.0, 130.1, 129.1, 124.6, 122.6, 74.0, 67.7 ppm. MS (ESI) *m/z* 214 (M-H⁻, 100%).

2-Phenylpropane-1,2-diol (3f).^[38] Yellow oil; 61% yield; ¹H NMR (CDCl₃): δ 7.48-7.21 (5H, m, ArH), 3.75 (1H, d, J = 11.3 Hz, C*H*H), 3.59 (1H, d, J = 11.3 Hz, C*H*H), 2.85 (2H, br s, 2 x OH), 1.50 (3H, s, CH₃) ppm. ¹³C NMR (CDCl₃): δ 144.8, 128.5, 127.1, 125.0, 74.9, 70.9, 25.9 ppm. MS (ESI) *m*/z 151 (M-H⁻, 100%).

1-Phenylpropane-1,2-diol (3g).⁽⁴⁰⁾ 1:1 mixture of diastereomers; Colourless oil; 79% yield; ¹H NMR (CDCl₃): δ 7.44-7.25 (5H, m, ArH), 4.66 (0.5H, d, *J* = 4.0 Hz, PhCH), 4.31 (0.5H, d, *J* = 7.7 Hz, PhCH), 4.21-3.92 (0.5H, m, CH), 3.91-3.76 (0.5H, m, CH), 3.43 (2H, br s, 2 x OH), 1.04-0.96 (3H, m, CH₃) ppm. ¹³C NMR (CDCl₃): δ 140.9, 140.2, 128.4, 128.2, 128.0, 127.6, 126.8, 126.5, 79.4, 77.2, 72.2, 71.3, 18.6, 16.7 ppm. MS (ESI) *m/z* 151 (M-H⁻, 100%).

trans-Cyclohexane-1,2-diol (3h).^[40] White solid; 96% yield; ¹H NMR (CDCl₃): δ 4.00 (2H, br s, 2 x OH), 3.38-3.23 (2H, m, 2 x C*H*OH), 2.13-1.84 (2H, m, 2 x C*H*H), 1.73-1.63 (2H, m, 2 x C*H*H), 1.36-1.07 (4H, m, 4 x C*H*H) ppm. ¹³C NMR (CDCl₃): δ 75.6, 32.8, 24.3 ppm. MS (ESI) *m/z* 115 (M-H⁻, 100%).

1-Phenylcyclohexane-1,2-diol (3i).^[40,41] White solid; 99% yield; 67:33 *syn:anti* mixture of diastereomers; ¹H NMR (CDCl₃): *δ* 7.59-7.23 (5H, m, ArH), 5.59 (0.33H, br s, OH), 3.94 (0.67H, dd, J = 10.7 and 4.6 Hz, CH), 3.73-3.69 (0.33H, m, CH), 3.05-2.88 (0.33H, m, OH), 2.75 (0.66H, br s, OH), 2.53-2.33 (0.66H, m, OH), 2.11-1.27 (8H, m, 8 x C*H*H) ppm. ¹³C NMR (CDCl₃): *δ* 146.3, 145.8, 128.5, 128.4, 127.5, 126.9, 126.1, 125.1, 75.7, 74.5, 74.4, 73.2, 38.4, 31.3, 29.2, 28.4, 24.3, 21.0, 21.0, 19.2 ppm. MS (ESI) m/z 191 (M-H⁻, 100%).

*trans-***2**,**3-Dihydroxycyclohexan-1-one (3)**.^[42] White solid; 83% yield; ¹H NMR (CDCl₃): δ 4.33 (2H, br s, 2 x OH), 4.03 (1H, d, *J* = 9.4 Hz, COCH), 3.54 (1H, ddd, *J* = 11.2, 9.4 and 4.5 Hz, CHOH), 2.54-2.22 (2H, m, 2 x CHH), 2.18-1.86 (2H, m, 2 x CHH), 1.84-1.32 (2H, m, 2 x CHH) ppm. ¹³C NMR (CDCl₃): δ 208.7, 81.9, 76.4, 38.8, 31.1, 21.0 ppm. MS (ESI) *m/z* 129 (M-H⁻, 100%).

4-(1,2-Dihydroxypropan-2-yl)-1-methylcyclohexane-1,2-diol (3k).^[43] White solid; Mixture of diastereomers; 61% yield; 1st set of isomers: 60:40 ¹H NMR (CDCl₃): 3.89-3.72 (1.6H, m, CH and OCH*H*), 3.62 (0.6H, d, *J* = 11.1 Hz,OCHH), 3.40 (0.4H, J = 10.7 Hz, OCHH), 3.27 (0.4H, J = 10.7 Hz, OCHH), 2.25-1.42 (11H, m, 4 x OH, CH and 6 x CHH), 1.37 (1.2H, s, CH₃), 1.27 (1.8H, s, CH₃), 1.23 (1.2H, s, CH₃), 1.21. (1.8H, s, CH₃); ¹³C NMR (CDCl₃): 5 84.6, 84.2, 82.9, 82.7, 72.2, 71.9, 69.5, 66.8, 39.7, 37.8, 33.1, 31.8, 28.7, 24.6, 24.1, 23.5, 18.5. 2nd set of isomers: ¹H NMR (*d*-DMSO): δ 4.60-4.02 (2H, m, CH and OH), 3.98-3.40 (2.6H, m, CH, C*H*H and OH), 3.38-3.03 (1H, m, CH and CHH), 2.96-2.09 (1.4H, m, CH, CHH and OH), 2.01-1.21 (7H, m, CH and 6 x CHH), 1.07 (0.45H, s, CH₃), 1.00 (2.55H, s, CH_3), 0.87 (1.8H, s, CH_3), 0.70 (1.2H, s, CH_3) ppm. ^{13}C NMR (d-DMSO): δ 85.3, 81.2, 73.3, 73.2, 72.6, 72.6, 72.4, 69.6, 68.3, 68.3, 67.8, 67.8, 58.3, 47.3, 46.8, 42.4, 42.2, 40.6, 40.3, 40.2, 39.8, 36.1, 35.8, 33.5, 32.5, 30.1, 29.8, 28.9, 28.6, 28.0, 26.5, 24.2, 22.6, 22.2, 21.8, 21.3, 20.8, 20.2, 19.7 ppm. MS (ESI) m/z 203 (M-H⁻, 100%).

1-Phenylpropane-1,2,3-triol (3I).^[44] White solid; 98% yield; 1:1 mixture of diastereomers; ¹H NMR (*d*-DMSO): δ 7.44-7.12 (5H, m, ArH), 4.51 (0.5H, d, J = 4.7 Hz, PhCH) 4.41 (0.5H, d, J = 5.9 Hz, PhCH), 4.38 (2H, br s, 3 x

OH), 3.58-3.20 (2.5H, m, CH and C*H*H), 3.13 (0.5H, dd, J = 10.9 and 6.3 Hz, C*H*H) ppm. ¹³C NMR (*d*-DMSO): 143.6, 127.8, 127.6, 127.3, 126.8, 126.7, 126.7, 75.9, 75.5, 74.1, 72.9, 63.1, 62.6 ppm. MS (ESI) *m/z* 167 (M-H⁻, 100%).

Acknowledgements

The authors gratefully acknowledge the Operational Program "Education and Lifelong Learning" for financial support through the NSRF program "ENI Σ XY Σ H META Δ I Δ AKTOP Ω N EPEYNHT Ω N" (PE 2431)" co-financed by ESF and the Greek State.

Keywords: Organocatalysis • Oxidation • Green Chemistry • Dihydroxylation • Hydrogen peroxide

- [1] S. Chandrasekhar, A. Sudhakar, *Org. Lett.* **2010**, *12*, 236-238.
- [2] E. W. Tate, D. J. Dixon, S. V. Ley, Org. Biomol. Chem. 2006, 4, 1698-1706.
- [3] A. Papayianni, C. N. Serhan, H. R. Brady, J. Immunol. 1996, 156, 2264-2272.
- [4] D. J. Dixon, S. V. Ley, S. Lohmann, T. D. Sheppard, Synlett 2005, 3, 481-484.
- [5] a) A. A. Farooqui, L. A. Horrocks in *Glycerophospholipids in Brain: Phospholipases A₂ in Neurological Disorders* (Eds.: A. A. Farooqui, L. A. Horrocks), Springer-Verlag, New York, NY, **2007**; b) R. S. Lankalapalli in *Synthesis of Analogs of Sphingophospholipids, Glycolipids, and Plasmalogen*, City University of New York, NY, **2011**.
- [6] a) R. B. Woodward, F. V. Brutcher, J. Am. Chem. Soc. 1958, 80, 209-211; b) L. Emmanuvel, T. M. A. Shaikh, A. Sudalai, Org. Lett. 2005, 7, 5071-5074; c) W. Zhong, J. Yang, X. Meng, Z. Li, J. Org. Chem. 2011, 76, 9997-10004; d) M. Fujita, M. Wakita, T. Sugimura, Chem. Commun. 2011, 47, 3983-3985; e) W. Zhong, S. Liu, J. Yang, X. Meng, Z. Li, Org. Lett. 2012, 14, 3336-3339.
- [7] For a review, see: A. B. Zaitsev, H. Adolfsson, Synthesis 2006, 1725-1756.
- [8] a) V. VanRheenen, R. C. Kelly, D. Y. Cha, *Tetrahedron Lett.* **1976**, 17, 1067-1070; b) J. Eames, H. J. Mitchell, A. Nelson, P. O' Brien, S. Warren, P. Wyatt, *J. Chem. Soc., Perkin Trans. 1* **1999**, 1095-1104.
- [9] a) E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder, K. B. Sharpless, *J. Am. Chem. Soc.* **1988**, *110*, 1968-1970; b) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, *Chem. Rev.* **1994**, 94, 2483–2547.
- [10] For a recent review, see: C. J. R. Bataille, T. J. Donohoe, *Chem. Soc. Rev.* 2011, 40, 114-128.
- [11] a) Y. Li, D. Song, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 2962-2964; b) A. Wang, H. Jiang, H. Chen, J. Am. Chem. Soc. 2009, 131, 3846-3847; c) W. Wang, F. Wang, M. Shi, Organometallics 2010, 29, 928-933.
- [12] a) K. Chen, M. Costas, J. Kim, A. K. Tipton, L. Jr. Que, *J. Am. Chem.* Soc. 2002, *124*, 3026-3035; b) P. D. Oldenburg, L. Jr. Que, *Catal. Today* 2006, *117*, 15-21.
- a) B. Plietker, A. Niggemann, A. Pollrich, *Org. Biomol. Chem.* 2004,
 1116-1124; b) B. Plietker, A. Niggemann, *J. Org. Chem.* 2005,
 70, 2402-2405; c) B. Plietker, N. M. Neisius, *J. Org. Chem.* 2008,
 73, 3218-3227.

WILEY-VCH

- [14] a) J. W. Boer, J. Brinksma, W. R. Browne, A. Meetsma, P. L. Alsters, R. Hage, B. L. Feringa, *J. Am. Chem. Soc.* 2005, 127, 7990-7991; b) J. W. Boer, J. Brinksma, W. R. Browne, S. R. Harutyunyan, L. Bini, T. D. Tiemersma-Weyman, P. L. Alsters, R. Hage, B. L. Feringa, *Chem. Commun.* 2008, 3747-3749.
- [15] J. Seayad, A. M. Seayad, C. L. Chai, Org. Lett. 2010, 12, 1412-1415.
- [16] T. P. Blaisbell, T. C. Caya, L. Zhang, A. Sanz-Marco, J. P. Morken, J. Am. Chem. Soc., 2014, 136, 9264-9267.
- [17] a) J. C. Griffith, K. M. Jones, S. Picon, M. J. Rawling, B. M. Kariuki,
 M. Campbell, N. C. O. Tomkinson, *J. Am. Chem. Soc.* 2010, *132*,
 14409-14411; b) K. M. Jones, N. C. O. Tomkinson, *J. Org. Chem.* 2012, 77, 921-928.
- [18] S. Picon, M. Rawling, M. Campbell, N. C. O. Tomkinson, Org. Lett. 2012, 14, 6250–6253.
- [19] C. Alamillo-Ferrer, S. C. Davidson, M. J. Rawling, N. H. Theodoulou, M. Campbell, P. G. Humphreys, A. R. Kennedy, N. C. O. Tomkinson, *Org. Lett.* **2015**, *17*, 5132-5135.
- [20] a) D. Limnios, C. G. Kokotos, ACS Catal. 2013, 3, 2239-2243; b) D. Limnios, C. G. Kokotos, Chem. Eur. J. 2014, 20, 559-563; c) D. Limnios, C. G. Kokotos, J. Org. Chem. 2014, 79, 4270-4276; d) A. Theodorou, D. Limnios, C. G. Kokotos, Chem. Eur. J. 2015, 21, 5238-5241; e) E. Voutyritsa, A. Theodorou, C. G. Kokotos, Org. Biomol. Chem. 2016, 16, 5708-5713.
- [21] L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty, D. F. Toste, *Chem* 2016, 1, 32-58.
- [22] J. C. R. Freitas, C. K. De Oliveira, E. C. Cunha, I. Malvestiti, S. Alves Jr., R. L Longo, P. H. Menezes, *Tetrahedron Lett.* **2013**, *54*, 1558-1561.
- [23] S. E. Denmark, S. T. Nguyen, Org. Lett. 2009, 11, 781-784.
- [24] M. Vasylyev, H. Alper, J. Org. Chem. 2010, 75, 2710-2713.
- [25] S. E. Denmark, Z. D. Matesich, J. Org. Chem. 2014, 79, 5970-5986.
- [26] L. Zhang, Z. Zha, Z. Zhang, Y. Li, Z. Wang, Chem. Commun. 2010, 46, 7196-7198.

- [27] S. Ito, A. Hayashi, H. Komai, H. Yamaguchi, Y. Kubota, M. Asami, *Tetrahedron* 2011, 67, 2081-2089.
- [28] D. Goswami, A. Chattopadhyay, A. Sharma, S. Chattopadhyay, J. Org. Chem. 2012, 77, 11064-11070.
- [29] J. Joseph, F. Jaroschik, D. Harakat, K. V. Radhakrishnan, J.-L. Vasse, J. Szymoniak, *Chem. Eur. J.* 2014, 20, 5433-5438.
- [30] K. Damera, B. Yu, B. Wang, J. Org. Chem. 2015, 80, 5457-5463.
- [31] X. Fan, H.-B. Zhu, H. Lv, K. Guo, Y.-H. Guan, X.-M. Cui, B. An, Y.-L. Pu, Appl. Organomet. Chem. 2015, 29, 588-592.
- [32] M. P. Gamedze, R. B. Maseko, F. Chigondo, C. M. Nkambule, *Tetrahedron Lett.* **2012**, *53*, 5929-5932.
- [33] Y. Gaomi, J. Chem. Soc. C: Organic 1968, 2934-2941.
- [34] C. V. Ramana, N. Raghupathi, M. K. Gurjara, M. S. Chorghade, *Tetrahedron Lett.* 2005, 46, 4073-4075.
- [35] M. P. Gamedze, C. M. Nkambule, *Tetrahedron Lett.* 2015, 56, 1825-1829.
- [36] S. Samanta, V. Pappula, M. Dindaa, S. Adimurthy, Org. Biomol. Chem. 2014, 12, 9453-9456.
- [37] X. Chen, T. Mei, Y. Cui, Q. Chen, X. Liu, J. Feng, Q. Wu, D. Zhu, *ChemistryOpen* **2015**, *4*, 483-488.
- [38] W. Hu, P.-R. Li, G. Jiang, C.-M. Che, J. Chen, Adv. Synth. Catal. 2010, 352, 3190-3194.
- [39] S. Superchi, D. Casarini, C. Summa, C. Rosini, J. Org. Chem. 2004, 69, 1685-1694.
- [40] Y. Monguchi, F. Wakayama, H. Takada, Y. Sawama, H. Sajiki, Synlett 2015, 26, 700-704.
- [41] E. P. Balskus, J. Mendez-Andino, R. M. Arbit, L. A. Paquette, J. Org. Chem. 2001, 66, 6695-6704.
- [42] P. Bovicelli, D. Truppa, A. Sanetti, R. Bernini, P. Lupattelli, *Tetrahedron* 1998, 54, 14301-14314.
- [43] T. Matsumura, T. Ishikawa, J. Kitajima, Chem. Pharm. Bull. 2002, 50, 66-72.
- [44] D. Xu, C. Y. Park, K. B. Sharpless, *Tetrahedron Lett.* **1994**, *35*, 2495-2498.

WILEY-VCH

Entry for the Table of Contents

FULL PAPER

One-pot Magic. Green organocatalytic one-pot dihydroxylation of alkenes via an intermolecular ring opening from water of the in situ prepared epoxide.

Organocatalysis

A. Theodorou, I. Triandafillidi, C. G. Kokotos*

Page No. – Page No.

Green Organocatalytic One-pot Dihydroxylation of Alkenes

*Organocatalysis, Green Chemistry