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Construction of Monocyclic Eight-Membered Rings: Intermolecular
Rhodium(I)-Catalyzed [6+2] Cycloaddition of 4-Allenals with
Alkynes**
Yoshihiro Oonishi,* Akihito Hosotani, and Yoshihiro Sato*

Eight-membered carbocyclic compounds are widely found in
natural products that have unique medical and biological
activities.[1] Transition-metal-catalyzed [m+n] and/or
[m+n+o] cycloadditions (e.g., [4+4], [6+2], and [4+2+2])
are the most promising strategies for the construction of
polycyclic eight-membered-ring compounds.[2,3] However, the
construction of a simple but functionalized monocyclic eight-
membered carbocyclic system is still difficult even when using
transition-metal-catalyzed cycloadditions, and only a few
examples have so far been reported.[4] Herein we report
RhI-catalyzed intermolecular [6+2] cycloadditions of 4-alle-
nals and alkynes to give functionalized monocyclic eight-
membered-ring compounds.[4f, 5–8]

We recently reported a RhI-catalyzed intramolecular
[6+2] cycloaddition of 4-allenals with tethered alkynes and
alkenes (Scheme 1).[5c] In this reaction, the rhodacycle A is
initially formed through hydroacylation[9] of the 4-allenal
moiety of 1 followed by insertion into a C�C mutiple bond in
the tether to afford bicyclic eight-membered-ring compound
2.

We envisaged that if this intramolecular [6+2] cyclo-
addition could be expanded to an intermolecular reaction
between 4-allenal 3 and alkyne 4, monocyclic octanone
derivative 5 would be obtained (Scheme 2).[10] However, the
application of the intramolecular reaction to an intermolec-
ular version is generally difficult because of unfavorable
entropy and the high probability of side reactions (e.g.,
formation of 6 through hydroacylation of allenal 3[5c] and
formation of 7 by trimerization of alkyne 4).

To examine the feasibility of the plan, the cyclization of 4-
allenal 3a with terminal alkyne 4a in the presence of various
RhI complexes was initially investigated (Table 1). The use of
[Rh(IMes)(cod)]ClO4, which is the most effective for the
above-mentioned intramolecular cyclization (Scheme 1),
afforded the desired eight-membered ring 5aa in 61% yield
along with six-membered ring 8aa in 19% yield (entry 1).[11] It
was found that [Rh(SIMes)(cod)]ClO4 was also effective in
this intermolecular reaction, and the cyclic compound 5aa
was produced selectively in 68 % yield (entry 2). Lowering the
reaction temperature from room temperature to 0 8C
improved the yield of the eight-membered-ring compound
5aa up to 83% (entry 3). Furthermore, the catalyst loading
could be reduced to 2 mol% under similar reaction con-
ditions, thereby giving 5aa in 84 % yield (entry 4). On the
other hand, [RhCl(PPh3)3] and [Rh(dppe)]ClO4 did not
promote the desired reaction at all, and the starting material
3a was recovered in 69% and 78% yield, respectively
(entries 5 and 6).

Encouraged by these results, the cyclization of 4-allenal
3a with various terminal alkynes 4 was examined (Table 2).
Cyclization of 3 a with terminal alkynes 4b, 4c, and 4d, having

Scheme 1. RhI-catalyzed intramolecular [6+2] cycloaddition. L = ligand.

Scheme 2. Plan for intermolecular [6+2] cycloaddition.
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a benzyloxy or benzoate moiety, proceeded in a steroselective
manner to give cyclic compounds 5 ab–5ad in high yields
(entries 1–3). The cyclization of 3a with 4e, having a tethered

sulfonamide moiety, afforded 5ae in 61 % yield as the sole
product (entry 4). On the other hand, the use of propargyl
alcohol (4 f) afforded 5af along with its regioisomer 5af’ in
yields of 64% and 10%, respectively (entry 5). When 1-
hexyne (4g) was used in this cyclization, the eight-membered
rings 5ag and 5ag’ were obtained in yields of 68% and 5%,
respectively, along with the six-membered ring 8ag in 11%
yield (entry 6). In the case of 4h, having an electron-with-
drawing group, 5ah and 5ah’ were obtained in yields of 56%
and 22 %, respectively (entry 7).

Next, we investigated the cyclization of various 4-allenals
3 with terminal alkyne 4a (Table 3). Cyclizations of 3b–3d
with 4a proceeded in a stereoselective manner to afforded
eight-membered rings 5ba–5 da in good to high yields
(entries 1–3). 4-Allenal 3e, having a TMS moiety on the
allene unit, gave the desired cyclic compound 5ea in 82%
yield as the sole product (entry 4). On the other hand, when
3 f, having a phenyl group on the allene part, was employed in
this cyclization, 5 fa and its regioisomer 5 fa’ were obtained in
yields of 51% and 23 %, respectively (entry 5). The reaction
of 3g or 3 h, having groups between the aldehyde and allene,
gave 5ga or 5 ha in yields of 37 % or 44%, respectively
(entries 6 and 7).[12]

It is noteworthy that gaseous acetylene can be utilized as
an alkyne in this cyclization. Thus, treatment of 3a with
10 mol% [Rh(SIMes)(cod)]ClO4 in an acetylene atmosphere
afforded the corresponding compound 5ai in 84% yield as the
sole product (Scheme 3). The reactions of 3 c, 3 d, and 3 f with
gaseous acetylene also proceeded smoothly, giving 5ci, 5di,
and 5 fi in high yields. The reactions of 3g and 3h also gave the
eight-membered-ring compounds 5gi and 5 hi in yields of
74% and 62%, respectively.

Table 1: Cyclization using various RhI complexes.

Entry RhI complex Conditions Yields [%][a]

5aa 8aa

1 [Rh(IMes)(cod)]ClO4
[b] RT, 9 h 61 (57) 19 (17)

2 [Rh(SIMes)(cod)]ClO4
[b] RT, 2 h 68 –

3 [Rh(SIMes)(cod)]ClO4
[b] 0 8C, 12 h 83 (81) –

4 [Rh(SIMes)(cod)]ClO4
[c] 0 8C, 24 h 84 –

5[d] [RhCl(PPh3)3] RT, 24 h – –
6[d] [Rh(dppe)]ClO4

[e] RT, 24 h – –

[a] Yields were determined by NMR spectroscopy using 1,3,5-trime-
thoxybenzene as an internal standard. Yields of isolated products are
given in parenthesis. [b] Reactions were carried out using 10 mol%
[Rh(NHC)(cod)]ClO4 generated in situ from [Rh(NHC)(cod)]Cl
(10 mol%) and AgClO4 (10 mol%) in ClCH2CH2Cl (0.1m solution with
respect to 3a). [c] The reaction was carried out using 2 mol% [Rh-
(NHC)(cod)]ClO4 generated in situ from [Rh(NHC)(cod)]Cl (2 mol%)
and AgClO4 (2 mol%) in ClCH2CH2Cl (1.0m solution with respect to 3a).
[d] The starting material 3a was recovered in yields of 69% (entry 4) and
78% (entry 5). [e] The reaction was carried out using 10 mol% [Rh-
(dppe)]ClO4 generated in situ from [Rh(dppe)(nbd)]ClO4 (10 mol%)
under an atmosphere of hydrogen in ClCH2CH2Cl (0.1m solution with
respect to 3a). Bn = benzyl, MOM =methoxymethyl, IMes =1,3-dime-
sitylimidazol-2-ylidene, cod =cycloocta-1,5-diene, dppe= ethane-1,2-
diylbis(diphenylphosphane).

Table 2: Cyclizations using various alkynes.[a]

Entry Alkyne 4 t [h] Yield [%]
5 5’ 8

1 17 82 – –
2 39 74 – –

3[b] 24 75 – –

4[b] 15 61 – –

5[b] 15 64 10 –

6[c] 46 68 5 11

7[b] 4 56 22 –

[a] All reactions were carried out in ClCH2CH2Cl (0.1m solution with
respect to 3a). [b] Carried out at RT. [c] Carried out in 0.5m solution with
respect to 3a. Ts = toluene-4-sulfonyl.

Table 3: Cyclizations using various 4-allenals.[a]

Entry Allenal 3 t [h] Yield [%]

1 3b : (R1 = CH2OBn) 21 5ba : 69 5ba’: – 8ba : -
2 3c : (R1 = CH2CH2Ph) 18 5ca : 81 5ca’: – 8ca : –
3 3d :

(R1 = CH2CH2NMeTs)
14 5da: 72 5da’: – 8da : –

4[b] 3e : (R1 = TMS) 1 5ea : 82 5ea’: – 8ea : –
5[b] 3 f : (R1 = Ph) 1 5 fa : 51 5 fa’: 23 8 fa : –

6[c] 15 5ga: 37 5ga’: – 8ga : 28

3g (R1 = CH2CH2OBn)

7[b] 21 5ha : 44 5ha’: – 8ha: 17

3h (R1 = CH2CH2OBn)

[a] All reactions were carried out in the presence of [Rh(SIMes)-
(cod)]ClO4 (10 mol%) in ClCH2CH2Cl (0.1m solution with respect to 3) at
0 8C. R2 = CH2OMOM. [b] Carried out at RT. [c] Hydroacylation product
6g was obtained in 8% yield. TMS= trimethylsilyl.

Angewandte
Chemie

11549Angew. Chem. Int. Ed. 2012, 51, 11548 –11551 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


A possible reaction mechanism for the formation of 5 and
8 is depicted in Scheme 4. Initially, a C�H bond of the
aldehyde moiety oxidatively adds to the RhI complex, and this
is followed by insertion of the C=C bond of the allene moiety
to give the rhodacycle intermediate C. The rhodacycle
intermediate C would be in equilibrium with the rhodacycle
intermediate A’ through the p-allylrhodium intermediate D.
Eight-membered ring 5 would be produced through insertion
of terminal alkyne 4 into seven-membered rhodacycle
intermediate A’, while six-membered ring 8 would be
formed through insertion of teminal alkyne 4 into five-
membered rhodacycle intermediate C.[10] The cyclization of 3
afforded eight-membered ring 5 in preference to six-mem-
bered ring 8.[13] These results suggest that the equilibrium
between A’ and C lies towards A’ or that the rate of the
reaction between A’ and 4 is faster than that between C and 4.

Some additional experiments were performed to gain
mechanistic insights into the present reaction (Scheme 5).
First, the reaction of [D]-3a, which was deuterated at the
formyl C�H bond, with 4 a gave the corresponding product
[D]-5aa, having a deuterium on the alkene moiety, in a high
yield with a high deuterium content [Eq. (1)], which is
completely consistent with the mechanism shown in
Scheme 4. Second, when the substrate (S)-3a (91 % ee) was

subjected to the above optimal conditions (10 mol % [Rh-
(SIMes)(cod)]ClO4, ClCH2CH2Cl, 0 8C), the product 7a was
obtained in a high yield with a high chirality transfer
(89 % ee). The absolute configuration of 7a was assigned to
be S [Eq. (2)],[14] which indicates that this reaction proceeds
through the enantioselective formation of C from the chiral
starting material, followed by a stereospecific p-allyl rear-
rangement to A’.

In conclusion, we have succeeded in developing a RhI-
catalyzed intermolecular [6+2] cycloaddition between 4-
allenals and alkynes to afford various monocyclic eight-
membered-ring compounds in high yields. Eight-membered
rings are found in a wide variety of natural products, and the
present reaction should provide a new way for constructing
functionalized monocyclic eight-membered-ring compounds.
Further studies to determine the scope, limitations, and the
detailed mechanism of this reaction are in progress.
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